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A diverse ancestrally‑matched 
reference panel increases 
genotype imputation accuracy 
in a underrepresented population
John Mauleekoonphairoj 1,2, Sissades Tongsima 3, Apichai Khongphatthanayothin 1,4,5, 
Sean J. Jurgens 6,7, Dominic S. Zimmerman 6, Boosamas Sutjaporn 1, Pharawee Wandee 1, 
Connie R. Bezzina 6, Koonlawee Nademanee 1,8 & Yong Poovorawan 9*

Variant imputation, a common practice in genome-wide association studies, relies on reference panels 
to infer unobserved genotypes. Multiple public reference panels are currently available with variations 
in size, sequencing depth, and represented populations. Currently, limited data exist regarding the 
performance of public reference panels when used in an imputation of populations underrepresented 
in the reference panel. Here, we compare the performance of various public reference panels: 1000 
Genomes Project, Haplotype Reference Consortium, GenomeAsia 100 K, and the recent Trans-Omics 
for Precision Medicine (TOPMed) program, when used in an imputation of samples from the Thai 
population. Genotype yields were assessed, and imputation accuracies were examined by comparison 
with high-depth whole genome sequencing data of the same sample. We found that imputation using 
the TOPMed panel yielded the largest number of variants (~ 271 million). Despite being the smallest in 
size, GenomeAsia 100 K achieved the best imputation accuracy with a median genotype concordance 
rate of 0.97. For rare variants, GenomeAsia 100 K also offered the best accuracy, although rare 
variants were less accurately imputable than common variants (30.3% reduction in concordance 
rates). The high accuracy observed when using GenomeAsia 100 K is likely attributable to the diverse 
representation of populations genetically similar to the study cohort emphasizing the benefits of 
sequencing populations classically underrepresented in human genomics.

Variant imputation has become a mainstay in contemporary genome-wide association studies (GWAS), as the 
increased exploration and testing of unobserved genotypes improves statistical power1. Imputation uses haplo-
type information from a reference panel to infer genetic variation not typed, or typed inaccurately, by genotyping 
arrays, thereby correcting some genotyping errors and vastly enhancing genome coverage. The performance of 
imputation therefore relies heavily on the specific reference panel used.

The advent of next-generation sequencing has led to an increase in whole genome sequencing (WGS) avail-
ability, enabling the construction of high-density reference panels. While initially reference panels could accu-
rately infer variants with minor allele frequencies (MAFs) ≥ 5%, the increased size and sequencing coverage of 
recent high-density panels has enabled imputation down to low-frequency, 5% > MAF ≥ 1%, and rare, MAF < 1%, 
variants2–4. This has allowed examination of the human genome at a finer resolution, leading to identification of 
thousands of novel associations in GWAS5–7.
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A wide range of high-density public reference panels exists with varying sizes, sequencing coverages, and 
represented populations1. These public reference panels include the 1000 Genomes Project phase 3 (1000G), 
the Haplotype Reference Consortium (HRC), the GenomeAsia 100 K project (GenomeAsia), and the Trans-
Omics for Precision Medicine (TOPMed) program. 1000G comprises 2504 ancestrally diverse individuals from 
26 global populations8,9. HRC covers 32,488 human genomes by combining WGS data from over 20 different 
studies including 1000G. WGS data from HRC have sequencing coverage of 4× to 8× and are predominantly of 
European descent10. GenomeAsia was constructed to address the underrepresentation of Asian populations in 
the preceding reference panels. GenomeAsia contains WGS data on 1739 individuals from over 219 populations 
across Asia, with high depth coverage (~ 36×)11. In their most recent release, TOPMed contains WGS of 97,256 
individuals publicly available for imputation. TOPMed’s WGS data are high-depth coverage (~ 38×) including 
individuals from diverse ancestral backgrounds12.

Previous studies have demonstrated strong variations in imputation performance when common reference 
panels were applied to different populations13,14. For example, imputation using HRC offered better accuracy 
among European populations than among the Han-Chinese population14. There are limited data regarding 
imputation performance when public reference panels are used in populations not widely represented in the 
reference. In turn, this causes difficulties in the reference selection, in understanding the limitations associated 
with each reference panel, and created challenges when performing genomic research in populations that are 
underrepresented. To our knowledge, the Thai population is not represented in any current public reference 
panel except for GenomeAsia (n = 2), and therefore, issues relating to imputation accuracy and panel selection 
are particularly important to genetic studies in this population. Here, we compare genotyping imputation of 
Illumina Global Screening Array (GSA) among Thai individuals using four different high-density reference panels 
(1000G, HRC, GenomeAsia, and TOPMed). Genotype yields and imputation accuracies at varying minor allele 
frequencies (MAF) were accessed. Lastly, the effect of reference panels selection on an association analysis and 
ability to impute rare disease-causing variants were examined.

Results
Genotype yield and confidence level.  Four different public reference panels (1000G, HRC, GenomeA-
sia, and TOPMed) were used to impute genotyping array data in 412 Thai samples from the Southeast Asian Bru-
gada syndrome cohort. The number of variant sites obtained varied when different reference panels were used. 
The largest number of variants (271 million [M]) was achieved when using TOPMed as a reference (Table 1). 
TOPMed reference resulted in 6 × more variant sites than 1000G (43.8 M), 7 × more than HRC (39.1 M), and 
13 × more than GenomeAsia (21.5  M). In terms of insertion/deletions (INDEL), imputation using TOPMed 
resulted in 20.9 M INDELs, while 1000G resulted in 3.23 M. Due to the lack of INDEL data in HRC and Genom-
eAsia, INDELs could not be inferred when these two panels were utilized as imputation reference panels.

TOPMed also offered the largest number of imputed variant sites with high-confidence (R2 > 0.8) at 6.99 M 
when we examined variants imputation confidence levels using computed Minimac-R2 values (Table 1). Imputa-
tion using 1000G, GenomeAsia, and HRC obtained lower numbers of high-confidence variant sites (R2 > 0.8), 
at 5.28 M, 5.06 M, and 4.89 M, respectively. The number of variants reduced substantially when R2 cut-offs were 
applied. The largest reduction seen in the TOPMed-imputed data, with 92.8% of variant sites imputed using 
TOPMed are of low-confidence (R2 < 0.2). We examined the distribution of imputed variants over the range of 
0.2–1.0 R2 (Supplementary Fig. 1). Imputation using GenomeAsia showed a large portion of variants with very 
high-confidence (15.7% at R2 of 0.9–1.0), while TOPMed showed the lowest number (1.42%; Table 1).

Imputation accuracy.  Imputation accuracy was examined used concordance between imputed genotypes 
and validation genotypes called from WGS to calculate Genotype Concordance Rate (GCR) for each sample. 
Overall, imputation using GenomeAsia achieved the highest accuracy with a cohort median GCR of 0.974 
(Fig. 1; Q1–Q3 0.973–0.977). The median GCR values were substantially lower when using 1000G (0.964; Q1–
Q3 0.962–0.965), TOPMed (0.945; Q1–Q3 0.943–0.948), and HRC (0.931; Q1–Q3 0.929–0.933) as a reference. 
Imputation accuracies were consistently high across samples within the cohort when using GenomeAsia as a 
reference (GCRs 0.970–0.978). Higher variations of GCR were found with TOPMed (0.935–0.963), where a 
small group of samples represented outliers with high GCR (Fig. 1). Examination of demographic data revealed 
that many individuals within this outlier group self-identified as Thai-Chinese (data not shown).

Table 1.   Number of imputed variants at different imputation confidence levels according to Minimac-R2 cut-
offs.

R2 

Number of variant sites after imputation in millions (M)

GenomeAsia 1000G TOPMed HRC

Cut-off #SNP (M) #INDEL
#SNP 
(M) #INDEL (M) #SNP (M) #INDEL (M) #SNP (M) #INDEL

None 21.50 n/a 43.80 3.230 271.00 20.900 39.10 n/a

0.2 9.87 n/a 13.10 1.420 19.50 1.460 12.40 n/a

0.4 8.26 n/a 10.10 1.130 14.70 1.090 9.95 n/a

0.6 6.86 n/a 7.88 0.866 11.20 0.815 7.71 n/a

0.8 5.06 n/a 5.28 0.532 6.99 0.496 4.89 n/a
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We investigated the effect of population structure within the Thai cohort on imputation accuracy when using 
the TOPMed panel. Using MDS analysis, we found that sample GCR values corresponded with the horizontal 
axis from the MDS analysis, and that samples with high GCR clustered together, separated from the other sam-
ples (Fig. 2a). Admixture analyses were performed to confirm that these samples represented the Thai-Chinese 
subpopulation, as suggested by the demographic data. Using North and South Han-Chinese genotype datasets 
acquired from the Human Diversity Genome Project, admixture analysis revealed that individuals within the 
high GCR cluster also had a higher degree of Han-Chinese admixture than the rest of the cohort (Fig. 2b,c).

When examined the effect of R2 cut-offs on imputation accuracy, imputation accuracy increased with more 
stringent R2 cut-off (Supplementary Fig. 2). At high-confidence imputed genotypes (R2 > 0.8), all samples achieved 
GCR above 0.967 regardless of reference panel used. TOPMed and HRC GCRs significantly improved with the 
median GCR approaching 0.974 and 0.973, respectively. GenomeAsia achieved the highest median GCR at 0.987.

Imputation accuracy and allele frequency.  At different minor allele frequencies (MAFs), imputation 
using GenomeAsia offered better accuracy when compared to the other reference panels (Fig. 3a). Common 
variants (AF ≥ 0.05) and low-frequency variants (0.05 > AF ≥ 0.01) showed similar squared Pearson correlation 
patterns. Accuracy decreased considerably in the rare variants group (AF < 1%) for all four reference panels. For 
rare variants, GenomeAsia achieved the highest accuracy with squared Pearson correlation of 0.275, followed 
by 1000G (0.228), TOPMed (0.200), and HRC (0.184). Finer examination of rare and ultra-rare variant bins 
revealed that imputation accuracy decreased further with lower AF. GenomeAsia outperformed the other refer-
ence panels down to the 0.001 > AF ≥ 0 bin (Fig. 3b).

Association study and imputation of protein‑coding variants.  We examined the impact of refer-
ence panels selection on an association analysis of genetic variants predisposing to Brugada Syndrome. GWASs 
were conducted on each of the four datasets that used different reference panels and genotypes called from WGS. 
Association statistics conducted using WGSs data showed 3 signals reached genome-wide significant threshold 
of 5 × 10–8; rs12634016 (P = 4.95511 × 10–10), rs7610489 (P = 1.12176 × 10–9) and rs1811852 (P = 4.83781 × 10–8) 
(Table 2). Dataset imputed with GenomeAsia also observed 3 signals in linkage disequilibrium with WGS’s lead 
SNP. When used 1000G, HRC, and TOPMed, only two signals reached genome-wide significant, rs12634016 
and rs7610489. Signals at chromosomes 3 (rs12634016 and rs7610489) were imputed with high confidence 

Figure 1.   Imputation accuracy of chromosome 1 measured by GCR across 412 Thai individuals, using 
GenomeAsia, 1000G, TOPMed, and HRC reference panels. GCR was computed by comparison of imputed 
genotypes to validated genotypes from WGS. Data are presented as boxplots with distributions of sample GCR 
on the y-axis and imputation reference on the x-axis.
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(R2 > 0.8) for all reference panels used. Signals at chromosomes 6 were imputed with lower confidence with R2 
ranging from 0.49 to 0.64.

We further examined the ability of different high-density reference panels to infer rare disease-causing vari-
ants. Rare SCN5A protein-coding variants has been widely associated with Brugada syndrome. SCN5A coding 
variants inferred differs when different reference panels were used. TOPMed inferred 6 different variants, 2 vari-
ants were imputed when used 1000G and 1 variant when used HRC or GenomeAsia (Supplementary table 2). All 
variants have MAFs ranging from 0.0028 to 0.00002093 in gnomAD database and were imputed with R2 ranging 
from 0.34 to 0.71. The imputed variants were validated against used WGS. Imputation of rare SCN5A variants 
remain poor as all imputed rare SCN5A protein-coding variants found to be false positive.

Figure 2.   (a) Multidimensional scaling plot of 412 individuals coloured with GCR obtained when assessed 
genotypes imputed with TOPMed panel against genotypes from WGS. (b) Admixture plot of genome-wide 
genotype data of Thai (THA) and Japanese (JAP), Northern Han-Chinese (NHAN), Han-Chinese (HAN) and 
Cambodian (CAM) acquired from the Human Diversity Genome Project. (c) Multidimensional scaling plot 
coloured used the majority Q estimates found in Han-Chinese (HAN) from ADMIXTURE v. 1.3.

Figure 3.   (a) Imputation accuracy of common (AF ≥ 0.05), low-frequency (0.05 > AF ≥ 0.01), and rare 
(AF < 0.01) variants. (b) Imputation accuracy of rare and ultra-rare variants at a finer resolution. Accuracies 
were measured using squared Pearson correlation between imputed and WGS variants. Variants r2 were 
aggregated into groups according to AF from gnomAD (version 2.1.1).
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Discussion
In the present study, we evaluated the utility of four different public reference panels (1000G, GenomeAsia, 
HRC, and TOPMed) for variant imputation on Illumina Global Screening Array data of 412 Thai individuals, 
which are underrepresented in these references. We found that the choice of reference panel can strongly affect 
the breadth and accuracy of the resulting variant data. While TOPMed-based imputation resulted in the larg-
est number of variants in our cohort, imputation using GenomeAsia achieved the greatest accuracy and lowest 
variability (GCR from 0.96 to 0.98). We further demonstrated that imputation accuracy can also be affected 
by the cohort population structure, as TOPMed imputation resulted in higher accuracy among samples with 
Chinese admixture. When considering the accuracy at different MAF groups, imputation using GenomeAsia 
outperformed other reference panels for rare and ultra-rare variants (0.002 > AF ≥ 0.001).

TOPMed represents an exceptionally large reference sample (N = 97,256). In concordance with previous stud-
ies, the larger reference size increases variant sites for imputation, including protein coding variants, that can be 
beneficial in further association analysis15,16. Unfortunately, the larger TOPMed and HRC (N = 32,488) datasets, 
when used to impute our Thai cohort, achieved lower imputation accuracy than the smaller 1000G (N = 2504) 
or GenomeAsia (N = 1739) reference panels. A reduced performance of HRC has previously been described 
in non-European datasets, including those of Han-Chinese and African ancestry; here, it was suspected that 
the overrepresentation of European ancestry individuals in the HRC panel may cause bias during phasing and 
haplotype selection processes14,17. While over 1184 East Asian individuals are represented in TOPMed, it only 
accounted for 1.22% of the total reference samples. Similar to HRC, the overrepresentation of populations with 
low genetic similarity to this study cohort in TOPMed may also be responsible for the low accuracy observed.

The high imputation accuracy of GenomeAsia may be attributable to its diverse representation of popula-
tions genetically similar to our study cohort. The GenomeAsia reference contains data from 219 population 
groups and 64 countries across Asia. Samples were collected from populations in the northeast, southeast and 
south Asia that are previously underrepresented in genetic studies. Indeed, a previous study demonstrated an 
improvement in imputation performance when additional populations were added to the reference18. Thailand 
is located at the center of mainland Southeast Asia with a high degree of genetic admixture from neighbouring 
countries through past migrational events19. While only 2 Thai WGS are represented in GenomeAsia, the diverse 
representation of genomes from neighboring countries likely provided a useful haplotype reference that ben-
efited different subpopulations within our Thai cohort, leading to a higher accuracy throughout. In contrast, the 
diversity of Asian populations enrolled in the TOPMed study may not be as extensive with some Thai population 
subgroups underrepresented, as lower accuracies were observed in some samples within the cohort. The higher 
accuracy found in Thais with Han-Chinese admixture may reflect the high proportion of Han-Chinese ancestry 
represented in the East Asian population of the TOPMed database.

Although GenomeAsia yielded the best imputation accuracy for all AF bins, imputation accuracy strongly 
decreased with lower MAF as reported in other populations20. We found a 30.3% reduction in squared Pearson 
correlation of rare variants when compared to common variants. Several approaches have been proposed to 
improve imputation accuracy for rare variants. First and foremost, an increase in reference size strongly benefits 
rare variant imputation21,22. As GenomeAsia currently has the smallest sample size of all four panels studied, 
an increase in Asian reference samples may vastly improve rare variant imputation accuracy. Secondly, using 
population-specific reference panels4,22,23. As costs decrease and sequencing becomes more widely accessible, 
WGS should enable the construction of a Thai population-specific reference panel in the near future.

We acknowledge several caveats and limitations of the present study. Imputation accuracy was not examined 
for all chromosomes, although similar results were obtained for chromosomes 1 and 21 (Supplementary Fig. 3). 
Evaluation of imputation accuracy was limited to WGS high-coverage regions. The accuracy of INDELs was 
not evaluated in this study, as this class of variation could only be obtained from imputation using TOPMed 
and 1000G reference panels.

In summary, our results demonstrate the importance and benefits of genetic similarity between reference 
and target datasets to achieve high imputation accuracy. Diverse representation of populations in the reference 
panel facilitates imputation of populations not represented well in the panel. For instance, GenomeAsia harbored 
a more diverse Asian population genetically similar to the Thai population, thereby outperforming other high-
density reference panels in terms of imputation accuracy. Our findings emphasize the benefits of sequencing 
populations classically underrepresented in human genomics. As genomic studies are being perform in more 
diverse genetic ancestry, reference with diverse representation of populations would provide a crucial resource 
in studying these populations.

Table 2.   Signal associated with Brugada syndrome when different reference panels were used.

WGS GenomeAsia 1000G HRC TOPMed

Lead SNP P value Lead SNP P value Lead SNP P value Lead SNP P value Lead SNP P value

1 3:38583025:G:A
(rs12634016) 4.96E−10 3:38582571:A:G

(rs6767797) 1.21E−10 3:38582571:A:G
(rs6767797) 5.35 E−11 3:38582571:A:G

(rs6767797) 1.67 E−09 3:38583025:G:A
(rs12634016) 7.10 E−10

2 3:38806478:G:A
(rs7610489) 1.12 E−09 3:38810525:C:T

(rs56040630) 3.96 E−10 3:38810525:C:T
(rs56040630) 6.26 E−10 3:38810525:C:T

(rs56040630) 3.96 E−10 3:38814233:A:C
(rs4420805) 9.83 E−10

3 6:126071575:G:C
(rs1811852) 4.84 E−08 6:126115383:A:C

(rs9388454) 3.34 E−09
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Materials and method
In the present study, we enrolled 412 participants from the Southeast Asian Brugada syndrome cohort (Clinical-
Trials.gov number, NCT04232787). The study was approved by the Institutional Review Board (IRB) of the Fac-
ulty of Medicine, Chulalongkorn University, Bangkok, Thailand (IRB No. 431/58). All methods were performed 
in accordance with relevant guidelines/regulations. Informed consent was obtained from all participants. All 
participants self-identified as Thai and were recruited from various regions of Thailand (Supplementary table 1).

Genome-wide genotyping and WGS were performed on all samples enrolled in this study. Genome-wide 
genotyping was done using the GSA platform, as previously described24. WGS with a mean coverage of 30× was 
carried out using the Illumina HiSeq X sequencer with paired-end reads of 150 bp, polymerase chain reaction-
free, as previously described25. Alignments using the iSAAC aligner and variant caller using Starling version 
2.4.7 were performed by Illumina Ltd, Cambridge, UK (Illumina Ltd, Cambridge, UK).

Genotype imputation.  Pre-imputation quality controls (QCs) were performed on genotyping array data 
following Scelsi et al. 2018 recommendations. PLINK (version 1.9) was used to exclude samples (1) with discord-
ance between genetically inferred and self-reported sex, (2) genotype missingness > 0.05, and (3) with duplicates 
or first-degree relatives by using the -rel-cutoff command in PLINK (removing one member of each pair of 
samples with genomic relatedness > 0.5)26. Compatibility at variant level between genotyping array data and 
each of the reference panels was examined using the checking tools by W. Rayner (http://​www.​well.​ox.​ac.​uk/​
~wrayn​er/​tools/), to correct consistency of strand, alleles, positions, Ref/Alt assignments, and minor allele fre-
quency differences. Imputation was performed on the Michigan Imputation Server (https://​imput​ation​server.​
sph.​umich.​edu) using Eagle2 phasing and Minimac imputation. Based on the reference panels, 1000G, HRC, 
GenomeAsia, and TOPMed, four imputed genotype datasets were generated. Genotypes were extracted and 
counted using BCFtools (version 1.10.2). Minimac-R2 values, ranging from 0 (lowest confidence) to 1 (highest 
confidence), were used to reflect the imputation confidence for each imputed variant. Imputed variants were 
clustered according to five Minimac-R2 ranges: [0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8), and [0.8,1].

Evaluation of imputation accuracy.  Imputation accuracy of the four imputed datasets that used the 
1000G, HRC, GenomeAsia, and TOPMed reference panel were examined. Chromosome 1 variants from each 
of the imputed datasets were validated against high coverage genotypes called from WGS (among the same 
samples).

The WGS data underwent QC using Starling’s filtering criteria to filter out sites that have genotype conflicts 
with proximal indel calls, locus quality score < 30, locus quality score < 14 for heterozygous or homozygous 
variant, the fraction of basecalls at a site > 0.4, locus read evidence displays unbalanced phasing patterns, calls 
with a sample depth three times higher than the chromosomal mean, or genotype calls from variant callers not 
consistent with chromosome ploidy. Variant sites within the cohort with missingness > 0.10 or deviation from 
Hardy–Weinberg equilibrium (P value < 1 × 10–6) were excluded. Samples with > 0.05 genotype missingness were 
removed.

QCed WGS variant sites found in all four imputed genotyping datasets were selected for evaluation of imputa-
tion accuracy. Accuracy was measured in terms of genotype concordance rate (GCR) between the imputed and 
validating WGS data for each sample. The underlying GCR for each of the four reference panels was examined 
and visualized used ggplot2 package in R (version 3.6.3). Evaluation of imputation accuracy was further per-
formed using chromosome 21 variants as validation.

Imputation accuracy and allele frequencies.  Imputation accuracy of variants at different allele fre-
quencies (AFs) were examined used total AF from Genome Aggregation Database (gnomAD) version 2.1.1. The 
squared Pearson correlation between imputed and validating WGS variants was used to measure imputation 
accuracies. Variants were classified into AF bins according to gnomAD AFs. Variants were binned at 1, 0.05, and 
0.01, to represent common, low-frequency, and rare variants, respectively. Finer examination of rare variants 
was performed following AF bins at 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, and 0.001. Square 
Pearson correlation were computed for each AF bin used GLIMPSE concordance tools27.

Population structure and admixture analysis.  The Thai cohort population structure was examined 
using a multidimensional scaling (MDS) method implemented in PLINK (version 1.9). Genotyping array data 
were pruned with parameters -indep-pairwise 50 10 0.2, leaving 135,661 markers. MDS was performed using 
-mds-plot function and visualized using R (version 3.6.3) to examine the presence of cohort population sub-
structure. Chinese genetic admixture in the study cohort was examined used genotype dataset of 44 North and 
South Han-Chinese samples acquired from the Human Diversity Genome Project. Genetic admixture was esti-
mated using ADMIXTURE software version 1.3 under the setting of K = 228.

Association analysis.  The association study was performed using a frequentist association test as imple-
mented in SNPTEST v.2.5.4 (open source, university of Oxford, Oxford, UK, https://​mathg​en.​stats.​ox.​ac.​uk/​genet​
ics_​softw​are/​snpte​st/​snpte​st.​html). The genome-wide statistical significance threshold was set to P < 5 × 10–8.

Data availability
The data that support the findings of this study are available from the National Research Council of Thailand, but 
restrictions apply to the availability of these data, which were used under license for the current study, and are 

http://www.well.ox.ac.uk/~wrayner/tools/
http://www.well.ox.ac.uk/~wrayner/tools/
https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
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not publicly available. Data are, however, available from the authors upon reasonable request and with permis-
sion of the National Research Council of Thailand.
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