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Dependence of the acoustic 
propulsion of nano‑ and microcones 
on their orientation and aspect 
ratio
Johannes Voß  & Raphael Wittkowski *

Recent research revealed the orientation‑dependent propulsion of a cone‑shaped colloidal particle 
that is exposed to a planar traveling ultrasound wave. Here, we extend the previous research by 
considering nano‑ and microcones with different aspect ratios and studying how the propulsion of 
a particle depends on its orientation and aspect ratio. We also study how the orientation‑averaged 
propulsion of a cone‑shaped particle, which corresponds to an isotropic ultrasound field, depends 
on its aspect ratio and identify an aspect ratio of 1/2 where the orientation‑averaged propulsion is 
particularly strong. To make our simulation results easier reusable for follow‑up research, we provide a 
corresponding simple analytic representation.

After the discovery of ultrasound-propelled nano- and microparticles in  20121, a decade of intensive and still 
rapidly growing research on this type of artificial motile particles  followed1–50. So far, the research was mostly 
 experimental1–3,5–13,15,17–23,25,27–32,34–40,42,43, but it includes also computer  simulations28–30,34,41,44–49 and analyti-
cal  approaches4,24. Reasons for the intensive investigation of the particles are that the acoustic propulsion is 
 biocompatible51,52 and fuel-free53 and that it provides a simple way to supply the particles permanently with 
 energy51,53. These special properties make the particles relevant for future applications in, e.g.,  medicine54–58 
and materials  science59–67.

Nevertheless, much further research is still needed to complete the step from the discovery of these parti-
cles to their envisaged practical application. For example, nearly all previous studies considered particles in a 
standing ultrasound  wave1–3,6–9,12,14,15,17–19,21,22,25,28,30–35,40,42,43,68–71, since this simplifies the experimental setup, 
whereas a traveling ultrasound wave would be much more relevant with respect to future applications of these 
 particles29,41,44–49. Furthermore, in a standing wave, the particles’ orientations typically align with a nodal plane 
of the ultrasound field so that most of the existing studies on ultrasound-propelled particles considered only par-
ticles with particular orientations relative to the ultrasound  wave1–3,6–9,12,14,15,17–19,21,22,25,28,30–35,40,42,43,68–71, whereas 
particles that can rotate in all directions are much more application-relevant13,46,72.

In a few recent  studies41,44–47, cone-shaped nano- and microparticles in a traveling ultrasound wave have 
been investigated. It was found that, compared to particles with other shapes, cone-shaped particles exhibit a 
particularly efficient acoustic  propulsion41. Reference 46 considered also different orientations of the particles 
relative to the propagation direction of the ultrasound wave. It found that the propulsion of the particles has a 
strong dependence on the particles’ orientation. This study, however, considered only the special case of cone-
shaped particles with aspect ratio χ = 1 , while an understanding of the orientation-dependent propulsion also 
for other particle shapes will be crucial for their future applications.

In the present article, we, therefore, continue the previous research by studying how the orientation-depend-
ent propulsion of nano- and microcones by a traveling ultrasound wave changes with the aspect ratio of the 
particles. We also study how the flow field that is generated around the particles depends on their orientation 
and aspect ratio. Moreover, we consider the orientation-averaged propulsion of the particles, which corresponds 
to exposing them to an isotropic (i.e., orientation-independent) ultrasound field, such as a superposition of 
ultrasound waves with different orientations, and study how this propulsion depends on the particles’ aspect 
ratio. Our investigation is based on direct acoustofluidic simulations, where the orientation and aspect ratio of 
the particles can be varied much easier than in experiments. To facilitate the reuse of our simulation results by 
future studies, we provide also a simple analytic representation of these results.
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Methods
We adopt the methodology of Ref. 41, which is well established for acoustically actuated particles and has been 
proven to be successful.

Setup. Figure 1 gives an overview of the system that is studied in the present work.
The simulation domain is rectangular with width 2l1 (parallel to the x1 axis) and height l2 = 200µm (parallel 

to the x2 axis). It contains a particle with a triangular cross-section, with diameter σ = √
2A/χ  , height h = σχ , 

cross-section area A = σh/2 = 0.25µm2 , and variable height-to-diameter ratio χ = h/σ ∈ {0.5, 2, 4} , that is 
surrounded by a fluid. This fixed particle shape is analogous to Ref. 44. We define the particle’s position by its 
center of mass S , and the particle’s orientation by the orientational unit vector n̂� that is parallel to the vector 
pointing from S to the tip of the particle. For completeness, we also introduce an orientational unit vector n̂⊥ that 
is perpendicular to n̂� . With a polar angle θ , the orientational unit vectors can be parameterized as

The particle’s position shall coincide with the geometric center of the rectangular simulation domain, and 
the particle’s orientation θ is varied from θ = 0 , where n̂� is parallel to the x1 axis and n̂⊥ is antiparallel to the x2 
axis, to θ = π , where n̂� is antiparallel to the x1 axis and n̂⊥ is parallel to the x2 axis.

Our assumption that the position of the particle is fixed corresponds to a particle with infinite mass density. 
This can be seen as an upper limit for the propulsion of a particle made of a material with a high mass density 
such as gold. For lower mass densities ρp , lower propulsion speeds can be expected. Our results can be transferred 
to particles with a lower mass density by multiplying the obtained propulsion speeds by the factor (1− ρ0/ρp)
4, where ρ0 denotes the mass density of the fluid.

We choose water as an application-relevant fluid. Initially, it shall be at standard temperature T0 = 293.15K , 
at standard pressure p0 = 101325 Pa , and at rest (vanishing velocity field �u0 = �0m s−1 ). Then, its mass density 
is ρ0 = 998 kgm−3 , its shear viscosity is νs = 1.002mPa s , its bulk viscosity is νb = 2.87mPa s , and its sound 
velocity is cf = 1484m s

−1.
A planar traveling ultrasound wave with frequency f = 1MHz and wavelength � = cf /f = 1.484mm shall 

enter the system at the left edge (inlet) of the fluid domain, propagate in positive x1 direction, interact with the 
particle, and finally be able to leave the system at its right edge (outlet). To initiate the entering ultrasound wave 
at the inlet, we prescribe the time-dependent velocity uin(t) = �u sin(2π ft) and the time-dependent pressure 
pin(t) = �p sin(2π ft) there, where t denotes time, �u = �p/(ρ0cf ) is the velocity amplitude, and �p = 10 kPa 
is the pressure amplitude. Since the ultrasound wave shall not be damped when it propagates parallel to the 
lower and upper edges of the fluid domain with length 2l1 = �/2 , we choose slip boundary conditions at these 
edges. In contrast, for an appropriate interaction of the ultrasound with the particle, we choose no-slip boundary 
conditions at the boundary of the particle domain �p.

When the ultrasound wave with acoustic energy density E = �p2/(2ρ0c
2
f ) = 22.7mJm−3 interacts with the 

particle, it exerts a propulsion force and a propulsion torque on it. We are interested in the time-averaged station-
ary propulsion forces F‖ and F⊥ that act on S in the direction parallel to n̂� and n̂⊥ , respectively, and the time-
averaged stationary propulsion torque T that tends to rotate the particle about S in the planar simulation domain.

Parameters. The parameters of the system that are relevant for our simulations and the values assigned 
to these parameters are summarized in Table 1. With these parameter values, the outer boundaries of the fluid 
domain are so far away from the particle that finite-size effects can be neglected.

Acoustofluidic simulations. We simulate the dynamics of the fluid by numerically solving the stand-
ard equations of fluid dynamics (continuity equation, compressible Navier–Stokes equations, linear constitutive 
equation for pressure) with the finite volume software package  OpenFOAM74. A nondimensionalization of the 
equations results in the emergence of four dimensionless characteristic numbers, namely the Euler number,

(1)n̂�(θ) = (cos(θ), sin(θ))T,

(2)n̂⊥(θ) = (sin(θ),− cos(θ))T.

Figure 1.  Setup for the simulations.
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 Helmholtz number

bulk Reynolds number

and shear Reynolds number

An interpretation of these dimensionless numbers can be found in Ref. 44.
To solve the equations for the dynamics of the fluid numerically, we discretize the fluid domain spatially by a 

structured, mixed rectangle-triangle mesh with about 250,000 cells and a typical cell size �x ranging from 15 nm 
(near the particle) to 1µm (far away from the particle). For discretization in the time domain [t0, tmax] with start 
time t0 = 0 and end time tmax � 500τ , we apply an adaptive time-step method that can vary the time-step size 
�t in the range from 1ps to 10ps , always ensuring that the Courant–Friedrichs–Lewy condition

is met. The typical computational cost for each simulation run is about 36,000 CPU core hours.

(3)Eu = �p

ρ0�u2
≈ 2.2×105,

(4)He = f
√
A

cf
≈ 3.37×10−4,

(5)Reb =
ρ0�u

√
A

νb
≈ 1.17×10−3,

(6)Res =
ρ0�u

√
A

νs
≈ 3.36×10−3.

(7)C = cf
�t

�x
< 1

Table 1.  Relevant parameters of the system and the assigned values, which follow Ref. 41.

Name Symbol Value Remark

Particle cross section area A 0.25µm2

Particle height-to-diameter ratio χ = h/σ 0.5, 1,2, 4

Particle diameter σ
√
2A/χ

Particle height h σχ

Particle orientation angle θ 0-π

Sound frequency f 1MHz

Speed of sound cf 1484m s−1 Corresponds to T0, p0

Time period of sound τ = 1/f 1µs

Wavelength of sound � = cf/f 1.484mm

Temperature of fluid T0 293.15K

Mean mass density of fluid ρ0 998 kgm−3 Corresponds to T0, p0

Mean pressure of fluid p0 101325 Pa

Initial velocity of fluid �u0 �0m s−1

Sound pressure amplitude �p 10 kPa

Acoustic energy density E = �p2/(2ρ0c
2
f ) 22.7mJm−3

Shear/dynamic viscosity of fluid νs 1.002mPa s Corresponds to T0, p0

Bulk/volume viscosity of fluid νb 2.87mPa s Interpolated from Table 1 in Ref. 73 for T0, p0

Inlet-particle/particle-outlet distance l1 �/4

Inlet length l2 200µm

Mesh-cell size �x 15 nm-1µm

Time-step size �t 1-10 ps

Simulation start time t0 0

Simulation duration tmax � 500τ

Euler number Eu 2.2×10
5

Helmholtz number He 3.37×10
−4

Bulk Reynolds number Reb 1.17×10
−2

Shear Reynolds number Res 3.36×10
−2

Particle Reynolds number Rep < 3×10
−7
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Since we simulate a particle with a fixed position, the laboratory frame and the particle frame coincide. This 
is why an Eulerian-grid-based solver such as OpenFOAM can be applied here. In the chosen coordinate system, 
the no-slip boundary condition of the particle means that the fluid velocity is prescribed to vanish at the bound-
ary of the particle.

Propulsion force and torque. The acoustofluidic simulations yield the time evolution of the fluid’s mass-
density field, velocity field, and pressure field. We calculate from these fields the propulsion force and torque that 
are exerted on the particle. In particular, we calculate the time-averaged stationary propulsion forces F‖ and F⊥ 
as well as the time-averaged stationary propulsion torque T. These quantities are obtained from the stress tensor 
of the fluid by performing suitable integrals over the particle surface, locally averaging over one time period, and 
extrapolating towards t → ∞ . Reference 41 describes this procedure in detail.

When averaging the propulsion forces or torque over one time period τ = 1µs , the orientation of the particle 
can be assumed to be constant. This is possible since the particle’s rotation within one time period that results 
from the particle’s angular propulsion is negligibly small. As is shown in Section “Dependence of acoustic pro-
pulsion on orientation and aspect ratio”, the maximum observed angular propulsion is ωmax ≈ 2.22s−1 . Hence, 
the particle rotates by only ωmaxτ ≈ 2.22× 10−6 within one time period.

Translational and angular propulsion velocity. The translational propulsion velocities v‖ and v⊥ par-
allel and perpendicular to the particle’s orientation, respectively, and the angular propulsion velocity ω can be 
calculated from F‖ , F⊥ , and T by applying the Stokes  law75. A detailed description of this procedure can be 
found in Ref. 41. We can use the Stokes law since we deal with rigid particles that are propelled by an external 
field (the ultrasound) exerting propulsion forces and torques on the particles. While for such actuated particles 
there is a simple mapping from the propulsion forces and torques to the particles’ translational and angular 
propulsion velocities via the Stokes  law76, the calculation of the propulsion velocities would be much more com-
plicated for nano- or microswimmers, such as microorganisms undergoing shape deformations or chemically 
propelled Janus particles. Swimmers are not propelled by forces or torques exerted by an external field but by 
self-generated internal propulsion forces or torques that are associated with a time-dependent particle shape or a 
flow field with a nonvanishing slip velocity at the particle surface (in contrast to the no-slip boundary condition 
that applies to our particles). A widely used approach to calculate the propulsion velocities of swimmers is the 
reciprocal  theorem76. Examples for other approaches can be found in Refs. 76,77.

Since the procedure requires the hydrodynamic resistance matrix H of our particle, which can be calculated 
from the particle’s shape, e.g., by using the software HydResMat78,79, we here present this matrix for better 
reproducibility of our results. When choosing the particle’s center of mass S as the reference point (see Ref. 75 
for details), specifying the particle orientation as θ = π/2 , and assuming that the particle has a thickness of σ 
in the third dimension (see Ref. 41 for details), the hydrodynamic resistance matrix of the particle studied in 
the present work has the form

The values of the nonvanishing elements of H are given in Table 2 for each aspect ratio of the particle shape 
that is considered in our study. This hydrodynamic resistance matrix corresponds to a particle in an unbounded 
fluid domain. We can use this matrix since in our work the fluid domain is much larger than the particle so 
that there is no significant influence of the outer boundaries of the simulation domain on the hydrodynamic 
resistance matrix.

When the propulsion velocities v‖ and v⊥ of the particle are known, we can calculate the particle Reynolds 
number

(8)H =















K11 0 0 0 0 C31

0 K22 0 0 0 0
0 0 K33 C13 0 0
0 0 C13 �11 0 0
0 0 0 0 �22 0
C31 0 0 0 0 �33















.

(9)Rep = ρ0
√
A

νs

√

v2� + v2⊥ < 3× 10−7

Table 2.  Nonzero elements of the hydrodynamic resistance matrix H of the particle that is studied in the 
present work (see Fig. 1) for different aspect ratios χ of the particle shape.

χ K11/µm K22/µm K33/µm C13/µm
2 C31/µm

2 �11/µm
3 �22/µm

3 �33/µm
3

0.5 8.49 9.72 8.14 −0.14 0.4 3 3.36 2.63

1 7.74 7.48 7.16 0.05 −0.11 1.81 1.69 1.73

2 7.67 6.38 6.93 0.35 −0.66 1.78 0.97 1.97

4 7.89 5.79 7.16 0.8 −1.31 2.57 0.6 3.11
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that characterizes the motion of the particle through the fluid. As one can see, this dimensionless number is very 
small for all orientations and aspect ratios of the particle that are studied in this work. This shows that viscous 
forces dominate inertial forces in particle motion.

Error estimation. The results for v‖ , v⊥ , and ω are associated with numerical errors. We estimate these 
errors by considering the values of v⊥ and ω for θ = 0 and θ = π . Since these values should vanish for reasons 
of symmetry, but will not exactly do so due to numerical inaccuracies of the calculations, we use these deviation 
values to estimate the numerical errors. In particular, we determine the absolute values of v⊥ and ω and maxi-
mize them over both angles. We then use the obtained maximum deviation for v⊥ as the estimated error of our 
results for v‖ and v⊥ , and we use the maximum deviation for ω as the estimated error of our results for ω.

Results and discussion
Flow field. We first study how the time-averaged stationary flow field around a cone-shaped particle changes 
for different orientations θ and aspect ratios χ of the particle. Figure 2 shows our corresponding simulation 
results. In the background, the time-averaged mass-current density 〈ρ�u〉 and reduced pressure �p− p0� of the 
fluid are shown, where ρ is the mass density, �u the velocity, and p the pressure of the fluid. The general structure 
of the flow field is the same for all considered values of θ and χ . Four vortices, placed at the top left, top right, 
bottom left, and bottom right relative to the particle, cause the fluid to flow towards the particle from the left 
and right, and away from the particle above and below it. Therefore, the reduced pressure is negative above and 
below the particle, whereas it is positive besides the particle. When χ is increased, the strength of the flow field 
decreases for θ = 0 and θ = π (i.e., an orientation parallel or antiparallel to the ultrasound wave), but it increases 
for θ = π/2 (i.e., an orientation perpendicular to the ultrasound wave). A possible reason for this behavior is 
a dependence of the strength of the flow field on the effective cross section of the particle perpendicular to the 
ultrasound wave. This effective cross section decreases for θ = 0 and θ = π but increases for θ = π/2 when χ 
is increased.

Dependence of acoustic propulsion on orientation and aspect ratio. Next, we study how the par-
ticle’s translational propulsion velocity parallel to the particle’s orientation v‖ , the translational propulsion veloc-
ity perpendicular to the particle’s orientation v⊥ , and the angular propulsion velocity ω depend on the particle’s 
orientation θ and aspect ratio χ . Our simulation results for v‖(θ) , v⊥(θ) , and ω(θ) for χ = 0.5, 1, 2, 4 are shown 
in Fig. 3. Note that only the case χ = 1 was previously considered in the  literature46.

Description. For χ = 0.5 , the parallel velocity v‖ is close to zero at θ = 0 . When θ increases, v‖ decreases to a 
local minimum v� = −0.018 ± 0.003µms−1 at θ = π/6 , where it starts to increase rapidly to positive values, 
switching sign between θ = π/6 and θ = π/4 . After a global maximum v� = 0.087 ± 0.003µms−1 at θ = π/3 , 
v‖ decreases to a local minimum v� = 0.050 ± 0.003µms−1 at θ = π/2 , then it slightly increases again to a 
local maximum between θ = 7π/12 and θ = 2π/3 , afterward it strongly decreases, with a sign change between 
θ = 3π/4 and θ = 5π/6 , and finally reaches a global minimum v� = −0.060 ± 0.003µms−1 at θ = 5π/6 . 
From there on, v‖ increases slowly until v� = −0.050 ± 0.003µms−1 at θ = π.

The orientational dependence of the perpendicular velocity v⊥ for χ = 0.5 is much simpler. It follows a sinus-
like function that is zero at θ = 0 (this follows from the symmetry properties of the studied system), reaches a 
global maximum v⊥ = 0.113 ± 0.003µms−1 at θ = π/4 , crosses the zero between θ = π/2 and θ = 7π/12 , 
reaches a global minimum v⊥ = −0.079 ± 0.003µms−1 at θ = 3π/4 , and becomes zero again at θ = π (for 
reasons of symmetry).

Also, the function of the angular velocity ω for χ = 0.5 looks relatively simple. It is similar to a minus–sinus 
function, where ω is exactly zero at θ = 0 and θ = π (for reasons of symmetry) and close to zero at θ = π/2 . 
The function has a global minimum ω = −2.24s−1 at θ = π/4 and a global maximum ω = 2.24s−1 at θ = 3π/4 . 
This means that the orientation of the particle has stable fixed points at θ = 0 and θ = π and an unstable 
fixed point near θ = π/2 . The particle will therefore align parallel or antiparallel to the propagation direc-
tion of the ultrasound wave. This finding is interesting since it differs from the behavior of acoustically 
propelled particles that has been observed in Ref. 46 for a cone-shaped particle with χ = 1 and in several 
 experiments1–3,6–9,12,14,15,17–19,21,22,25,28,30–35,40,42,43,68–71 for particles with various shapes.

Since v‖ , v⊥ , and ω are (approximately) zero at θ = 0 for χ = 0.5 and since this is a stable fixed point for 
the orientation of the particle, a freely moving particle will reach this state and henceforth be at rest (except 
for Brownian motion). For χ = 1 , which case has previously been studied in Ref. 46 and is included here 
only for completeness, the curve for v‖ differs from its course that we observed for χ = 0.5 . In particular, 
the curve is now simpler. Now, v‖ starts with a significantly negative value v� = −0.032 ± 0.007µms−1 at 
θ = 0 , increases for increasing θ , with a zero-crossing between θ = π/6 and θ = π/3 , to a global maximum 
v� = 0.072 ± 0.007µms−1 at θ = π/2 , and from there on decreases, with a zero-crossing between θ = 2π/3 and 
θ = 5π/6 , to a global minimum v� = −0.069 ± 0.007µms−1 at θ = π . The curve for v⊥ is qualitatively similar 
as for χ = 0.5 . It is zero at θ = 0 , has a global maximum v⊥ = 0.057 ± 0.007µms−1 at θ = π/3 , crosses the 
zero between θ = π/2 and θ = 2π/3 , has a global minimum v⊥ = −0.03 ± 0.007µms−1 at θ = 5π/6 , and is 
zero again at θ = π . Also, ω follows a rather simple course again. Compared to the case for χ = 0.5 , however, the 
sign of ω has changed. Now, the curve is zero at θ = 0 , has a global maximum ω = 0.53 s−1 at θ = π/6 , crosses 
the zero close to θ = π/2 , reaches a global minimum ω = −0.53 s−1 at θ = 5π/6 , and becomes zero again at 
θ = π . Therefore, the particle orientation has now a stable fixed point at θ = π/2 and unstable fixed points at 
θ = 0 and θ = π , so that the particle will align perpendicular to the direction of propagation of the ultrasound 
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wave, as is well known from experimental  studies1–3,6–9,12,14,15,17–19,21,22,25,28,30–35,40,42,43,68–71. Hence, the stable and 
unstable fixed points must switch at some aspect ratio between χ = 0.5 and χ = 1.

For χ = 2 , the curve for v‖ starts with v� = −0.007 ± 0.003µms−1 at θ = 0 and ends with 
v� = −0.029 ± 0.003µms−1 at θ = π . In between, it oscillates with minima v� = −0.03 ± 0.003µms−1 at 

Figure 2.  Time-averaged mass–current density 〈ρ�u〉 and reduced pressure �p− p0� for different orientations θ 
and aspect ratios χ of the particle. The center of mass (CoM) of the particle, the centers of vortices (CoV) of the 
flow field, and the propulsion velocity �v are also shown.
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θ = π/6 , v� = −0.031 ± 0.003µms−1 at θ = π/2 , and v� = −0.049 ± 0.003µms−1 at θ = 5π/6 and maxima 
v� = 0.026 ± 0.003µms−1 at θ = π/3 and v� = 0.013 ± 0.003µms−1 at θ = 2π/3 . The curve for v⊥ is basically 
similar to the case χ = 1 , but the maximum and minimum are now more peaked whereas the curve is now flatter 
near θ = π/2 . This curve is zero at θ = 0 , has a global maximum v⊥ = 0.208 ± 0.003µms−1 at θ = π/4 , crosses 
the zero close to θ = π/2 , reaches a global minimum v⊥ = −0.192 ± 0.003µms−1 at θ = 3π/4 , and becomes 
zero again at θ = π . Moreover, the curve for ω is qualitatively the same as for χ = 1 . Its global maximum is now 
ω = 1.26 s−1 at θ = π/4 and its global minimum is now ω = −1.26 s−1 at θ = 3π/4.

For χ = 4 , the curve for v‖ is similar as for χ = 2 . It starts with v� = 0.006 ± 0.002µms−1 at θ = 0 , 
has minima v� = −0.029 ± 0.002µms−1 at θ = π/6 , v� = −0.029 ± 0.002µms−1 at θ = π/2 , and 
v� = −0.044 ± 0.002µms−1 at θ = 5π/6 , has maxima v� = 0.022 ± 0.002µms−1 at θ = π/3 and 
v� = 0.011 ± 0.002µms

−1 at θ = 2π/3 , and ends with v� = −0.01 ± 0.002µms−1 at θ = π . Remarkably, 
the curves for v⊥ and ω are now quantitatively very similar, where the curve for ω is quantitatively very similar 
as for χ = 2 . The curves for v⊥ and ω follow sinus-like functions that are zero at θ = 0 and θ = π and close to 
zero at θ = π/2 . Their global maxima are v⊥ = 0.221 ± 0.002µms−1 and ω = 1.25 s−1 at θ = π/4 and their 
global minima are v⊥ = −0.209 ± 0.002µms−1 and ω = −1.25 s−1 at θ = 3π/4 , respectively.

Based on our results, and taking the findings reported in Refs. 1–3,6–9,12,14,15,17–19,21,22,25,28,30–35,40,
42,43,46,68–71 into account, we can conclude that acoustically propelled particles prefer to orient in such a way 
that their longest axis aligns parallel or antiparallel to the direction of ultrasound propagation.

Figure 3.  The particle’s translational propulsion velocities v‖ (acting along the particle’s orientation) and v⊥ 
(acting perpendicular to the particle’s orientation), which are components of the total translational propulsion 
velocity �v = v�n̂� + v⊥n̂⊥ of the particle, as well as its angular propulsion velocity ω are presented as functions 
of the particle’s orientation θ ∈ [0,π ] and for height-to-diameter ratios χ = {0.5, 1, 2, 4} of the particle.
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Next, we focus on the (un)stable orientations θ = 0,π/2,π of the particles and study how their speed ‖�v‖ 
and orientation ϕ�v (measured analogously to the angle θ ) of propulsion depend on χ . Our corresponding results 
are shown in Fig. 4a–c. One can see that in each case ‖�v‖ increases from χ = 0.5 to a maximum at χ = 1 and 
decreases for larger values of χ . The behavior of ϕ�v is qualitatively different for the considered orientations θ . For 
θ = 0 , ϕ�v is 0 or π , i.e., the propulsion is parallel or antiparallel to the particle’s orientation, depending on the 
value of χ . In the case θ = π/2 , ϕ�v is between −π/2 and −π/4 or between π/4 and π/2 depending on the value 
of χ . Interestingly, for θ = π , we observe ϕ�v = 0 for all values of χ , i.e., the propulsion is always antiparallel to 
the orientation of the particle.

Analytic representation. To help readers of this article to build upon our work, we present also an analytic rep-
resentation of our simulation results for v‖ , v⊥ , and ω . The analytic representation consists of fit functions for the 
velocities v‖(θ) , v⊥(θ) , and ω(θ) for each considered value of the aspect ratio χ.

We first consider the properties of the functions v‖(θ) , v⊥(θ) , and ω(θ) . From the setup of the studied system, 
we can infer the symmetry properties,

and the side conditions

(10)v�(−θ) = v�(θ),

(11)v⊥(−θ) = −v⊥(θ),

(12)ω(−θ) = −ω(θ)

(13)v⊥(0) = v⊥(π) = 0,

Figure 4.  Dependence of the speed ‖�v‖ and orientation ϕ�v of the particles’ propulsion on their aspect ratio χ for 
a traveling ultrasound wave and (un)stable particle orientations θ = 0,π/2,π as well as for isotropic ultrasound.
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Taking these features of the functions v‖(θ) , v⊥(θ) , and ω(θ) into account, a Fourier series ansatz

can be used as an analytic representation of the functions. As a consequence of the rather simple curves that we 
observed for v‖(θ) , v⊥(θ) , and ω(θ) in Section “Dependence of acoustic propulsion on orientation and aspect 
ratio. Description”, a Fourier series ansatz of this low order is already sufficient to reach a very good agreement 
of the simulation data and the analytic fit curves.

By fitting the functions (15)–(17) to our simulation data, we obtained the values of the fit coefficients 
a‖,0, . . . , a‖,4 , a⊥,1, a⊥,2, a⊥,3 , and aω that are listed in Table 3. As is evident from Fig. 3, the agreement of the fit 
functions with our simulation data is very good for these coefficient values.

Dependence of orientation‑averaged propulsion on aspect ratio. In future applications of acous-
tically propelled particles, the particles might also be deployed in isotropic ultrasound fields instead of a trave-
ling ultrasound wave. To assess, how the particles that are studied in the present work would behave when they 
are exposed to isotropic ultrasound, we calculate their corresponding propulsion velocities by averaging the 
functions v‖(θ) , v⊥(θ) , and ω(θ) over the orientation θ ∈ [−π ,π) . Using the analytic representation of these 
functions from Section “Dependence of acoustic propulsion on orientation and aspect ratio. Analytic represen-
tation”, we obtain the orientation-averaged propulsion velocities

with the angular average

where W(θ) is a wildcard function.
We thus see that in isotropic ultrasound all particles show purely translational propulsion parallel or antiparal-

lel to the instantaneous particle orientation. Furthermore, using the fit values listed in Table 3, we can identify the 
particle with aspect ratio χ = 0.5 as the particle with the fastest propulsion in isotropic ultrasound. For the acous-
tic energy density E = 22.7mJm−3 that is used in our simulations, we obtain the orientationally averaged parallel 
propulsion velocity �v��θ ≈ 0.02µms−1 . This is roughly 10 times larger than the orientationally averaged parallel 

(14)ω(0) = ω(π) = 0.

(15)v�(θ) = a�,0 + a�,1 cos(θ)+
3

∑

i=1

a�,i+1 cos(2iθ),

(16)v⊥(θ) = a⊥,1 sin(θ)+
2

∑

i=1

a⊥,i+1 sin((2i − 1)θ) cos((2i − 1)θ),

(17)ω(θ) = aω sin(2θ)

(18)�v�(θ)�θ = a�,0,

(19)�v⊥(θ)�θ = 0,

(20)�ω(θ)�θ = 0

(21)�W(θ)�θ = 1

2π

∫ π

−π

W(θ) dθ ,

Table 3.  Values of the fit coefficients of the functions (15)–(17), corresponding to the velocity components v‖ , 
v⊥ , and ω , for the particle’s aspect ratios χ = 0.5, 1, 2, 4.

Velocity χ a‖,0 or aω a‖,1 or a⊥,1 a‖,2 or a⊥,2 a‖,3 or a⊥,3 a‖,4

v‖ 0.5 2.035×10−2
µms−1 2.434×10−2

µms−1 −6.158×10−2
µms−1 −4.119×10−3

µms−1 2.487×10−2
µms−1

v⊥ 0.5 – 2.346×10−2
µms−1 1.961×10−1

µms−1 −7.505×10−3
µms−1 –

ω 0.5 −2.22 s−1 – – – –

v‖ 1 2.691×10−3
µms−1 1.864×10−2

µms−1 −5.999×10−2
µms−1 – –

v⊥ 1 − 1.949×10−2
µms−1 9.169×10−2

µms−1 – –

ω 1 6.079×10−1 s−1 – – – –

v‖ 2 −1.775×10−2
µms−1 1.085×10−2

µms−1 −5.826×10−3
µms−1 −7.376×10−3

µms−1 2.06×10−2
µms−1

v⊥ 2 – 1.198×10−2
µms−1 3.085×10−1

µms−1 −1.009×10−1
µms−1 –

ω 2 1.322 s−1 – – – –

v‖ 4 −1.512×10−2
µms−1 8.91×10−3

µms−1 −4.319×10−3
µms−1 −1.81×10−3

µms−1 2.183×10−2
µms−1

v⊥ 4 − 9.188×10−3
µms−1 4.3×10−1

µms−1 −2.481×10−2
µms−1 –

ω 4 1.178 s−1 – – – –
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propulsion velocity that has previously been reported for χ = 146. Furthermore, the value �v��θ ≈ 0.02µms−1 is 
significantly greater than the approximate numerical error 0.003µms−1 . Note that this was not the case for the 
value of 〈v‖〉θ that was previously reported for χ = 1 in Ref. 46. The dependence of the propulsion in isotropic 
ultrasound on the aspect ratio χ is visualized in Fig. 4d. This figure shows that the propulsion speed is maximal 
for χ = 0.5 , minimal for χ = 1 , and moderate for larger χ . While the propulsion is parallel to the particle’s 
orientation for χ = 0.5 and χ = 1 , the propulsion direction and particle orientation are antiparallel for the 
larger values of χ . Thus, the dependence of the propulsion on χ is qualitatively different for particles in isotropic 
ultrasound than for particles in a traveling ultrasound wave, where the propulsion speed is maximal for χ = 1 
(see Section “Dependence of acoustic propulsion on orientation and aspect ratio. Description”).

Since the propulsion velocity is approximately proportional to the acoustic energy density E44,47, we can easily 
determine the particle’s orientationally averaged parallel propulsion velocity for larger values of E. With respect 
to future applications of acoustically propelled particles in nanomedicine, the energy density Emax = 4.9 Jm−3 , 
which constitutes an upper limit for diagnostic applications of  ultrasound80, is particularly relevant. Rescaling 
the particle’s orientationally averaged parallel propulsion velocity for χ = 0.5 according to this larger acoustic 
energy density, we obtain the orientationally averaged parallel propulsion velocity �v��θ ,rescaled ≈ 4.4µms

−1 , 
which equals roughly a speed of 4 times the particle size per second. Such a speed should be sufficient for a 
number of medical or technical future applications of such particles. Note that, as we have seen further above, 
the particles reach, for a given acoustic energy density E, much larger propulsion speeds in a traveling ultrasound 
wave than in isotropic ultrasound.

Conclusions
We have studied the orientation-dependent acoustic propulsion and associated time-averaged flow fields of cone-
shaped particles with different aspect ratios by a traveling planar ultrasound wave as well as the particles’ propul-
sion by isotropic ultrasound. Knowing the propulsion of such particles is crucial with respect to the envisaged 
future application of ultrasound-propelled particles in fields like  nanomedicine54–58 and materials  science59–66. 
While current studies predominantly investigate the motion of nano- and microparticles in a standing ultrasound 
 wave1–3,6–9,11,12,14,15,17–19,21,22,25,28,30–35,40,42,43,68–71,81, in future applications the particles will more likely be exposed 
to a traveling ultrasound wave or to isotropic  ultrasound46. The fact that we have observed a strong dependence 
of the acoustic propulsion on the particle orientation relative to the propagation direction of the ultrasound 
wave for all aspect ratios of the particle shows that it is not sufficient to study acoustically propelled particles in 
a standing ultrasound wave. Therefore, future research should focus more on application-relevant setups and 
continue this work, e.g., by studying the orientation-dependent propulsion of further particles with other shapes.

A remarkable finding of this work is that, for all considered aspect ratios, a cone-shaped particle tends to align 
with a certain angle relative to the propagation direction of the ultrasound, and that this alignment changes from 
parallel or antiparallel alignment for small aspect ratios to perpendicular alignment for larger aspect ratios. A 
similar effect could occur for other particle designs that are not studied in the present work. This shows that in 
the typical experimental setups, where the motion of particles is observed in a nodal plane of a standing ultra-
sound  wave1–3,6–9,12,14,15,17–19,21,22,25,28,30–35,40,42,43,68–71 in which the particles levitate, some particle designs, such as 
cone-shaped particles with a small aspect ratio, can in principle have efficient acoustic propulsion but might not 
show significant propulsion in the nodal plane since they align parallel or antiparallel to the standing ultrasound 
wave and thus perpendicular to the nodal plane. On the other hand, this effect will provide an interesting ansatz 
for guiding the motion of acoustically propelled particles. Furthermore, the strong dependence of the alignment 
angle on the aspect ratio of the particles allows to utilize this effect for sorting particles by their shape.

The observation that cone-shaped particles with aspect ratio χ = 0.5 have a stable state where they show no 
translational or angular acoustic propulsion suggests to reserve the application of particles with this particular 
aspect ratio for special purposes. For typical envisaged applications such as drug delivery, these particles are 
rather inappropriate, since whenever a particle reaches an orientation parallel to the direction of ultrasound 
propagation the particle will stop moving and remain in this state until it is reoriented by a sufficient angle 
through Brownian rotation or external torques.

Finally, it is likely that the provided analytic representation of our simulation results will prove helpful for 
future studies. For example, these analytic expressions allow to incorporate the acoustic propulsion of a particle 
in a relatively simple way into a particle-based82,83 or field-based84–86 model for acoustically propelled particles, 
where the characteristic time scale of the model can be many orders of magnitude larger than the time period of 
the ultrasound wave and an explicit description of the ultrasound propagation is not necessary.

Data availability
The raw data corresponding to the figures shown in this article are available as Supplementary Material at https:// 
doi. org/ 10. 5281/ zenodo. 59471 77.
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