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Pan‑cancer structurome 
reveals overrepresentation 
of beta sandwiches 
and underrepresentation of alpha 
helical domains
Kirill E. Medvedev 1*, R. Dustin Schaeffer 1, Kenneth S. Chen 2,3 & Nick V. Grishin 1,4

The recent progress in the prediction of protein structures marked a historical milestone. AlphaFold 
predicted 200 million protein models with an accuracy comparable to experimental methods. Protein 
structures are widely used to understand evolution and to identify potential drug targets for the 
treatment of various diseases, including cancer. Thus, these recently predicted structures might 
convey previously unavailable information about cancer biology. Evolutionary classification of protein 
domains is challenging and different approaches exist. Recently our team presented a classification 
of domains from human protein models released by AlphaFold. Here we evaluated the pan‑cancer 
structurome, domains from over and under expressed proteins in 21 cancer types, using the broadest 
levels of the ECOD classification: the architecture (A‑groups) and possible homology (X‑groups) 
levels. Our analysis reveals that AlphaFold has greatly increased the three‑dimensional structural 
landscape for proteins that are differentially expressed in these 21 cancer types. We show that beta 
sandwich domains are significantly overrepresented and alpha helical domains are significantly 
underrepresented in the majority of cancer types. Our data suggest that the prevalence of the beta 
sandwiches is due to the high levels of immunoglobulins and immunoglobulin‑like domains that arise 
during tumor development‑related inflammation. On the other hand, proteins with exclusively alpha 
domains are important elements of homeostasis, apoptosis and transmembrane transport. Therefore 
cancer cells tend to reduce representation of these proteins to promote successful oncogeneses.

How to discover proteins’ biological functions has long been one of the key questions of both experimental and 
computational research. The 3D structures of proteins, which are determined by their amino acid sequence, 
determines protein function. Protein domains serve as structural, functional, and evolutionary units; classifying 
and understanding their evolutionary relationships can be challenging. Our Evolutionary Classification of protein 
Domains (ECOD) is a hierarchical evolutionary classification, which in comparison to other structure-based 
domain classifications groups domains foremost by homology, rather than  topology1,2. This feature helps to iden-
tify cases of homology between domains that have different topologies. Another important feature of ECOD is its 
emphasis on distant homology, resulting in a catalog of evolutionary relationships between classified domains.

Cancer is a complex and heterogeneous disease that requires a comprehensive (pan-cancer) approach. Pan-
cancer studies explore the common characteristics and variations across a wide range of tumor  types3 and have 
been conducted at multiple levels of molecular organization:  genomic4,  transcriptomic4,  proteomic5,  lncRNAs6, 
among others. However, the structural aspect of cancer related proteins has never been studied on a large-scale. 
AlphaFold (AF)—a recently developed deep learning method by DeepMind, demonstrated the capability to pre-
dict protein structure with atomic-level  accuracy7. Application of AF to proteins without a known experimental 
structure has significantly increased the proportion of proteins with accurately predicted structures, including 
those within the human  proteome8. However, AF models have variable quality, with significant differences in 
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reliability across different regions of the protein chain. Thus, it is crucial to use these models with caution and 
to have a comprehensive understanding of their  limitations9. Domains from AF models for the whole human 
proteome were classified in a special version of  ECOD10. Here we studied and evaluated the pan-cancer struc-
turome—the structural space of proteins over and underexpressed in 21 cancer types from The Cancer Genome 
Atlas (TCGA) using domains from the ECOD classification. In both sets we examined overrepresented proteins 
whose abundance in cancer sets is significantly higher than in the human proteome in general, and thus are 
highly relevant for oncogenesis; and underrepresented proteins that are less common in cancer than in the whole 
proteome. We showed that AF models significantly expand the 3D structural space of proteins differentially 
expressed in 21 cancer types. Analysis of top-level ECOD architecture groups (A-groups) revealed significant 
overrepresentation of beta sandwich domains and underrepresentation of alpha helical domains for the majority 
of cancer types. We suggest that overrepresentation of beta sandwiches is related to the abundance of immuno-
globulins and immunoglobulin-like domains due to inflammation that accompanies tumor development. Con-
versely, proteins with exclusively alpha domains play critical roles in maintaining cellular homeostasis, regulating 
apoptosis, and facilitating transmembrane transport. Cancer cells tend to decrease the representation of these 
proteins. This decrease is a strategy employed by cancer cells to promote successful oncogenesis, potentially by 
disrupting normal cellular processes associated with homeostasis, apoptosis, and transmembrane transport.

Domain classifications such as ECOD, SCOP, and CATH contain broad levels in their classification that 
describe amounts and arrangements of secondary structure in their constituent  domains11–13. The relationship 
between the evolution of protein topology and consequent possible functions of those topologies remains murky 
and an area of active  investigation14. In ECOD we maintain our 21 “architecture” (A-group) levels as a method 
of broadly classifying the secondary structure content of domains, their general arrangement, and their possible 
functions. The architecture level is maintained by expert curation and is not the subject of automated approaches. 
ECOD architectures are inherited (in part) from SCOP  classes15,16. For example, we add additional architec-
tures to distinguish between alpha arrays and bundles, as well as to separate those domains that participate in 
obligate multimer activity. Additionally, we maintain “special” architectures to hold those regions of protein 
that are difficult to classify by homology (e.g., coiled coils) or that are not the product of evolution (e.g. de novo 
synthetic domains or fragments arising from experimental protein constructs). Here we show how function is 
distributed among ECOD architectures in the case of protein-coding genes over- and underrepresented in 21 
human cancer types.

Results and discussion
AlphaFold models significantly expanded structural space of over and underexpressed pro-
tein‑coding genes in 21 cancer types. Our non-redundant sets of over and underexpressed protein-
coding genes for all cancer types include 5341 and 7320 genes, respectively.

Figure 1A, B illustrates the availability of known 3D structures (PDB) and AlphaFold models (AF). For the 
overexpressed set the fraction of proteins with experimental structures (shown in yellow) and with predicted 
structures only (shown in blue) are nearly equal (47% and 51% correspondently), whereas for the underexpressed 
set the fraction of the predicted structures is much higher (64%). Comparing our over and underexpressed 
protein-coding genes using the GEPIA2 database revealed a significant variation in the number of protein-coding 
genes whose expression was altered in different cancer types (Fig. 1C, D). This variation might be the result of 
multiple factors. First, sets of proteins were obtained generated using bulk RNA-sequencing data that includes 
different cell types, and the fraction of different cell types varies between samples. Second, high heterogene-
ity between patients were observed for most of the cancer types, which may lead to variation in differentially 
expressed genes (DEGs) for different sets of samples. Third, different cancers have different rates of cellular dif-
ferentiation, which means different rate of similarity to the cells of origin (normal cells). DEGs are identified by 
comparison to normal cells which may also include many cell types and contribute to the variations in DEGs. 
Finally, the organization of the particular cancer type studies inside TCGA database may contribute to the 
bias. For example, TCGA-GMB (glioblastoma) includes 599 cancer cases solely diagnosed as “glioblastoma”17. 
However, the TCGA-BRCA (breast cancer) study contains 1097 cases, including several subtypes (infiltrating 
duct carcinoma, lobular carcinoma, etc.) that present distinct molecular  characteristics18. So, this additional 
heterogeneity inside TCGA studies might account for the overall higher number of over and underexpressed 
proteins found for glioblastoma in comparison to breast cancer.

We used the  ECOD1 classification of experimental structures and the ECOD human  classification10 of Alpha-
Fold models (ECOD_AF) to retrieve domain information for sets of over and underexpressed protein-coding 
genes. ECOD includes five levels of domains hierarchy: architecture (A), possible homology (X), homology (H), 
topology (T), and family (F). ECOD_AF that includes only human protein structures predicted by AlphaFold. 
AlphaFold models have been classified to the T-group level. Over and underrepresentation of proteins expressed 
in different cancer types, which domains belong to particular ECOD A-gr/X-gr, were calculated as ratio of 
observed and expected frequencies (see “Materials and methods”). ECOD_AF includes 47,576 domains, of 
which only 23% have been included in experimental  structures10. 6.3% of these classified globular domains lack 
sequence-based annotation in InterPro  database19. The reference human proteome (UNP: UP000005640) was 
used for identification of the total number of human proteins. The reference human proteome includes 20,385 
proteins, 84% (17,172) of which have been classified in ECOD and ECOD_AF. Over and underexpressed sets 
include 88% (4709 out of 5341) and 84% (6134 out of 7320) of proteins classified in ECOD and ECOD_AF 
respectively. The main reasons for the absence of a particular protein in ECOD and ECOD_AF are a high frac-
tion of disordered regions, the low quality of its experimental structure, and a low predicted local-distance dif-
ference test (pLDDT score) in its AlphaFold model. We checked the distribution of pLDDT scores for protein 
regions classified as domains versus all other regions across all AF models used in this study. This score provides 
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valuable information regarding the local reliability of the predicted protein structure and exhibits a strong 
correlation with global measures of quality. As a result, it serves as a robust tool for evaluating the quality of 
structure  predictions9,20. Our results showed that pLDDT score for domains is significantly higher than for all 
other protein regions (SI Fig. 1).

Comparison of domains classification statistics of over and underexpressed protein-coding genes before and 
after AlphaFold structural models release in ECOD and ECOD_AF revealed a more than 1.5-fold increase in the 
number of X- (possible homology) and H-groups (homology) (Fig. 2). The number of A-groups (architecture), 
the highest level of ECOD classification, did not change after releasing of the AlphaFold models for human pro-
teome. X- and H-groups are the most important classification levels to consider during identification of distant 
homology between domains, because similarity at the A-group level does not connotate shared ancestry and may 
be the result of convergent  evolution2. Although, there are no newly introduced X- and H-groups in ECOD_AF 
for over and underexpressed proteins in comparison to ECOD, AlphaFold models significantly expanded 3D 
structural space for proteins differentially expressed in 21 cancer types. Expansion of the protein structural 
space inside existing X- and H-groups represent additional opportunities for the search of the potential targets 
for anticancer therapy.

ECOD groups reveal overrepresentation of beta sandwiches and underrepresentation of 
exclusively alpha helical A‑groups. ECOD classification levels connotate different probable levels of 
homology between domains. To evaluate the structurome of the major 21 cancer types, we focused on the two 
broadest ECOD levels: A-groups (architecture level) and X-groups (possible homology level). The architecture 
level collects domains with generally similar secondary structure compositions and topologies. The possible 

Figure 1.  Over and underexpressed protein-coding genes statistics. (A) Availability of known 3D protein 
structures (PDB) and AlphaFold models (AF) for overexpressed protein-coding genes in all cancer types. 
(B) Availability of known 3D protein-coding genes structures (PDB) and AlphaFold models (AF) for 
underexpressed protein-coding genes in all cancer types. Number of significantly over (C) and underexpressed 
protein-coding genes (D) in each cancer type. BLCA, bladder urothelial carcinoma; BRCA, breast invasive 
carcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; 
HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal 
papillary cell carcinoma; LAML, acute myeloid leukemia; LIHC, liver hepatocellular carcinoma; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD, 
pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin 
cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid 
carcinoma; UCEC, uterine corpus endometrial carcinoma.
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homology level brings together domains where some evidence of homology exists but further evidence is needed 
for certainty of homology. Our protein domain distribution analysis of ECOD A-groups revealed that for over-
expressed dataset the “beta sandwiches” A-group has the most prevalent representation in the majority of cancer 
types (Fig. 3A, SI Fig. 2A).

The exceptions are 8 cancer types: BLCA, BRCA, COAD, LIHC, OV, PRAD, READ, and UCEC. The “alpha 
arrays” A-group is the most prevalent for 6 out of 8 these cancer types (BLCA—23%, BRCA—20%, COAD—22%, 
OV—18%, READ—20%, UCEC—20%), whereas the “a + b two layers” and “few secondary structure elements” 
are the most prevalent for the remaining two (LIHC—20% and PRAD—25% respectively). On the other hand, 
in the underexpressed set only 10 out of 21 cancer types show beta sandwiches as the most prevalent A-group 
(Fig. 3B, SI Fig. 2B). In the remaining cancers in the underexpressed set, the most prevalent A-groups are the “few 
secondary structure elements” (BLCA—25%, KIRP—22%, LIHC—26%, OV—20%, SKCM—20%, THCA—22%, 
UCEC—23%), “alpha bundles” (ESCA—19%, TGCT—17%), and “a/b three-layered sandwiches” (KIRC—17%, 
LAML—19%). Overall, for the over and underexpressed sets, the most prevalent five A-groups are “alpha bun-
dles”, “alpha arrays”, “few secondary structure elements”, “a/b three-layered sandwiches” and “beta sandwiches”. 
The beta sandwiches are the most populated A-group in the human proteome (SI Fig. 3). We believe that the 
prevalence of beta sandwiches in overexpressed set is the abundance of immunoglobulin and immunoglobulin-
like domains that belong to this A-group. Proteins containing these domains are known to be involved in inflam-
matory processes, which are often significantly upregulated in  cancer21. This corresponds with the low prevalence 
of beta sandwiches in the underexpressed set, where less than a half of these cancer types had prevalent beta 
sandwich representation.

To evaluate differences between full human and pan-cancer structuromes, we calculate over and under-
representation of cancer-related (over and under expressed in 21 cancer types) protein domains in ECOD and 
ECOD_AF A-groups (Fig. 4A, B). In spite of the shared proteins (see “Materials and methods”), there were 
significant differences between the over and underexpressed protein sets. Heatmap analysis of the overexpressed 
protein-coding genes set revealed 4 major groups of cancer types (Fig. 4A). The first group is dominated by sig-
nificant overrepresentation of protein domains from the “a + b duplicates or obligate multimers” ECOD A-group 
(BLCA, LUSC, BRCA, COAD, READ, OV, STAD, UCEC). The second group is dominated by significant over-
representation of domains from the “beta sandwiches” A-group (LUAD, SKCM, KIRC, ESCA, LAML, TGCT, 
GBM, PAAD). The third group clusters KIRP, HNSC, LIHC and THCA. The final two cancer types did not show 
any significant overrepresentation for this protein set, whereas the first two are dominated by overrepresentation 
of domains from the “extended segments”, “mixed a + b and a/b”, and “beta sandwiches”. Finally, PRAD stands 
alone with significant overrepresentation by domains from the “a + b three layers” A-group. Heatmap analysis 
of underexpressed set revealed three major groups of cancer types (Fig. 4B). The first group is dominated by 
significant over representation of beta sandwiches, beta meanders, and extended segments. Conversely, there 
was significant under representation of protein domains from the “alpha arrays” A-group (GBM, COAD, READ, 
LUAD, UCEC, LUSC). The second group brings together cancer types with overrepresentation of protein domains 
from beta sandwiches, beta barrels and alpha duplicates A-groups (HNSC, ESCA, LAML, SKCM, TGCT, THCA, 
PRAD, OV, BRCA, BLCA). Finally, the third group is dominated by overrepresentation of a/b barrels, alpha 
complex topologies, and underrepresentation of protein domains from alpha bundles and alpha arrays A-groups.

In spite of major differences described above between the structuromes of 21 cancer types there are couple 
common features. The first feature is that the beta sandwiches are the most overrepresented ECOD architecture 
in both (over and underexpressed) protein sets (Fig. 4). The majority of the domains from this A-group belongs 
to Immunoglobulin-like beta sandwich X-group (Fig. 5). Immunoglobulins or antibodies are the key elements 
of inflammation. Inflammatory cells are the main components of the tumor microenvironment, which can be 

Figure 2.  ECOD groups statistics for over and underexpressed protein-coding genes in all cancer types. (A) 
ECOD statistics for overexpressed protein-coding genes. (B) ECOD statistics for underexpressed protein-coding 
genes. Blue bars (PDB) correspond to ECOD domains from experimentally identified structures. Orange bars 
(PDB&AF) correspond to ECOD and ECOD_AF domains from both experimentally and AlphaFold predicted 
structures. A-gr, ECOD architecture groups; X-gr, ECOD possible homology groups; H-gr, ECOD homology 
groups.
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a crucial element of tumor  progression21,22. Therefore, it is not surprising that the “immune cell” process is in 
the top three processes significantly overrepresented in the overexpressed set of the beta sandwiches A-group, 
but not the underexpressed group (Fig. 6A, B). For this analysis we used Gene Ontology “biological processes” 
(GO_BP) terms for each protein in over and underexpressed sets. GO_BP terms were mapped to GO terms from 
a generic slim subset that includes 69 top level biological processes. Over and underrepresentation of proteins 
expressed in different cancer types in BPs was calculated as ratio of observed and expected frequencies (see 
“Materials and methods”). Cell surface interleukin-10 (IL10) receptor subunit alpha (UniProt ID: Q13651), which 
is over expressed in many cancer types, is another important element of inflammatory processes that includes 
domains from the Immunoglobulin-like beta sandwich X-group (Fig. 7A)23,24. The jelly-roll is the second largest 
X-group in the beta sandwiches architecture (Fig. 5). Galectins are group of glycan-binding proteins that share the 
β-sandwich fold from the jelly-roll X-group (Fig. 7B)25. These proteins help reprogram the fate and function of 
various cell types and due to their multifunctional role in tissue fibrosis and cancer, they are considered potential 
therapeutic  targets26. Three galectins are of special therapeutic relevance: GAL1 (P09382), GAL3 (P17931), and 
GAL9 (O00182), which are in our overexpressed proteins set. The proteins mentioned earlier, which contain beta 
sandwiches domains discussed above, exclusively consist of domains from a single ECOD A-group. Overall, 62% 
of proteins include domains from a single A-group and 38% from multiple A-groups in overexpressed dataset 
(61% and 39% in underexpressed dataset respectively) (SI Fig. 4A, B). Beta sandwiches domains make up 14.4% of 

Figure 3.  Distribution of cancer-related proteins in ECOD A-groups. (A) Protein-coding genes overexpressed 
in 21 cancer types. (B) Protein-coding genes underexpressed in 21 cancer types. The size of each circle correlates 
to the number of protein-coding genes in a given cancer type. BLCA, bladder urothelial carcinoma; BRCA, 
breast invasive carcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma 
multiforme; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, 
kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LIHC, liver hepatocellular carcinoma; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; 
PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SKCM, 
skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid 
carcinoma; UCEC, uterine corpus endometrial carcinoma. This figure was created with BioRender.com.
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all proteins that possess a single A-group (SI Fig. 4A). However, the beta sandwiches architecture group can also 
be observed within the context of a wide range of other A-groups in multidomain proteins (Fig. 8). The top three 
A-groups that can be observed within the context of beta sandwiches are few secondary structure elements, alpha 

Figure 4.  Over and under representation of cancer-related proteins in ECOD A-groups. Heatmap analysis 
of protein representation in over and underexpressed protein sets. Cells are colored by the ratio of observed 
to expected frequencies, and ordered on both axes by independent hierarchal clustering. (A) Protein-coding 
genes overexpressed in 21 cancer types. (B) Protein-coding genes underexpressed in 21 cancer types. Groups of 
cancer types discussed in the text are marked by different colors. BLCA, bladder urothelial carcinoma; BRCA, 
breast invasive carcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma 
multiforme; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, 
kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LIHC, liver hepatocellular carcinoma; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; 
PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SKCM, 
skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid 
carcinoma; UCEC, uterine corpus endometrial carcinoma.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11988  | https://doi.org/10.1038/s41598-023-39273-5

www.nature.com/scientificreports/

bundles and a/b three-layered sandwiches (Fig. 8). For example, ephrin type-A receptor 1 (gene name: EPHA1, 
UniProt ID: P21709) is a receptor tyrosine kinase which binds membrane-bound ephrin-A family ligands. This 
protein plays a role in apoptosis, regulates cell proliferation and tumor  angiogenesis27. It is overexpressed in 
several cancer types including hepatocellular carcinoma (HCC). So far, structures of only two regions of this 
protein have been determined using experimental  approaches28. The AlphaFold model of EPHA1 (UniProt ID: 
P21709) contains six domains: three beta sandwiches (two Immunoglobulin-like and one jelly roll), one from 
few secondary structure elements A-group (EGF-like), one from alpha arrays (HhH/H2TH) and one form a + b 
complex topology (Protein kinase/SAICAR synthase/ATP-grasp) (Fig. 7C).

The second common feature is related to exclusively alpha architectures. There are five A-groups in ECOD 
that include exclusively alpha domains: alpha superhelices, alpha duplicate or obligate multimers, alpha com-
plex topology, alpha bundles, and alpha arrays. Domains from these A-groups are mostly underrepresented 
(in many cases significantly, Fig. 4) in all cancer types in the overexpressed dataset. Exclusively alpha domains 
make up 32.8% of all proteins that possess a single A-group in overexpressed set and 36.8% in underexpressed 
set (SI Fig. 4). For example, transforming acidic coiled-coil-containing protein 3 (TACC3, UniProt ID: Q9Y6A5) 
represents the alpha bundles A-group with long disordered extensions at the N- and C-terminal ends. TACC3 
plays a role in the microtubule-dependent coupling of the nucleus and the centrosome and is important in the 
development of multiple myeloma, breast and gastric  cancer29. Since exclusively alpha helical domains include 
five ECOD A-groups, there are proteins that exclusively possess these architectural features within the con-
text of multidomain proteins (4.8% and 5.7% in over and underexpressed protein sets respectively) (SI Fig. 4). 
For example, brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF3, UniProt ID: Q5TH69) 
adopts two domains that are classified in alpha superhelices and alpha arrays A-groups (Fig. 7D). This protein 
plays a critical role in activation of the estrogen/ER signaling in breast cancer  cells30. Alpha arrays stand out 
in the exclusively alpha A-groups (Fig. 4A). Domains from alpha arrays A-group show slight overrepresenta-
tion however it is significant only in one case (COAD). Alpha bundles and alpha arrays are the top two most 
populated A-groups in the human proteome (SI Fig. 3) and in over and underexpressed sets (Fig. 5A, B). We 

Figure 5.  Distribution of ECOD A- and X-groups for all cancer types. (A) Overexpressed protein-coding genes 
set. (B) Underexpressed protein-coding genes set. Inner pie chart corresponds to A-groups, outer—to X-groups. 
The largest groups are labeled.
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Figure 6.  The ratio of observed and expected frequencies of Biological Processes (BPs) from GO generic subset 
defines over (ratio > 1) and under (ratio < 1) represented process. (A) Proteins containing domains from beta 
sandwiches A-groups in overexpressed set. (B) Proteins containing domains from beta sandwiches A-groups in 
underexpressed set. (C) Proteins containing domains from five exclusively alpha A-groups in overexpressed set. 
(D) Proteins containing domains from five exclusively alpha A-groups in underexpressed set.
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Figure 7.  Representative domain structures from the largest A-groups. (A) Immunoglobulin-like beta 
sandwich domain of the cell surface interleukin-10 (PDB: 1Y6N). (B) Jelly-roll domain of the galectin GAL1 
(PBD: 6M5Y). (C) AlphaFold model of ephrin type-A receptor 1 (P21709). (D) AlphaFold model of brefeldin 
A-inhibited guanine nucleotide-exchange protein 3 (Q5TH69). (E) EGF-like domain of Mucin-4 (AlphaFold: 
Q99102). Disulfide bonds are shown as sticks. (F) P-loop domains of Ras-related protein Rab-11A (PDB: 1OIV). 
Domain structures are colored in rainbow. (G) AlphaFold model of adhesion G-protein coupled receptor G1 
(Q9Y653).
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also calculated the over and underrepresentation of A-groups for all 21 cancer types in three different datasets: 
ECOD and ECOD_AF combined, only ECOD, and only ECOD_AF (SI Fig. 5). This analysis revealed that all 
five exclusively alpha A-groups are mostly underrepresented (in some cases statistically significantly, SI Fig. 5) 
in all three datasets. The alpha duplicates or obligate multimers A-group showed the highest ratio of observed/
expected frequency, but its value is around 1.0 for all three datasets. Moreover, we calculated combined over 
and underrepresentation of domains from five exclusively alpha A-groups for each cancer type in three datasets 
mentioned above (SI Table 1). This analysis showed that overexpressed protein-coding genes with domains from 
five exclusively alpha A-groups are underrepresented in 20 cancer types and in 11 out of 20 underrepresentation 
is statistically significant (SI Table 1). Therefore, protein-coding genes overexpressed in 21 cancer types are mostly 
depleted in exclusively alpha-helical domains at the level of ECOD A-groups. In the underexpressed set 3 out of 
5 exclusively alpha A-groups are still mostly underrepresented (alpha bundles, alpha arrays, alpha superhelices). 
However, the “alpha complex topology” and “alpha duplicate or obligate multimers” A-groups show significant 
overrepresentation in several cancer types (Fig. 4B). We also calculated combined over and underrepresentation 
of domains from five exclusively alpha A-groups for each cancer type in the underexpressed set (SI Table 2). For 
the underexpressed set three cancer types showed overrepresentation of domains from the five exclusively alpha 
A-groups (GBM, SKCM, TGCT) and one of them is statistically significant (GBM). The rest 18 cancer types show 
underrepresentation and 10 of them are statistically significant (SI Table 2). Therefore, the underexpressed set 
also showed that exclusively alpha A-groups were underrepresented in most cancer types, however to a lesser 
extent than in the overexpressed set.

Alpha helical domains are known to constitute the majority of transmembrane  domains31. Although beta 
barrels can also be transmembrane domain, for example, in the outer membranes of bacteria, mitochondria, 
and chloroplasts, these cases are less  common32. Proteins containing transmembrane domains are part of the 
surfaceome—a broader set of proteins that are linked to the cellular  membrane33. To evaluate the functional dis-
tribution of proteins containing domains from the exclusively alpha A-groups, we mapped GO_BP ids retrieved 
from UniProt  KB34 to the GO generic slim subset and calculated over and underrepresentation (Fig. 6C, D). We 
also retrieved annotations regarding transmembrane and intramembrane regions in each protein from UniProt 
and noted if any particular protein is included in surfaceome from the overexpressed set (SI Table 3). The over-
expressed set is 29% (527 out of 1975) composed of proteins that contain trans and/or intramembrane regions 
and 24% (469 out of 1975) composed of proteins included in the surfaceome (SI Table 3). Not all proteins con-
taining transmembrane domains are included in the surfaceome since genes encoding proteins in intracellular 
membranes are not considered (nuclear and mitochondrial)33. Membrane proteins play an important role in the 
function of any cell in the body by controlling communications between cells and the extracellular  environment35. 
Due to the critical biological function of membrane proteins (especially those included into surfaceome), these 
proteins are a valuable resource for identifying targets for immune and targeted  therapy36,37. Recently, powerful 
treatment approaches have been developed for multiple types of cancer that are based on targeting membrane 
proteins by chimeric antigen receptor T cells (CAR-Ts)38 or  antibodies39. The functional distribution of proteins 

Figure 8.  Distribution of domain contexts of beta sandwiches ECOD A-group in overexpressed dataset.
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containing domains from exclusively alpha A-groups (Fig. 6C, D) revealed significant overrepresentation of 
these proteins in processes related to the membrane and extracellular matrix (plasma membrane organization, 
transmembrane transport, extracellular matrix organization), processes related to the cytoskeleton, as it contains 
fibrillar alpha proteins (cytoskeleton organization, cytoskeleton-dependent intracellular transport, cell motility, 
locomotion), homeostasis and cell death. Therefore, our analysis revealed an underrepresentation of proteins 
containing domains from five exclusively alpha ECOD A-groups in both the overexpressed and underexpressed 
sets, to a lesser extent in the latter. This observation suggests that on average expression level of proteins with 
exclusively alpha domains remains unaltered during the transition from normal to cancer cell. Homeostasis, 
apoptosis and transmembrane transport are highly interconnected processes in cellular biology. Alterations in 
the transmembrane gradients of various physiological ions can have a significant impact on programmed cell 
death, including  apoptosis40,41. At the same time, one of the most important hallmarks of cancer is enabling rep-
licative  immortality42. Therefore, it is possible that cancer cells reduce representation of proteins that are related 
to such biological processes as homeostasis, apoptosis and transmembrane transport to promote their survival 
and growth. The reduction in the representation of proteins with exclusively alpha domains in cancer could 
suggest a disruption in these important cellular processes, contributing to cancer cell survival and proliferation. 
We believe that it is the main reason for underrepresentation of proteins with exclusively alpha domains in most 
of the cancer types.

Moreover, we studied subcellular location of all proteins from over and underexpressed sets using UniProt 
annotation. The analysis conducted revealed that the majority of the studied proteins are associated with mem-
branes, followed by cytoplasm and nucleus as the second and third most prevalent locations, respectively (SI 
Fig. 6A, B). It should be noted that due to the existence of protein isoforms one protein could be assigned to 
several subcellular locations. For example, isoforms 1, 2, 6 and 7 of complement decay-accelerating factor (CD55, 
UniProt ID: P08174) are membrane-associated, however isoforms 3, 4, and 5 are  secreted43. However, not only 
exclusively alpha-helical proteins are associated with the membrane. Proteins that contain beta sandwiches, 
including various receptors, exhibit a similar association with membranes. For example, interleukin-11 recep-
tor subunit alpha (IL11RA, UniProt ID: Q14626)44, triggering receptor expressed on myeloid cells 1 (TREM1, 
UniProt ID: Q9NP99)45 and many others. Moreover, the membrane-associated subcellular location contains the 
largest number of beta sandwiches-containing proteins than any other category for both over and underexpressed 
protein datasets (SI Fig. 6A, B).

The other largest A-groups include “few secondary structure elements” and “a/b three-layered sandwiches” 
(Fig. 5). The EGF-like X-group is the most populated from the few secondary structure architecture in the over 
and underexpressed sets. Mucins belong to O-glycoproteins functional category and include EGF-like domains 
in their structural organization and are characterized by multiple disulfide bonds (Fig. 7E)46. Expression of these 
protein-coding genes is often altered in epithelial  cancers47. Mucins are also important therapeutic targets due 
to their role in  inflammation48. “P-loop domains-like” is the largest X-group in “a/b three-layered sandwiches” 
architecture (Fig. 5). P-loop domains adopt a Rossmann-like fold (Fig. 7F), which is one of the most prominent 
structural units in nature, and Rossmann-like proteins are known to be a key element of the majority of meta-
bolic  pathways49,50.

The combination of exclusively alpha helical and beta sandwiches A-groups within multidomain protein 
constitute a small fraction of 3.6% in overexpressed and 4.3% in underexpressed protein sets (SI Fig. 4). Adhe-
sion G-protein coupled receptor G1 (ADGRG1, UniProt ID: Q9Y653) adopts two beta sandwiches domains and 
one domain from alpha bundles A-group (Fig. 7G). ADGRG1 plays a critical role in melanoma progression by 
inhibiting angiogenesis through a signaling pathway mediated by protein kinase C alpha  type51.

The newly predicted AF protein structures and their classification into evolutionary units (domains) offer 
additional opportunities for cancer related research. One of the major applications is the identification of poten-
tial targets for therapeutic intervention and design of novel cancer treatments. Indeed, AlphaFold-Multimer has 
been demonstrated to achieve state-of-the-art performance in peptide-protein docking and peptide-protein 
interaction  prediction52. Notably, it has been successfully employed as an integral component of an AI-powered 
drug discovery approach to identify de novo molecules capable of inhibiting cyclin-dependent kinase 20 in 
hepatocellular  carcinoma53. This showcases the potential of AF approach in accelerating the discovery of effective 
therapeutics for cancer treatment. Identification of domains within newly predicted AF structures can aid in the 
discovery of potential drug targets by detecting distant homology. The ECOD database serves as a valuable tool 
for this task, as it allows for the classification and analysis of protein domains based on evolutionary relationships. 
Another valuable application of AF is pocket prediction, which has been demonstrated to be highly accurate for 
confident  models54. The ability to predict pockets in proteins accurately can aid in understanding protein–ligand 
interactions and facilitate drug discovery efforts by identifying potential binding sites for small molecule drugs.

Conclusions
Analysis of the structural space of cancer-related proteins (both over and underexpressed) revealed significant 
differences between 21 major cancer types. We have shown that AlphaFold models significantly expanded the 
structurome of protein-coding genes differentially expressed in 21 cancer types and should be considered in 
structured-based analyses of cancer proteins. We evaluated the pan-cancer structurome at the two top levels 
of ECOD classification: A-groups (architecture) and X-groups (possible homology). At the architecture level 
the majority of cancer types in both protein sets showed significant overrepresentation of the beta sandwiches 
architecture. Proteins that contain domains adopting beta sandwich folds include the immunoglobulins, inter-
leukins and galectins, which are crucial elements of inflammatory processes and they play an important role 
in oncogenesis. Moreover, we showed that domains from the five exclusively alpha A-groups are significantly 
underrepresented in the majority of cancer types. Alpha-helical domains compose the majority of transmembrane 
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domains and are the part of the surfaceome. These proteins are important therapeutic target for cancer treat-
ment. Moreover, proteins with exclusively alpha domains are important elements of homeostasis, apoptosis 
and transmembrane transport, which are closely related processes. Changes in the transmembrane gradients of 
various physiological ions can have an impact on the regulation of programmed cell death. In order to attain a 
crucial hallmark of cancer known as replicative immortality, cancer cells reduce representation of proteins that 
are related to biological processes mentioned above. This reduction leads to underrepresentation of proteins with 
exclusively alpha domains among other cancer-related proteins in 21 cancer types.

Materials and methods
Data collection. Sets of significantly over- and underexpressed genes compared to the normal samples for 
21 major cancer types were retrieved from Gene Expression Profiling Interactive Analysis web server (GEPIA2)55 
using following cutoffs: Log2 Fold Change > 2, adjusted P-value < 0.005. The following cancer types were consid-
ered in current analysis: BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; COAD, colon 
adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squa-
mous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; 
LAML, acute myeloid leukemia; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, 
lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; 
PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma, SKCM, skin cutaneous melanoma; STAD, 
stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; UCEC, uterine corpus 
endometrial carcinoma. Non-protein coding genes were filtered out using UniProt  KB34. Overall non-redundant 
sets of over and underexpressed proteins for all cancer types include 5341 and 7320 proteins correspondingly 
(total over- and underexpressed proteins constitute a non-redundant list of 10,277 proteins). 2384 proteins 
belong to both sets (over and underexpressed), since the same proteins might be overexpressed in one cancer 
type and underexpressed in another type.

Functional distribution of the proteins. For the functional analysis of the proteins over and underex-
pressed in different cancer types we applied the approach that we recently  used56. Gene Ontology “biological 
processes” (GO_BP)57 information was retrieved for each protein in the over and underexpressed sets from 
UniProt  KB34. Of 10,277 proteins in these sets, only 1381 have no GO_BP assignment. We used the Deep-
FRI  approach58 to predict missing GO_BP assignments for these 1381 unassigned proteins. Most (1302) have 
no known 3D structure, so we used AlphaFold models (AlphaFold DB version 4, 2022-11-01)7 as input for 
the DeepFRI predictor. A DeepFRI score larger than 0.5 was considered significant. Overall, 616 out of 1381 
(45%) proteins were assigned to GO_BP based on our DeepFRI prediction. Proteins with a predicted GO_BP 
assignment (616 proteins) were merged with known GO_BP assignments (8886 proteins) for further analysis. 
The predicted subset comprises 6.5% of the whole set (616 out of 9512 proteins) used for the functional dis-
tribution analysis. GO_BP terms were mapped to GO terms from a generic slim subset. The GO generic slim 
subset includes 69 top level biological processes (BPs). One protein can be involved in several BPs. Over and 
underrepresentation of proteins expressed in different cancer types in BPs was calculated as ratio of observed 
and expected frequencies. The observed frequency for each BP was calculated as a ratio of the number of the 
proteins assigned to this BP over the sum of all proteins assigned to any BP. The expected frequency for each BP 
was calculated as ratio of total number of proteins assigned to this BP in human proteome over the total number 
of proteins assigned to any BP in human proteome. The significance of the representation was checked using 
the chi-squared test. We considered three levels of significance: P-value < 0.001 (***), 0.001 ≤ P-value < 0.01 (**), 
0.01 ≤ P-value < 0.05 (*). Statistical analysis was conducted using the R package, v4.2.159.

Protein domains data. Information about protein domains and their hierarchical classification was 
obtained from the Evolutionary Classification of Protein Domains (ECOD)1,2. ECOD is a protein classifica-
tion of homologous domains with a five-level hierarchy: architecture (A), possible homology (X), homology 
(H), topology (T), and family (F). For each protein (UniProt ID) we collected all known PDB structures and 
retrieved their domain organization from ECOD. For proteins without known 3D structures domain data were 
retrieved from of the provisional ECOD human  classification10 (ECOD_AF) that includes only human protein 
structures predicted by AlphaFold and distributed by UniProt. AlphaFold models have been classified to the 
T-group level (i.e., not into sequence families). The two ECOD domain classifications were merged. This merged 
set includes classification to the T-group level. The ECOD domain classification includes all experimentally 
identified protein structures (PDBs). Consequently, for some proteins (UniProt IDs) there are several PDBs 
for the same protein region, which results in redundant domains. In the merged set (ECOD and ECOD_AF), 
we eliminated redundancy in domains to ensure that each protein (UniProt ID) has no more than one domain 
representing the same protein region. Over and underrepresentation of proteins expressed in different cancer 
types, which domains belong to particular ECOD A-gr/X-gr, were calculated as ratio of observed and expected 
frequencies. The observed frequency for each A-gr/X-gr was calculated as a ratio of the number of the proteins 
assigned to this A-gr/X-gr in particular type of cancer over the sum of all proteins assigned to any A-gr/X-gr in 
this cancer type. The expected frequency for each A-gr/X-gr was calculated as ratio of total number of proteins 
assigned to this A-gr/X-gr in all human proteins classified in ECOD over the total number of proteins assigned 
to any A-gr/X-gr in all human proteins classified in ECOD. Significance of overrepresentation was checked 
using chi-square test. We considered three levels of significance: P-value < 0.001 (***), 0.001 ≤ P-value < 0.01 (**), 
0.01 ≤ P-value < 0.05 (*).
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