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Boosting ridge for the extreme 
learning machine globally 
optimised for classification 
and regression problems
Carlos Peralez‑González , Javier Pérez‑Rodríguez * & Antonio M. Durán‑Rosal 

This paper explores the boosting ridge (BR) framework in the extreme learning machine (ELM) 
community and presents a novel model that trains the base learners as a global ensemble. In the 
context of Extreme Learning Machine single-hidden-layer networks, the nodes in the hidden layer are 
preconfigured before training, and the optimisation is performed on the weights in the output layer. 
The previous implementation of the BR ensemble with ELM (BRELM) as base learners fix the nodes 
in the hidden layer for all the ELMs. The ensemble learning method generates different output layer 
coefficients by reducing the residual error of the ensemble sequentially as more base learners are 
added to the ensemble. As in other ensemble methodologies, base learners are selected until fulfilling 
ensemble criteria such as size or performance. This paper proposes a global learning method in the 
BR framework, where base learners are not added step by step, but all are calculated in a single step 
looking for ensemble performance. This method considers (i) the configurations of the hidden layer are 
different for each base learner, (ii) the base learners are optimised all at once, not sequentially, thus 
avoiding saturation, and (iii) the ensemble methodology does not have the disadvantage of working 
with strong classifiers. Various regression and classification benchmark datasets have been selected to 
compare this method with the original BRELM implementation and other state-of-the-art algorithms. 
Particularly, 71 datasets for classification and 52 for regression, have been considered using different 
metrics and analysing different characteristics of the datasets, such as the size, the number of classes 
or the imbalanced nature of them. Statistical tests indicate the superiority of the proposed method in 
both regression and classification problems in all experimental scenarios.

In the last decade, Extreme Learning Machine (ELM)1 has become a popular methodology in Machine Learning 
challenging problems, for instance, brain-computer interfaces2, the prediction of the remaining rolling bearing 
useful life3, the origin detection of fennel which is of great importance in food flavouring4, the COVID-19-pneu-
monia prediction5, EGG classification for brain-computer interface6, water network management7, and wheat 
yield prediction8, among others. ELM theories claim that the hidden layer parameters, that is, the weight and 
bias in single-hidden layer feed-forward networks, do not need to be tuned, but they can be generated randomly, 
independently of the training dataset9. Thus, only the output weights are computed in a single step by employ-
ing the least-squares estimated solution. Due to this random initialisation, ELM training speed is more efficient 
compared to the traditional solvers for neural networks, for instance, those based on back-propagation10,11, 
without losing performance, and even improving it.

One of the drawbacks of ELM models is that it requires a high number of neurons for the hidden layer because 
the nonlinear combination of features is explored randomly12. Due to this, several methods have been investigated 
for reducing this randomness without increasing the computation time or the algorithm’s complexity, such as 
pruning13, swarm optimisation14,15 and ensemble learning methods.

In this context, several ensemble methods for ELM models have been proposed, e.g., ensembles for 
regression16, fuzzy ensembles for big data classification17, deep ensembles for time series forecasting18, incremen-
tal Meta-ELM with error feedback19 or weighted kernel ELM ensembles for imbalanced datasets20. Furthermore, 
many ELM ensemble methods have been applied to real-world problems, such as the prediction of ocean wave 
height21, human activity recognition22, calibration of near-infrared spectroscopy23 or birdsong recognition24. In 
general, ensembles aim to improve the generalisation error using a mixture of classifiers or regressors, known as 
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base learners in the ensemble learning framework. The performance improvement is associated with diversity 
among the base predictors, i.e. it is essential for the generalisation of the ensemble that the base learners disagree 
as much as possible25. There are many ways to combine individual predictions. Thus several voting methods 
have been proposed to improve the efficiency of these ensembles, such as Bagging26, Boosting27, incremental 
learning system using local linear experts28 or a variation of Boosting constructed from a functional gradient 
descent algorithm with the L2-loss function29, among others. The ensemble methodologies known as Bagging 
and Boosting are the most widely used approaches, mainly because of their ease of application and their ensem-
ble performance30. The key to these ensemble methodologies lies in the training data to generate diversity. In 
this way, diverse solutions to the optimisation problem associated with the base predictors are implicitly sought 
through data sampling31.

Specifically, in the field of Boosting philosophy, a particularly interesting algorithm is Boosting Ridge (BR)32. 
This ensemble algorithm, designed originally for regression problems, trains the base learners sequentially, set-
ting the residual of the previous predictor as the training target. The first base learner is the predictor for the 
original target. Subsequently, the error between the prediction on the training set and the target is calculated, 
and this residual is the new target. The second predictor is trained with this residual. After calculating the error 
between the second predictor and the first residual, a third residual is calculated, which is the target of the next 
predictor. The process is repeated until the number of base learners is reached. BR shows its importance in many 
applications, such as early-stage breast cancer detection33, microarray survival models34 and criminal recidivism 
predictions35.

The addition of base learners does not continuously improve the ensemble since there is a trade-off between 
diversity among the base learners and the final ensemble performance36. Furthermore, in the boosting meth-
odology, although each base learner is added to reduce the error of the previous ones, the saturation of the base 
learners eventually appears. The saturation occurs when the ensemble cannot improve the generalisation error 
despite introducing more and more base learners. Also, if the number of base learners is fixed, saturation or 
even overfitting could be produced because the base learners become stronger (more accurate). It is given that 
increasing the number of hidden neurons reduces the diversity in the ensemble37, which is needed to improve 
the ensemble performance25. To overcome the saturation and to give an approach model selection,38 proposes the 
use of genetic algorithms to select the optimal number of base learners involved in the ensemble,39 proposes an 
adaptative stopping rule via adjusting the regularisation parameter, and40 relies on diversity measures to establish 
the upper bound of a number of base learners.

Like other ensemble methodologies36,41, BR aims to train each base predictor separately and then combine 
their results. BR algorithm for ELM-based learners (BRELM) was initially proposed by Ran et al.42. With this 
background and to overcome the main drawbacks mentioned above, this paper proposes a new boosting algo-
rithm that removes the need to add base learners sequentially, leading to saturation. Also, using strong instead 
of weak base classifiers does not worsen the ensemble’s performance. For this, several predictors are optimised 
at once to calculate the optimised ensemble parameters globally. The formulation of the error function allows 
the development of an analytical solution for the parameters of the ELM-based learners to find the weights of 
the output layers for each base learner in a single step. Moreover, this ensemble learning method achieves better 
results than the sequential BR, as the error is optimised globally in the ensemble and not for each base learner.

Summarising, the novel contributions of this work are:

•	 The optimisation of the weights of the output layer of a Boosting Ridge for Extreme Learning Machine 
ensemble in a single step instead of iteratively, with the objective of reducing the generalisation error.

•	 The use of different input layers mappings with different parameters for their hidden layers, made possible 
by the new optimisation approach resulting in the so-called Generalised Global BRELM (GGBRELM), tends 
to a better diversity of the ensemble.

•	 Avoid the problem of ensemble saturation and overtraining by making the new proposal work well when 
the base classifiers become stronger. For example, it is known that by increasing the number of neurons in 
the ELM networks of the base learners, each one achieves good performance, but, in return, the ensemble’s 
performance is reduced. With the new proposal, this problem is solved.

•	 The application of the methodology to more than 120 classification and regression datasets from different 
domains shows that the proposal works better than the state-of-the-art methods and can be applied to any 
real-world problem.

•	 The performance of the proposed methodology analysis considers different dataset properties such as size, 
number of classes or imbalance.

This paper is organised as follows: “State-of-the-art algorithms” Section summarises the notation and formulation 
of the ELM, BR and BRELM algorithms. “Methodology of the proposal” Section develops the proposed method-
ology about the globalisation of BRELM and its generalised version GGBRELM, shows a graphical comparison 
of the methodologies, and includes an analysis of their computational costs. The experimental design is set in 
Section experimental design, while “Discussion of the results” Section explains the most highlighted results, 
including statistical analysis. Finally, “Conclusions” Section collects the main conclusions obtained in the work.

State‑of‑the‑art algorithms
This section introduces the notation and formulation of the two algorithms on which this proposal is based, i.e., 
ELM predictor and BR ensemble methodology.
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Extreme learning machine.  For a simple supervised learning problem, dataset D = {(x1, y1), . . . , (xn, yn), 
. . . , (xN , yN )} = {(xn, yn)}

N
n=1 consists in a set of N patterns, each one with a vector of features, xn and target 

associated, yn.

•	 xn ∈ R
K is the data information for the n-th pattern, where K is the number of input variables.

•	 yn is the target variable for the n-th pattern. In case of regression problems, yn ∈ R since it is a number. In 
classification problems with J classes, the target can be expressed as “1-of-J” encoding, yn ∈ R

J . Each com-
ponent j of yn is yj,n = 1 if n-th pattern belongs to class j and yj,n = 0 otherwise.

Using “1-of-J” encoding, a classification can be rewritten as a multi-regression problem. Thus, ELM model is 
explained for regression problems in this subsection, and the explanation for classification is summed up at the 
end. A predictor f : RK → R inferring a function that maps an input n-th pattern xn to an output target yn , 
using relationships from labeled dataset D = {(xn, yn)}

N
n=1 . In particular, Extreme Learning Machine (ELM) 

model build this function:

where:

•	 h : RK → R
D is a non-linear mapping of the input layer. It transforms the pattern xn from the original feature 

space RK to the transformed space RD , where D is the number of neurons in the hidden layer. This mapping 
is explicitly computed as 

 with φ : RK → R as the activation function for the neuron d, and the weights wd and biases bd are randomly 
generated.

•	 β : RD is the vector of weights in the output layer, that are found in the optimisation problem: 

 where H =
(

h′(x1), . . . , h
′(xN )

)

∈ R
N×D is the output of the hidden layer for the training patterns, 

Y =







y1
...
yN






∈ R

N is the matrix with the desired targets and C > 0 is an user-specified term, that controls 

the regularisation in the model12.
Equation (3) represents a convex minimisation problem with error and regularisation terms. The error term 
�Hβ − Y�2 adjusts the coefficient vector β in order to minimise the error of the prediction Y , while the regu-
larisation term ‖β j‖

2 is included to avoid over-fitting in the model43.
The optimal solution for the model is the minimum of the convex objective function in Eq. (3), and it is 

obtained by deriving and equaling to 0:

For a classification problem, there are J minimisation problems as Eq. (3). The predicted class corresponds to 
the vector component with the highest value, that is

Boosting ridge regression (linear model).  From a linear regression model,

and its associated minimisation problem

with X =







x
′

1
...

x
′

N






∈ R

N×K , Tutz et al.32 proposed BR Regression as ensemble learning method that reduces 

sequentially the residual of the ensemble prediction,

(1)f (x) = h′(x)β ,

(2)h(x) = (φd(x;wd , bd), d = 1, . . . ,D),

(3)min
β∈RD

�Hβ − Y�2 + C�β�2,

(4)β =
(

H′H+ CI
)−1

H′Y.

(5)arg max
j=1,...,J

(h(x)β1, . . . , h(x)β j , . . . , h(x)βJ )

(6)f (x) = x′β ,

(7)min
β

�Xβ − Y�2 + C�β�2,
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For an ensemble with S base learners, the prediction of the BR Regression model is

Boosting ridge extreme learning machine.  BR ensemble learning methodology was adapted to the 
ELM community by Ran et al.42. The prediction of this sequential ensemble, BRELM, of S base learners is the 
following linear combination:

The first base learner s = 1 is the standard ELM solution from Eq. (3). Later, the s-th base learner training stage 
uses all the data, but the target µ(s) is the residual of the previous base learner predictions,

Therefore, the minimisation problem of the s-th base learner is

and the solution for the output layer of the s-th base learner is

Methodology of the proposal
In this section, the Globalisation of the BRELM is proposed, along with an enhanced version called Generalised 
Global BRELM (GGBRELM). A methodological graphical comparison is also included. And finally, a theoretical 
analysis of the methodologies’ computational complexities is discussed.

The main hypothesis of this work is that the methodology based on the optimisation of all the base learners 
in a single step will improve the generalisation error of the ensemble. Thus, considering that this procedure will 
avoid the saturation of the ensemble, and therefore, for a high number of neurons (strong ELM base learners), the 
ensemble performance will not be reduced. Besides, the use of different input layer weights and, therefore, dif-
ferent mapping functions ( h(s) ) between the different base predictors will lead to more diversity in the ensemble.

Global boosting ridge for extreme learning machine.  The main idea behind BRELM is to reduce 
sequentially the error produced by the ensemble. This proposal, Global BRELM, presents the problem for each 
s-th base learner as the error reduction of the other base learners of the ensemble.

Deriving respect with β(s) and equal to 0, some terms depend on β(s) while other ones depend on β(s′) , 
s′ = 1, . . . , S , s′ �= s,

(8)

min
β(1)

�Xβ(1) − Y�
2
+ C�β(1)�

2
; µ1 = Y − Xβ(1),

min
β(2)

�Xβ(2) − µ1�
2
+ C�β(2)�

2
; µ2 = µ1 − Xβ(2),

min
β(3)

�Xβ(3) − µ2�
2
+ C�β(3)�

2
; µ3 = µ2 − Xβ(3),

...

(9)f (x) =

S
∑

s=1

x′β(s) = x′
S

∑

s=1

β(s).

(10)f (x) =

S
∑

s=1

f (s)(x) = h′(x)

S
∑

s=1

β(s).

(11)µ(s) = Y −

s−1
∑

s′=1

Hβ(s′).

(12)min
β(s)

�Hβ(s) − µ(s)�
2
+ C�β(s)�

2
,

(13)β(s) = (H′H+ CI)−1H′

(

Y −H

s−1
∑

s′=1

β(s′)

)

.

(14)f (x) =

S
∑

s=1

f (s)(x),

(15)min
β(s)

�Hβ(s) − (Y −

S
∑

s′ �=s

Hβ(s′))�

2

+ C�β(s)�
2
.
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From the previous equation, a system of equations can be set up,

so the solution to Eq. (17) can be computed just by inverting a matrix,

This solution also works for simple BR with lineal regressors, replacing H′H and H′Y for X′X and X′Y respectively.

Generalised global boosting ridge ELM.  The generalisation is as simple as making H different for each 
s-th base learner,

The different nonlinear feature mappings in H(s) can be generated by any ELM method: randomisation12, PCA 
with different subsets of the training dataset44, elements in a pseudorandom sequence45, . . . As mentioned before, 
with this generalisation, several random weights and biases have been selected for each mapping function h(s) 
mappings, thus generating different mappings H(s).

Methodology flowcharts.  Figure 1 includes a graphical and minimalistic comparison of the methodolo-
gies involved in this paper. Note that ELM (a) trains one model in a single step, BRELM and GBRELM (b) train 
several models sequentially, and the proposed GGBRELM (c) trains all models in a single step, since BRELM, 
GBRELM and GGBRELM are ensemble methodologies.

Analysis of the computational burden.  The ELM model’s computational complexity is determined by 
the number of hidden nodes, denoted as D, the size of the training set, denoted as N, and the number of classes, 
J. To compute H′H , it is needed to multiply a matrix of D × N by a N × D resulting in a complexity of O(D · N2) . 
Then, ELM must perform matrix inversion on a D × D matrix whose complexity is O(D3) as shown in46,47. After 
that, a multiplication of the H′Y , that is, D × N by N × J with a cost of O(D · N · J) . Finally, the resulting matri-
ces D × D and D × J are multiplied with a computational time of O(D2 · J) . Therefore, the total computational 
complexity is O(ELM) = O(D · N2 + D3 + D · N · J + D2 · J).

The computational cost for the BRELM and GBRELM methods also depends on the number of base learners 
S. Since these methodologies train S ELM models sequentially and each model is trained using the residual from 
the previous one as targets, the computational cost will be O(S · O(ELM)+ (S − 1)(N · D · J)).

Finally, considering that GGBRELM performs optimisation in a single step, the method must calculate a 
matrix inversion of a DS × DS matrix and multiply the result with a DS × NJ matrix. Given that the H′H matrix is 
symmetric, the computation of all the intermediate Hs′Ht for s = 1, . . . , S, t = s, . . . , S , a total of S(S − 1)/2 multi-
plications of matrices D × N by N × D need to be performed, resulting in a complexity of O(S(S − 1)/2 · D · N2) . 
For this reason, the computational cost of GGBRELM is O(S(S − 1)/2 · D · N2 + (DS)3 + (DS)2 · J + DS · N · J).

Experimental design
In order to evaluate the methodology presented in “Methodology of the proposal” Section, a comprehensive 
experimental environment has been implemented. In this sense, “Experiments” Section describes the experi-
ments performed initially. “Datasets” Section includes a description of the datasets employed in the regression 
and classification problems. “Algorithms and parameters setting” Section contains a concise explanation of the 
algorithms selected for performing the comparative study and the set-up of their hyperparameters. Finally, the 
metrics implemented for the evaluation of the models are detailed in “Measures” Section, and the statistical tests 
carried out to validate the obtained results are defined in “Statistical tests” Section.

Experiments.  As stated before, the aim of this work is not only to improve the performance of the base 
learner (ELM) but also to overcome the disadvantages of the BRELM and, specifically, Generalised BRELM 

(16)
(

H′H+ CI
)

β(s) +H′
S

∑

s′ �=s

Hβ(s′) −H′Y = 0.

(17)






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(GBRELM). Also, for comparison purposes, a recent kernel methodology is used (KBRELM, see Algorithms and 
parameters setting” Section). For this purpose, two experiments have been carried out:

•	 In the first experiment (E1), the number of neurons in the hidden layer was low. Thus, the smaller the number 
of hidden nodes, the worse ELM performs; on the other hand, GBRELM performs better.

•	 In the second experiment (E2), the number of nodes in the hidden layer is larger. Thereby, the performance 
capabilities of the ELM are high (strong learners), so this model achieves competitive results. At the same 
time, the GBRELM ensemble cannot take advantage of its ensemble architecture to improve its performance. 
As a classic ensemble, its performance increases when weak learners are used and decreases when complex 
learners are used.

In both experiments, the performance of the methodologies in the datasets will be analysed according to their 
size. Also, for the classification problems, the number of classes and the imbalance ratio, calculated as the ratio 
resulting from dividing the number of patterns of the majority class by the number of patterns of the minority 
class, will be examined.

The underlying idea is to demonstrate that GGBRELM outperforms ELM, GBRELM and KBRELM in both 
experimental scenarios by comparing them in regression and classification problems and performing an analysis 
according to different dataset properties.

Datasets.  Experimental validation has been performed on 71 classification datasets and 52 regression data-
sets, respectively. This selection was carried out to include in the reference datasets various types of classifica-
tion/regression problems in terms of their field of application, their size (product of the number of patterns times 
the number of attributes), their number of classes, and their imbalanced ratio. Tables 1 and 2 show a summary 
of the main characteristics of the selected datasets: identification number (ID), which has been assigned by 

Figure 1.   Minimalistic flowcharts of the different methodologies.
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Classification datasets

 ID Dataset #Inst. #Attr. Size #Classes Class distribution IR

Large datasets (Size > 100000)

1 Weight-exercises 39242 53 2079826 5 (11159 7593 7214 6844 6432) 1.73

2 Cnae-9 1080 856 924480 9 (120 120 120 120 120 120 120 120 
120) 1.00

3 Mushroom 8124 111 901764 2 (4208 3916) 1.07

4 Skin-segmentation 245057 3 735171 2 (194198 50859) 3.82

5 Statlog-shuttle 43500 9 391500 7 (34108 6748 2458 132 37 11 6) 5684.67

6 Letter-recognition 20000 16 320000 26
(813 805 803 796 792 789 787 786 
783 783 775 773 768
766 764 761 758 755 753 752 748 747 
739 736 734 734)

1.11

7 Spambase 4601 57 262257 2 (2788 1813) 1.54

8 Optical-recognition-handwritten-
digits 3823 64 244672 10 (389 389 387 387 382 380 380 377 

376 376) 1.03

9 Weight-lifting-exercises 4024 54 217296 5 (1370 1365 901 276 112) 12.23

10 Magic-gamma-telescope 19020 10 190200 2 (12332 6688) 1.84

11 Statlog-project-landsat-satellite 4435 36 159660 6 (1072 1038 961 479 470 415) 2.58

12 Ozone-level-detection-one 1848 72 133056 2 (1791 57) 31.42

13 Ozone-level-detection-eight 1847 72 132984 2 (1719 128) 13.43

14 Wall-following-robot-navigation-24 5456 24 130944 4 (2205 2097 826 328) 6.72

15 Chess-king-rook-vs-king-pawn 3196 38 121448 2 (1669 1527) 1.09

16 Electrical-grid 10000 12 120000 2 (6380 3620) 1.76

17 Pen-based-recognition-handwritten-
digits 7494 16 119904 10 (780 780 780 779 778 720 720 719 

719 719) 1.08

Medium datasets (10000 < Size < 100000)

18 Thyroid-disease-ann-thyroid 3772 21 79212 3 (3488 191 93) 37.51

19 Thyroid-disease-allhyper 2800 27 75600 4 (2723 62 8 7) 389.00

20 Thyroid-disease-sick-euthyroid 3163 20 63260 2 (2870 293) 9.80

21 Hill-valley 606 100 60600 2 (305 301) 1.01

22 Hill-valley-noise 606 100 60600 2 (307 299) 1.03

23 Statlog-project-german-credit 1000 59 59000 2 (700 300) 2.33

24 Seismic-bumps 2584 22 56848 2 (2414 170) 14.20

25 Thyroid-disease-dis 2028 28 56784 2 (1989 39) 51.00

26 Thyroid-disease-sick 2028 28 56784 2 (1866 162) 11.52

27 Thyroid-disease-allbp 2028 23 46644 5 (936 716 265 82 29) 32.28

28 Qsar-biodegradation 1055 41 43255 2 (699 356) 1.96

29 Horse-colic 300 121 36300 2 (191 109) 1.75

30 Car-evaluation 1728 21 36288 4 (1210 384 69 65) 18.62

31 Libras-movement 360 90 32400 15 (24 24 24 24 24 24 24 24 24 24 24 24 
24 24 24) 1.00

32 Credit-approval 666 46 30636 2 (367 299) 1.23

33 Tic-tac-toe-endgame 958 27 25866 2 (626 332) 1.89

34 Congressional-voting-records 435 48 20880 2 (267 168) 1.59

35 Breast-cancer-wisconsin-diagnostic 569 30 17070 2 (357 212) 1.68

36 Thoracic-surgery 470 27 12690 2 (400 70) 5.71

37 Connectionist-bench-sonar 208 60 12480 2 (111 97) 1.14

38 Dermatology 358 34 12172 6 (111 71 60 48 48 20) 5.55

39 Ionosphere 351 34 11934 2 (225 126) 1.79

40 Yeast 1484 8 11872 10 (463 429 244 163 51 44 35 30 20 5) 92.60

41 Breast-cancer 286 39 11154 2 (218 68) 3.21

42 Wall-following-robot-navigation-2 5456 2 10912 4 (2205 2097 826 328) 6.72

Small datasets (Size < 10000)

43 Connectionist-bench 990 10 9900 11 (90 90 90 90 90 90 90 90 90 90 90) 1.00

44 Climate-model-simulation-crashes 540 18 9720 2 (494 46) 10.74

45 Teaching-assistant-evaluation 151 54 8154 3 (52 50 49) 1.06

46 Heart-disease-cleveland 299 23 6877 5 (161 54 36 35 13) 12.38

47 Breast-cancer-wisconsin-prognostic 194 32 6208 2 (148 46) 3.22

48 Breast-cancer-wisconsin 683 9 6147 2 (444 239) 1.86

Continued
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ordering the datasets from the highest to the lowest size, name (Dataset), number of instances (#Inst.), attributes 
(#Attr.) and size (Size). According to their size, databases have been divided into large (size > 100000), medium 
(10000 < size < 100000) and small (size < 10000). The number of classes (#Classes), their distribution (Class 
distribution) and the imbalanced ratio (IR) have also been included in the characterisation of the classification 
problem datasets (Table 1). Imbalanced datasets (IR > 2) have also been underlined for further analysis. From 
here to the end, the datasets are annotated according to their ID. While classification datasets are extracted from 
UCI Machine Learning Repository48, regression benchmark problems come from different machine learning 
repositories: UCI, Department of Statistics in the University of Florida49 and LIACC​50.

Algorithms and parameters setting.  The proposed method has been evaluated by comparing its results 
with respect to other recent state-of-the-art ELM proposals. The comparison methods are briefly described 
below:

•	 Extreme Learning Machine (ELM)12 (described in “Extreme learning machine” Section). In the model 
implementation, the weights and bias in the hidden layer were randomly generated following a uniform 
distribution. In contrast, the output weights were optimised using the ELM minimisation problem with L2 
regularisation.

•	 Generalised BRELM (GBRELM) (a version combining the algorithm described in “Boosting ridge extreme 
learning machine” Section with the generalisation of mapping functions h(s) ). This work compares the gen-
eralised version of Boosting Ridge for Extreme Learning Machine since it introduces variability into the 
model. Thus it would not make sense to compare with a simpler version where all ensemble elements have 
the same input layer.

•	 Generalised Global BRELM (GGBRELM) (described in Section “Methodology of the proposal”). The pro-
posed methodology improves the sequential Generalised Boosting Ridge original architecture with a global 
approach.

•	 Kernel BRELM (KBRELM)39. In order to compare our proposal with a more recent methodology in the 
literature, we have also added a Boosting Ridge ensemble using as base learners Kernel Ridge Regression, as 
in39. This method works as the sequential Boosting Ridge for ELM presented in “Boosting ridge regression” 
Section but uses kernel trick instead of neural mapping. For it, Gaussian kernel was used, with hyperparam-
eter γ , 

k(x1, x2) = exp
−

�x1−x2�
2

γ .

Table 1.   Characteristics of the selected classification datasets, sorted by size.

Classification datasets

 ID Dataset #Inst. #Attr. Size #Classes Class distribution IR

49 Indian-liver-patient 579 10 5790 2 (414 165) 2.51

50 Heart-disease-hungarian 294 19 5586 2 (188 106) 1.77

51 Parkinsons 195 21 4095 2 (147 48) 3.06

52 Image-segmentation 210 19 3990 7 (30 30 30 30 30 30 30) 1.00

53 Spectf-heart 80 44 3520 2 (40 40) 1.00

54 Blood-transfusion-service-center 748 4 2992 2 (570 178) 3.20

55 Monks-problems-2 432 6 2592 2 (290 142) 2.04

56 Balance-scale 625 4 2500 3 (288 288 49) 5.88

57 Wine 178 13 2314 3 (71 59 48) 1.48

58 Planning-relax 182 12 2184 2 (130 52) 2.50

59 Soybean-small 47 45 2115 4 (17 10 10 10) 1.70

60 Glass-identification 214 9 1926 6 (76 70 29 17 13 9) 8.44

61 Hepatitis 80 19 1520 2 (67 13) 5.15

62 Seeds 210 7 1470 3 (70 70 70) 1.00

63 Thyroid-disease-new-thyroid 215 5 1075 3 (150 35 30) 5.00

64 Haberman-survival 306 3 918 2 (225 81) 2.78

65 Fertility 100 9 900 2 (88 12) 7.33

66 Monks-problems-1 124 6 744 2 (62 62) 1.00

67 Monks-problems-3 122 6 732 2 (62 60) 1.03

68 Balloons-a 20 4 80 2 (12 8) 1.50

69 Balloons-b 20 4 80 2 (12 8) 1.50

70 Balloons-c 20 4 80 2 (12 8) 1.50

71 Balloons-d 16 4 64 2 (9 7) 1.29
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Table 2.   Characteristics of the selected regression datasets, sorted by size.

Regression datasets

 ID Dataset #Inst. #Attr. Size Repository

Large datasets (Size > 100000)

1 News-popularity 39644 58 2299352 UCI ML repository

2 Casp 45730 9 411570 UCI ML repository

3 Friedman 40768 9 366912 LIACC (University of Porto)

4 Ailerons 7154 40 286160 LIACC (University of Porto)

5 Nwp-min 7590 21 159390 UCI ML repository

6 Elevators 8752 17 148784 LIACC regression repository

7 Electrical-grid 10000 12 120000 UCI ML repository

Medium datasets (10000 < Size < 100000)

8 Parkinsons-motor 5875 16 94000 UCI ML repository

9 Parkinsons-total 5875 16 94000 UCI ML repository

10 Skillcraft 3338 18 60084 UCI ML repository

11 Winequality-white 4898 11 53878 UCI ML repository

12 Cpu-performance 209 245 51205 UCI ML repository

13 Abalone 4177 10 41770 UCI ML repository

14 Student-performance-por 649 43 27907 UCI ML repository

15 Parkinsons-speech 1040 26 27040 UCI ML repository

16 Usopen-men-2013a 126 168 21168 UCI ML repository

17 Usopen-men-2013b 126 168 21168 UCI ML repository

18 Frenchopen-men-2013a 123 170 20910 UCI ML repository

19 Frenchopen-men-2013b 123 170 20910 UCI ML repository

20 Wimbledon-women-2013a 118 170 20060 UCI ML repository

21 Wimbledon-women-2013b 118 170 20060 UCI ML repository

22 Wimbledon-men-2013a 113 163 18419 UCI ML repository

23 Wimbledon-men-2013b 113 163 18419 UCI ML repository

24 Winequality-red 1599 11 17589 UCI ML repository

25 Frenchopen-women-2013a 111 155 17205 UCI ML repository

26 Frenchopen-women-2013b 111 155 17205 UCI ML repository

27 Student-performance-mat 395 43 16985 UCI ML repository

28 Forestfires 517 28 14476 UCI ML repository

29 Ausopen-men-2013a 103 138 14214 UCI ML repository

30 Ausopen-men-2013b 103 138 14214 UCI ML repository

31 Ausopen-women-2013a 99 141 13959 UCI ML repository

32 Ausopen-women-2013b 99 141 13959 UCI ML repository

33 Triazines 186 60 11160 LIACC regression repository

Small datasets (Size < 10000)

34 Automobile 160 62 9920 UCI ML repository

35 Usopen-women-2013a 74 106 7844 LIACC (University of Porto)

36 Airfoil-self-noise 1503 5 7515 LIACC (University of Porto)

37 Housing 506 13 6578 UCI ML repository

38 Auto-mpg 392 7 2744 UCI ML repository

39 Servo 167 12 2004 UCI ML repository

40 Pyrim 74 27 1998 UCI ML repository

41 Yatch 308 6 1848 UCI ML repository

42 Hybrid 153 11 1683 Departament of Statistics (University of Florida)

43 Lpga2009 146 11 1606 Departament of Statistics (University of Florida)

44 Brazilian-logistic 60 20 1200 UCI ML repository

45 Slump 103 7 721 UCI ML repository

46 Slump-flow 103 7 721 UCI ML repository

47 Slump-mpa 103 7 721 UCI ML repository

48 Japanemg 45 5 225 Departament of Statistics (University of Florida)

49 Beer 23 7 161 Departament of Statistics (University of Florida)

50 Const-maint 33 4 132 Departament of Statistics (University of Florida)

51 Diabetes 43 2 86 LIACC (University of Porto)

52 Texas-jan-temp 16 3 48 Departament of Statistics (University of Florida)
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The performance of the comparison methods depends critically on the setting of two hyperparameters: the 
regularisation parameter, C, and the number of hidden nodes, D. The hyperparameter C was determined by a 
grid search in a 5-fold nested cross-validation. The optimal value of the regularisation parameter for all com-
parison methods was determined with the following grid: C ∈ {10−2, 10−1, 1, 10, 102} . The number of hidden 
nodes, D, in all models was set to D = 10 for the first experiment and D = 1000 for the second one. In the case 
of the KBRELM method, the γ parameter needs to be crossvalidated, so it has been determined with the grid 
γ ∈ {10−2, 10−1, 1, 10, 102} . The ensemble size for all the ensemble methods was set to 10 base learners.

The experimental results were obtained using a 10-fold cross-validation procedure, with 3 repetitions per 
fold. Thus, 30 error measures were obtained for all methods compared, ensuring adequate statistical significance 
of the results. The partitions were the same for all models compared. Input values were standardised, regression 
labels were scaled to [0, 1] and class labels were binarised, following “1-to-J” encoding51.

Measures.  The metrics used for performance validation were all standard metrics in their environments, 
that is, well-known and standard metrics for classification and regression problems. In this regard, the simplicity 
and success of applying the accuracy rate (Acc) have allowed it to be widely used as a performance measure for 
classification problems. However, the Acc is unsuitable for imbalanced datasets, which is one of the big tradeoffs 
when using the accuracy metric. As seen in Table 1, there are a total of 35 datasets with an IR higher than 2, 
which is the threshold value considered in this work. Therefore, it is more appropriate to use balanced accuracy 
( Balanced Accuracy ), which is equal to the accuracy in balanced datasets and considers the imbalance of classes 
when it exists. In addition, two other classification metrics, Precision (Precision) and F-measure (F1), have also 
been used because they are useful in balanced and imbalanced scenarios.

Given a binary classification problem (positives and negatives patterns), it is considered:

•	 True positives (TP): positive patterns predicted as positive.
•	 False negatives (FN): positive patterns predicted as negative.
•	 False positives (FP): false patterns predicted as positive.
•	 True negative (TN): false patterns predicted as negative.

Then, these classification performance metrics are mathematically defined as follows:

•	 Balanced Accuracy is the mean of Sensitivity and Specificity. Imbalanced datasets can be addressed by using 
the average of Sensitivity and Specificity. If a model only predicts accurately for the majority class in the 
dataset, it will receive a worse Balanced Accuracy score: 

•	 Precision is the percentage of positive patterns predicted as positive with respect to the total of positive pre-
dicted patterns: 

•	 F1 is the harmonic mean of the Precision and Recall: 

For multi-class problems, the metrics are calculated by comparing one class against all the others. The chosen 
class is considered positive, while the others are negative. This approach allows for obtaining a metric value for 
each of the classes. Then, the mean value is obtained.

The root mean square error (RMSE) and the determination coefficient ( R2 ) are the principal measures in the 
validation of an algorithm for regression problems:

•	 RMSE is the standard deviation of the differences between predicted and target values, and it is defined as: 

 where ŷ(xn) is the predicted value for pattern xn , and yn , the real one.
•	 R2 is the determination coefficient representing the proportion of the variation in the dependent variable 

that is predictable from the independent variables. 

 where y and ŷ , are the real and predicted values, respectively.
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Statistical tests.  In order to demonstrate that the GGBRELM model is a promising method in its field, it is 
crucial to validate its performance with respect to that of the comparison methods with statistical tests. For both 
experiments and for each metric, a pre-hoc test was applied with the evaluations of the methods on the different 
datasets to assess the statistical significance of the rank differences. For evaluations where the test detected sta-
tistical differences in method rankings, a post-hoc test was conducted to determine which models are distinctive 
among the multiple comparisons performed using the best performing method as the control method. For this 
purpose, nonparametric tests were applied. First, nonparametric Friedman’s tests52, with Balanced Accuracy , 
Precision and F1 (classification), and RMSE and R2 (regression) ranking of the models as test variables, were car-
ried out for α = 0.05 . Then, nonparametric Holm’s post-hoc test53 was implemented to determine whether the 
control method, the GGBRELM, statistically outperforms the comparison methods considering α = 0.05 and 
taking into account each metric.

Discussion of the results
This section includes the analysis of the experimental results obtained on the selected datasets. This part of 
the paper has been divided into two sections according to classification and regression datasets. For the sake 
of conciseness, it has been opted to provide only the relevant graphs and a summary of the statistical results.

Classification datasets.  The generalisation performances of the considered methods for E1 ( D = 10 ) and 
E2 ( D = 1000 ) in classification datasets are shown in Figs. 2 and 3, respectively ((a) Balanced Accuracy , (b) Pre-
cision, (c) F1). In those figures, the Y-axis represents the value of the reported metric, while the X-axis contains 
the IDs of the datasets sorted by size. If GGBRELM is the best for one dataset, its ID appears in bold, and if it is 
the second best, it appears in italics. Finally, imbalanced datasets are marked with an underline. For the case of 
the all classification metrics, the higher the point is located on the graph, the better performance of that method 
since the objective is to maximise these metrics.

As a general rule, it can be observed that the GGBRELM methodology outperforms the other approaches in 
Balanced Accuracy , Precision and F1 in both experiments. Significantly, the difference is greater in those datasets 
where all the methodologies do not achieve good performances.

In particular, in E1, when comparing Balanced Accuracy , GGBRELM performs better in 31 datasets, and it is 
the second best in 36, representing almost the total number of databases. For precision, it is the best in 36 datasets 
and the second one in 30. Moreover, for the F1, GGBRELM is also the best in 36 datasets and the second in 27. 
GBRELM and KBRELM have similar performance regarding the number of databases in which they are the best 
or second. ELM performance is lower than the ensemble approaches, according to the literature.

Furthermore, in experiment E2, where the classifiers are configured with a high number of neurons in the 
hidden layer, the ELM becomes more specialised. Hence its performance improves, and it should outperform 
the ensemble methods due to its disadvantages when using strong base learners, such as saturation or overfitting. 
Nevertheless, while it is true that GBRELM and KBRELM obtain worse results than ELM, GGBRELM overcomes 
this disadvantage of ensemble nature methods by getting more accurate results. Thus, GBBRELM achieves the 
best result in 27, 30 and 28 datasets in terms of Balanced Accuracy , Precision and F1, respectively, and the second 
best in 31, 30 and 30 datasets. Thus, the proposed methodology is also better than the three compared methods, 
as shown in Fig. 3.

As mentioned above, a set of statistical tests have been carried out to analyse the results from statistical 
hypothesis contrasts, summarising the results in Table 3. For the Friedman’s tests and a level of significance 
α = 5% , the confidence interval is C0 = (0, F0.05 = 2.65) , and the F-distribution statistical value considering 
Balanced Accuracy rankings is F∗ = 27.80 , considering Precision rankings is F∗ = 31.69 and taking into account 
F1 is F∗ = 22.73 in the experiment E1 (D = 10), while in the E2 experiment (D = 1000), F∗ = 15 , F∗ = 10.76 
and F∗ = 9.89 , respectively. Consequently, in both experiments, the test rejects the null-hypothesis stating that 
all algorithms perform equally in mean ranking of Balanced Accuracy , Precision and F1. That is, the algorithm 
effect is statistically significant. For this reason, it is considered the best performing method as a control method 
for a post-hoc test, comparing this algorithm with the rest of the methods. In this way, Table 3 also shows the 
results of Holm’s test. When using GGBRELM as the control algorithm (CA), Holm’s test shows that pi < α∗

i  
in all cases, for α = 0.05 , confirming that there are statistically significant differences favouring GGBRELM in 
both experiments and for each metric.

Discussion considering dataset size.  As aforementioned, the datasets have been sorted in decreasing order of 
size and have been divided into three categories according to it, as shown in Table 1: 17 large datasets (IDs 1-17), 
25 medium (IDs 18-42) and 29 small ones (IDs 43-71).

Looking at E1, for large datasets, GGBRELM is the best in 8 datasets and the second in the remaining ones 
for all metrics. It is the best in 12, 13 and 13 medium datasets and the second in 11, 10 and 9 according to 
Balanced Accuracy , Precision and F1, respectively. For small datasets, the best results are achieved on 11, 15 and 
15, and the second best on 16, 11 and 9 datasets, depending on the metric analysed.

For the case of E2, for large datasets, GGBRELM is the best in 11, 10 and 9 and the second best in 4, 6 and 
7. For medium datasets, the best are obtained in 6, 10 and 9, while the second best results are achieved in 14, 11 
and 10. Finally, the best results are obtained in 10 and the second best in 13 small datasets in all metrics.

As can be seen, regardless of size, the GGBRELM method performs quite well. However, for both E1 and E2, 
the best results are concentrated in the large datasets being the best or second best method in almost all metrics 
in both experiments. In the smallest datasets, the improvement of the proposal is not as noticeable as in the 
remaining ones. It makes sense since they are databases without difficulty and are easier to solve by any method.
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Figure 2.   Performance plot on metrics for classification datasets using D = 10. The Y-axis represents the value 
of the metric, while the X-axis contains the IDs of the datasets sorted by size. If GGBRELM is the best for that 
dataset, its ID appears in bold, and if it is the second best, it appears in italics. Finally, imbalanced datasets are 
marked with an underline.
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Figure 3.   Performance plot on metrics for classification datasets using D = 1000. The Y-axis represents the 
value of the metric, while the X-axis contains the IDs of the datasets sorted by size. If GGBRELM is the best for 
that dataset, its ID appears in bold, and if it is the second best, it appears in italics. Finally, imbalanced datasets 
are marked with an underline.
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Discussion considering imbalanced datasets.  In the experimental validation, there are a total of 35 imbalanced 
datasets. As stated, for each classification database, the IR has been calculated as the ratio of the number of pat-
terns in the majority class to the number of patterns in the minority class. The IR has been reported in Table 1, 
underlining those datasets with an IR > 2 . In addition, in Figs. 2 and 3, the IDs of these imbalanced datasets have 
also been underlined, making it easier to discuss the results by taking them into account.

Considering the first experiment with D set to 10, GGBRELM achieves the best result on 13 datasets and the 
second best on 18, resulting in almost the total number of databases, considering the Balanced Accuracy metric. 
Similar is what happens with the other two metrics, being the best in 15 and second best in 15 for Precision and 
obtaining the best results in 16 and second best in 11 with F1. In this case, it is worth noting that the second 
method would be GBRELM on average for the three metrics. Although KBRELM obtains the best result in many 
databases, this showed an unstable behaviour since it is either very good or the worst, depending on the dataset.

As for E2, the same happens for GGBRELM, being the best method for the three metrics in 9, 13 and 12 
datasets, respectively, and the second best method in 18, 16 and 13. It is important to note that for imbalanced 
datasets, the GBRELM method has approximately the same average performance in all metrics with respect to 
ELM, but ELM is still slightly better than GBRELM.

From this analysis, it can be concluded that the proposed GGBRELM method not only performs well on all 
metrics for all databases but is also the most appropriate for imbalanced datasets.

Discussion considering the number of classes.  From column #Classes in Table 1 and Figs. 2 and 3, the influence 
of the number of classes on the results obtained can be analysed.

Thus, for E1 and the 44 binary problems, GGBRELM is the best algorithm on average since it is the best on 26, 
27 and 28 databases depending on the analysed metric ( Balanced Accuracy , Precision and F1). In addition, it is 
the second best on 16, 14 and 11, respectively. In the case of multiclass problems, and specifically as the number 
of classes increases, KBRELM performs similarly to GGBRELM in this experiment. This can be explained by 
the fact that the higher the number of classes, the more complex the problem becomes, and the algorithms with 
a higher number of connections benefit, as is the case of kernels.

However, for the case of E2, i.e., when GGBRELM is provided with more neurons in its base classifiers, the 
results indicate that it performs better on average than the rest of the algorithms in binary and multiclass prob-
lems in all metrics. Thus, in binary problems, GGBRELM is the best in 20, 22 and 21, and the second in 14, 13 
and 13, respectively. For the case of problems with a more significant number of classes, it is the best in 7, 8 and 
7 and the second best in practically the remaining ones, making it the best algorithm on average.

Regression datasets.  The performances of the considered methods for E1 ( D = 10 ) and E2 ( D = 1000 ) 
in regression datasets are shown in Figs. 4 and 5, respectively ((a) RMSE, (b) R2 ). As in classification datasets, 
the Y-axis represents the value of the reported metric, while the X-axis contains the IDs of the datasets sorted 
by size. If GGBRELM is the best for one dataset, its ID appears in bold, and if it is the second best, it appears in 
italics. For the case of the RMSE metric, the lower the point is located on the graph, the better performance of 

Table 3.   Results of the Friedman’s and Holm’s tests using GGBRELM as control algorithm (CA) when 
comparing its average Balanced Accuracy , Precision and F1 to those of ELM, GBRELM and KBRELM: 
corrected α values, compared methods and p values, all of them ordered by the number of comparison (i). CA 
results statistically better than the compared algorithm are marked with (*).

Experiment 1 Experiment 2

Balanced sccuracy Friedman C0 = (0, F0.05 = 2.65) F∗
= 27.80(∗) C0 = (0, F0.05 = 2.65) F∗

= 15(∗)

Holm CA:GGBRELM CA:GGBRELM

i α∗

0.05 Algorithm pi Algorithm pi

1 0.017 ELM 0.0000 (*) KBRELM 0.0000 (*)

2 0.025 KBRELM 0.0002 (*) GBRELM 0.0063 (*)

3 0.050 GBRELM 0.0148 (*) ELM 0.0375 (*)

 Precision Friedman C0 = (0, F0.05 = 2.65) F∗
= 31.69(∗) C0 = (0, F0.05 = 2.65) F∗

= 10.76(∗)

Holm CA:GGBRELM CA:GGBRELM

i α∗

0.05 Algorithm pi Algorithm pi

1 0.017 ELM 0.0000 (*) KBRELM 0.0000 (*)

2 0.025 KBRELM 0.0015 (*) GBRELM 0.0015 (*)

3 0.050 GBRELM 0.0085 (*) ELM 0.0052 (*)

 F1 Friedman C0 = (0, F0.05 = 2.65) F∗
= 22.73(∗) C0 = (0, F0.05 = 2.65) F∗

= 9.89(∗)

Holm CA:GGBRELM CA:GGBRELM

i α∗

0.05 Algorithm pi Algorithm pi

1 0.017 ELM 0.0000 (*) KBRELM 0.0000 (*)

2 0.025 KBRELM 0.0000 (*) GBRELM 0.0005 (*)

3 0.050 GBRELM 0.0177 (*) ELM 0.0027 (*)
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that method since the objective is to minimise this metric. The opposite occurs in the R2 metric because it must 
be maximised.

The findings unambiguously demonstrate that the GGBRELM methodology outperforms the alternative 
approaches in both experiments and across both metrics. This distinction is especially evident in datasets where 
the other methodologies exhibit suboptimal performance.

Thus, in the case of E1, GGBRELM is the best method in 44 datasets and the second best in 4 datasets in terms 
of RMSE. In addition, it is the best method in 43 datasets and the second best in 5 datasets when comparing R2 . 
With a low number of neurons, GBRELM also outperforms ELM since it is a weak learner. However, KBRELM 
does not seem to perform well in problems of this nature, being the worst regressor of the four methods.

Figure 4.   Performance plot on metrics for regression datasets using D = 10. The Y-axis represents the value 
of the metric, while the X-axis contains the IDs of the datasets sorted by size. If GGBRELM is the best for that 
dataset, its ID appears in bold, and if it is the second best, it appears in italics.
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Furthermore, in experiment E2, GGBRELM overcomes the disadvantage of ensemble nature methods by get-
ting more accurate results regarding RMSE and R2 . Hence, GGBRELM achieves the better RMSE performance 
in 34 datasets and the second best in 14. Similarly, it gets the best R2 in 28 datasets and the second best in 19.

In the same way, as in classification datasets, four Friedman’s tests have been run showing the rejection of the 
null-hypothesis given that, for α = 5% , the confidence interval is C0 = (0, F0.05 = 2.66) , and the statistical values 
for RMSE and R2 are F∗ = 102.63 and F∗ = 101.97 in E1, and F∗ = 77.21 and F∗ = 91.05 in E2 (Table 4). This 
Table also shows the results of Holm’s test comparing RMSE and R2 . Again, when using GGBRELM as the control 
algorithm (CA), Holm’s test shows that pi < α∗

i  in all cases, for α = 0.05 , confirming that there are statistically 
significant differences favouring GGBRELM in both experiments and metrics.

Figure 5.   Performance plot on metrics for regression datasets using D = 1000. The Y-axis represents the value 
of the metric, while the X-axis contains the IDs of the datasets sorted by size. If GGBRELM is the best for that 
dataset, its ID appears in bold, and if it is the second best, it appears in italics.
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Discussion considering dataset size.  The regression datasets have been ordered from the highest to the smallest 
size and have also been divided into three categories as shown in Table 2: 7 large datasets (IDs 1-7), 26 medium 
(ID 8-33) and 29 small (ID 34-52).

Considering E1, for large datasets, GGBRELM is the best in all datasets for all metrics. For medium size, it 
is the best in 22 in both metrics and the second in 2 and 3, respectively. For small datasets, the best results are 
achieved on 15 and 14, and the second best on 2 datasets in both metrics.

For the case of E2, for large datasets, GGBRELM is the best in 6 datasets and the second in 1 for both metrics. 
For medium datasets, the best are obtained in 19 and 11, while the second best results are obtained in 5 and 11. 
Finally, for small datasets, the best are obtained in 9 and 11, and the second best in 8 and 7 datasets.

In both experiments, the dataset size does not influence since, in all cases, the GGBRELM algorithm is much 
better than the others. However, it can be observed how in the five smallest databases, the performance differ-
ence of GGBRELM with respect to the other methods decreases since they lack complexity and are susceptible 
to being solved with any method.

Conclusions
This paper presents a new ensemble methodology that tackles the problem of base learners saturation and a drop 
in performance when strong base learners are used in the ensemble method, avoiding increase iteratively the size 
of the ensemble. To solve this, this method performs a global optimisation in the Boosting Ridge methodology, 
using Extreme Learning Machine models as base learners. The proposed ensemble method, Generalised Global 
Boosting Ridge for Extreme Learning Machine, generates a set of initial input layer mappings with different 
parameters for their hidden layers. The output layer weights are optimised in one step, reducing the generalisa-
tion error of the ensemble.

A complete experimentation has been carried out, taking into account 71 classification datasets, analysing 
their size, the number of classes and the imbalance ratio, and 52 regression datasets considering their size, all 
from different application domains. The experiments show that i) the proposed Generalised Global ensemble 
method for ELM outperforms Generalised Boosting Ridge in different contexts, that is, low number and high 
number of neurons, and ii) Generalised Global methodology improves the results of ELM when it is specialised 
with a high number of neurons, overcoming the disadvantage of ensemble methods in these scenarios. Instead 
of relying on generating diversity through weak learners (low number of neurons), our method depends on its 
optimisation in the final prediction of the ensemble as a whole, thus not relying on the implicit diversity of the 
hidden neurons mapping.

In future work, it planned to adapt the ensemble learning framework to other base learners and other machine 
learning paradigms, such as ordinal regression or semisupervised learning. And finally, the application of the 
methodology to real-world problems could be proposed.

Data availability
The databases used together with the code necessary for their extraction are available at https://​github.​com/​cpera​
les/​uci-​downl​oad-​proce​ss. The code generated in the experimental design, including the proposed methodol-
ogy is available at https://​github.​com/​cpera​les/​pyrid​ge. The whole table results obtained during the current study 
are available from the corresponding author upon reasonable request.
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Table 4.   Results of the Friedman’s and Holm’s tests using GGBRELM as control algorithm (CA) when 
comparing its average RMSE and R2 to those of ELM, GBRELM and KBRELM: corrected α values, compared 
methods and p-values, all of them ordered by the number of comparison (i). CA results statistically better than 
the compared algorithm are marked with (*).

Experiment 1 Experiment 2

RMSE Friedman C0 = (0, F0.05 = 2.66) F∗
= 102.63(∗) C0 = (0, F0.05 = 2.66) F∗

= 77.21(∗)

Holm CA:GGBRELM CA:GGBRELM

i α∗

0.05 Algorithm pi Algorithm pi

1 0.017 KBRELM 0.0000 (*) KBRELM 0.0000 (*)

2 0.025 ELM 0.0000 (*) GBRELM 0.0001 (*)

3 0.050 GBRELM 0.0005 (*) ELM 0.0004 (*)

R2 Friedman C0 = (0, F0.05 = 2.66) F∗
= 101.97(∗) C0 = (0, F0.05 = 2.66) F∗

= 91.05(∗)

Holm CA:GGBRELM CA:GGBRELM

i α∗

0.05 Algorithm pi Algorithm pi

1 0.017 KBRELM 0.0000 (*) KBRELM 0.0000 (*)

2 0.025 ELM 0.0000 (*) GBRELM 0.0063 (*)

3 0.050 GBRELM 0.0024 (*) ELM 0.0185 (*)

https://github.com/cperales/uci-download-process
https://github.com/cperales/uci-download-process
https://github.com/cperales/pyridge
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