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Quantifying the relationship 
between spreading depolarization 
and perivascular cerebrospinal fluid 
flow
Saikat Mukherjee 1,2*, Mahsa Mirzaee 1 & Jeffrey Tithof 1

Recent studies have linked spreading depolarization (SD, an electro-chemical wave in the brain 
following stroke, migraine, traumatic brain injury, and more) with increase in cerebrospinal fluid 
(CSF) flow through the perivascular spaces (PVSs, annular channels lining the brain vasculature). We 
develop a novel computational model that couples SD and CSF flow. We first use high order numerical 
simulations to solve a system of physiologically realistic reaction–diffusion equations which govern 
the spatiotemporal dynamics of ions in the extracellular and intracellular spaces of the brain cortex 
during SD. We then couple the SD wave with a 1D CSF flow model that captures the change in cross-
sectional area, pressure, and volume flow rate through the PVSs. The coupling is modelled using an 
empirical relationship between the excess potassium ion concentration in the extracellular space 
following SD and the vessel radius. We find that the CSF volumetric flow rate depends intricately on 
the length and width of the PVS, as well as the vessel radius and the angle of incidence of the SD wave. 
We derive analytical expressions for pressure and volumetric flow rates of CSF through the PVS for a 
given SD wave and quantify CSF flow variations when two SD waves collide. Our numerical approach 
is very general and could be extended in the future to obtain novel, quantitative insights into how CSF 
flow in the brain couples with slow waves, functional hyperemia, seizures, or externally applied neural 
stimulations.

The human brain contains about 80% water in different compartments including blood, cerebrospinal fluid (CSF) 
in the ventricles, and interstitial fluid (ISF) in the extracellular space (ECS)1. The recent glymphatic hypothesis 
suggests that the water in the brain is dynamic, with exchange of CSF and ISF to help clear metabolic waste. Nota-
bly, CSF has been shown to flow through annular spaces that line the brain vasculature, known as perivascular 
spaces (PVSs)2–7. Although, the exact nature of exchange between CSF in the PVS and ISF in the brain tissue is 
still debated8, it is noteworthy that even a laminar and viscous fluid flow may significantly enhance transport 
since the diffusion coefficient of waste protein molecules is relatively small (leading to a Péclet number Pe ≥ 1 
for large molecules like amyloid-β9,10).

The ISF in the ECS is primarily a diluted salt solution that acts as an ionic reservoir consisting of Na+ , K+ , 
Ca2+ , and Cl− . The ISF promotes important neuronal functions like regulating the pH level, maintaining the 
resting potential of neurons, and enabling action potential propagation11. The neurons, glia, and vasculature in the 
brain tissue are bathed by the ISF which pervades the ECS and constitutes about 20% of the total brain volume12. 
The presence of substantial amounts of freely floating charged ions and water in the brain thus lays the perfect 
grounds for rich chemo-hydrodynamic interactions between ionic fluxes and the dynamics of CSF and ISF.

Maintaining ionic fluxes in the ECS at homeostasis requires a substantial amount of metabolic energy. Indeed, 
the human brain accounts for about 20–25% of the total metabolism even though it constitutes only about 2% of 
the body mass13. The ion channels and pumps in the neuronal cells use this energy to transport ions between the 
intracellular space (ICS) and ECS. Ionic fluxes can interact with CSF and ISF in complicated ways exemplified 
by neurovascular coupling, generation of osmotic pressure gradients, and chemical reaction–diffusion waves. 
Under physiological conditions, neurovascular coupling causes local changes in the cerebral blood flow which 
can lead to changes in the CSF flow, as demonstrated in functional hyperemia and in slow wave oscillations 
during sleep14–16.
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In some acute neurological conditions, the ionic equilibrium may become compromised resulting in spreading 
depolarization (SD). SD is a reaction–diffusion wave resulting from redistribution of ions in the ECS and ICS 
during stroke, traumatic brain injury, migraine, cardiac arrest, and haemorrhage8,17–20. First observed by Leão21, 
SD is characterized by an influx of ions like Na+ and Ca2+ into the cells and an outflow of K+ . Under physi-
ological conditions, a single neuron maintains a potential of about −70 mV due to the ion gradients maintained 
across the cell membrane. Depolarization occurs when the ionic redistribution increases the resting potential to 
a value of approximately −10 mV17,22. SD-induced ionic gradients across the cell membrane also lead to swelling 
of the neurons because of water influx into the cell from the ECS due to osmotic stress. Additionally, the excess 
K+ in the ECS leads to changes in the lumen radius of the arteries. The excess ions in the cortex then spread due 
to diffusion along the cortical surface leaving behind a trail of swelled up depolarized neurons and constricted 
vasculature in their wake. The resulting SD wave has a typical speed of O(1) mm/min23–25.

Previous studies of chemical reaction–diffusion waves in an imposed fluid flow have shown that reaction–dif-
fusion waves can disrupt complex fluid flow through different forms of coupling26,27. There are several mecha-
nisms by which SD may disrupt the glymphatic system. A recent study found that SD due to induced ischemic 
stroke in mice resulted in large CSF influx into the brain, a novel discovery indicating CSF is the earliest contribu-
tor to brain edema (water accumulation in tissue) following stroke8. Using two-photon imaging and numerical 
modeling, it was found that SD-induced vasoconstriction of penetrating arterioles induced a large bulk flow of 
CSF by increasing the effective size of the surrounding PVSs. SD is also linked to edema and blood-brain-barrier 
compromise following cardiac arrest due to transmembrane ionic gradients, which cause substantial water influx 
and tissue destruction28. In addition to ischemia, SD also occurs during chronic migraine18,19 and traumatic brain 
injury29,30. Moreover, apart from vasoconstriction and osmotic stresses, the shrinkage of ECS volume during SD 
may also disrupt CSF-ISF exchange and transport in the interstitial spaces31–34.

Despite great progress in experimental techniques, quantifying the precise mechanisms coupling SD and 
CSF and/or ISF dynamics in vivo is difficult because of spatiotemporal limitations in imaging. Physiologically 
realistic numerical simulations offer an approach that sidesteps this limitation. In this work we numerically 
simulate one of the several important mechanisms that couple SD and the glymphatic system as outlined above. 
We focus on the chemo-mechanical coupling during SD that leads to vasoconstriction/vasodilation in pial and 
penetrating arteries resulting in CSF influx to the brain. We follow an empirical relationship between the K+ 
concentration and the arterial lumen radius35–37. It is important to note that the excess K+ during SD in the ECS 
is first transported via diffusion to the PVS. The increased K+ concentration in the PVS then causes a change in 
the polarization of the smooth muscle cells lining the arterial lumen, leading to vasoconstriction or vasodilation36. 
This excess K+ in the PVS is depleted after the SD wave has passed and is also perhaps removed by spatial potas-
sium buffering38. It is useful to note that the neurovascular coupling during functional hyperemia and slow wave 
oscillations during sleep also share similarity with the mechanism outlined above, albeit the K+ concentrations 
are lower. On the other end of the spectrum, seizures can cause severe and sustained vasoconstrictions39 which 
share mechanistic similarities with SD40. Additionally, recent studies have shown that externally applied nerve 
stimulation can also lead to increasing CSF tracer penetration into the brain, possibly due to similar hemody-
namic alterations41. Hence, novel insights into CSF transport due to changes in arterial diameter have far-reaching 
implications beyond SD alone.

To model the SD wave we implement a 13-component reaction–diffusion system of equations, motivated by 
physiological ionic dynamics, which yields a traveling SD wave in one spatial dimension. To model the CSF flow 
in the PVS we solve a system of one-dimensional (1D) Navier–Stokes equations which quantify the changes in 
volumetric flow rate and pressure as a function of the change in PVS area during SD. A 3D or 2D representa-
tion of CSF flow in the PVS becomes computationally prohibitive because of the need to resolve the disparate 
length scales of the problem. The wavelength of a typical spreading depolarization is �=O(1) mm while the 
PVS width is δr=O(10−3) mm, which makes the problem computationally difficult because of the large aspect 
ratio ( �/δr = O(103) ). Nevertheless, full simulations in idealized geometries and image-based geometries have 
elucidated the pressure and fluid flow distribution in the PVS42,43. Simulations in 1D offer the advantage of 
computational efficiency with a relatively small compromise on the accuracy of average volumetric flow rate 
and pressure magnitudes44. Moreover, 1D simulation of CSF is also motivated by the substantial volume of work 
on modeling blood flow in vascular networks45. The numerical approach we implement is very flexible and can 
be easily adapted to quantify CSF flow in the brain resulting from slow waves, functional hyperemia, seizures, 
different forms of SD, or externally applied nerve stimulations.

This article is structured as follows. We first describe our approach by stating the governing equations of 
SD and CSF flow, as well as our numerical implementation. We then detail our results, where we explore the 
coupling of the SD wave and CSF flow by systematically varying multiple parameters, which include the arterial 
radius, the PVS width, the PVS length, and the angle of incidence of the SD wave on the PVS. Additionally, we 
also explore the variation of PVS area, volumetric flow rate of CSF, and pressure changes following a collision of 
SD waves. We end with concluding remarks.

Approach
We first describe the domain in which we perform the numerical simulations. Our numerical domain consists 
of a single branch of an artery of variable length LPVS sheathed by an annular PVS. The width of the PVS is 
δr = r2 − r1 , where r1 is the lumen radius and r2 is the radius of the outer wall of the PVS. We then model a 
traveling SD wave incident on the PVS at a variable angle 0 ≤ θ ≤ π/2 . Figure 1 shows our numerical domain. 
Our modelling approach is to couple the Yao–Huang–Miura model (YHM) of spreading depolarization46 with 
a model of 1D fluid flow through a perivascular space.
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Spreading depolarization
Mathematical modeling approaches to SD usually fall under two categories, qualitative and physiological. 
Qualitative approaches model the excitatory-inhibitory dynamics associated with SD using phenomenological 
reaction–diffusion models. The traveling wave in these models constitute a bifurcation from the base state of 
the system due to a change in a control parameter18,47,48. While these models recreate the 2D spatial dynamics 
exhibited by SD, like spiral and stationary waves, it can be difficult to connect the qualitative variables with ionic 
dynamics. On the other hand, the physiological approach involves solving coupled systems of reaction–diffusion 
equation of physiological ionic transport in the brain including diffusion in the ECS, intracellular dynamics, 
electro-diffusion, as well as ECS shrinkage due to osmotic water flow into the cells23,34,46,49,50. The limitations of the 
physiological models are that the governing equations are usually multi-variable and computationally cumber-
some. Additionally, physiological models are typically implemented in 1D because of computational expense, and 
they may be unable to recreate the 2D spatial patterns exhibited by SD waves; recently however, a physiological 
model based on electro-diffusion has been proposed that yields spiral waves when simulated in 2D51. Below we 
discuss our modeling approach of SD where we have implemented the physiologically-realistic YHM model.

YHM is a comprehensive model of spreading depolarization that takes into account the ionic transport 
across the neuronal membrane, cross-membrane currents, and membrane potential variation in the intracellular 
neuronal space. These mechanisms are coupled with diffusion of ions in the extracellular space46. The model 
uses the technique outlined in Kager et al.52 to quantify the intracellular dynamics of ions and currents across 
the neuronal membranes. The intracellular ionic dynamics are coupled with the continuum modelling approach 
developed by Tuckwell and Miura49 in the extracellular space. It is assumed that the ICS and the ECS share the 
same overlapping continuum space. We use the basic YHM model which captures the dynamics of Na+ and K+ 
ions; however, more complicated variations exist which incorporate cell swelling and Cl− ions.

The basic formulation of the YHM model is as follows:

here time is expressed in the units of ms and space is expressed in the units of cm. In Eqs. (1–5), i represents the 
intracellular space, e represents extracellular space, S=1.6× 10−5 cm2 is the neuronal surface area, F=96.485 
coulomb/mM is the Faraday constant, and ε=Ve/V is the extracellular volume fraction. For the present study we 
have used ε=0.13 which implies that cells occupy 87% of the brain interstitium (V is the total volume such that 
V=Vi/(1− ε) , where Vi = 2.2× 10−9 mm3 is the typical value of neuronal volume). Em is the neuronal mem-
brane potential. Other relevant parameters are the neuronal membrane capacitance Cm = 7.5× 10−7 s/� cm2 , 
the diffusion coefficient of sodium and potassium ions DNa = 1.33× 10−5 cm2/s and DK = 1.96× 10−5 cm2/s
50,53, and the tortuosity τ of the extracellular space. Since the brain interstitium can be considered as a porous 
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Figure 1.   The schematic of our computational domain. A single arterial segment is shown in red, which is 
ensheathed by PVS shown in green. The extracellular potassium concentration, associated with the SD wave, is 
shown in blue. The dashed line indicates the maximum K+ concentration, and the three perpendicular arrows 
indicate the direction of the wave propagation. The figure is not drawn to scale.
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medium, the diffusion of ions in the extracellular space is hindered when compared to an open medium; τ 
quantifies the hindrance of diffusive spreading in a porous medium. In the volume-averaged formulation of the 
transport equations in a porous medium, the diffusion coefficient is scaled by τ 2 and the porosity ε is incorporated 
in the source terms as implemented in Eqs. (2) and (4)12. We have used τ=1.55 which agrees with experimental 
measurements of ion diffusion in a rat cerebellum54. Tortuosity depends on the pore structure of the interstitium 
and can vary between species; however, the relationship between SD propagation speed v and τ is expected to be 
v ∝ 1/τ , since reaction–diffusion wave speed scales with the diffusion coefficient as v ∝

√
D55,56.

The total cross-membrane ionic currents due to the movement of Na+ and K+ ions across the membrane 
is given by the sum of sodium and potassium currents, �I = INa + IK + Ileak

46, where Ileak is the general leak 
current given by Ileak = gHH (Em + 70) . The sodium and potassium currents consist of active currents which 
are modelled by Goldman-Hodgkin-Katz (GHK) equations, and passive (or leak) currents which are modelled 
by Hodgkin–Huxley (HH) equations. The sodium current INa = INa,P + INa,T + INa,leak + INa,pump , consists of 
active currents, namely fast sodium current ( INa,T ) and persistent sodium current ( INa,P ). The potassium current 
IK = IK,DR + IK,A + IK,leak + IK,pump consists of active current, namely the potassium delayed rectifier current 
( IK,DR ) and the transient potassium current ( IK,A ). The GHK and HH equations modelling the active and leak 
currents respectively are,

here Eion = φ log [ion]e
[ion]i  is the Nernst potential while φ = RT/F is a parameter where R = 8.31 mV·C/(mM· K) 

is the universal gas constant and T = 298 K is the absolute temperature. Additionally, gion,HH is the conduct-
ance amplitude for passive currents whereas gion,GHK is the product of the neuronal membrane potential and 
conductance amplitude for the active currents. The active currents are voltage gated by specific gating proteins 
which allow for the transport of ions across the neuronal membrane depending on the membrane potential. The 
gating variables can be expressed as,

here m and h are first order activation and inactivation gates respectively. Rate constants αm(Em) , βm(Em) , 
αh(Em) , and βh(Em) are functions of the membrane potential. Finally, the total ionic currents also consist of the 
pump currents, IK,pump = 3Ipump and INa,pump = −2Ipump , where Ipump = Imax/(1+ 2[K]−1

e )2(1+ 7.7[Na]−1
e )3 

is the general potassium-sodium exchange pump current and Imax = 0.013 mA/cm2 . Supplementary Tables S1, 
S2, and S3 in the supplementary information lists the values of conductances, currents, and rate constants used 
in the simulation. It is useful to note that electroneutrality is not enforced in the present model. Although elec-
troneutrality is maintained in the brain under normal conditions, it is unclear whether it is maintained during 
SD23. Our modeling approach follows previous models of SD where only cations are considered46,49,52. However, 
electroneutrality should also be enforced if the dynamics of anions like Cl− in addition to cations are studied in 
the future using this model46. In addition, electro-diffusion models can also be explored in the future51.

To solve Eqs. (1–5) and Eqs. (8–9) we use a fourth order accurate Runge-Kutta scheme in time, and second 
order accurate finite differences in space. The numerical solver is written in Fortran. We use a time step of 
�t = 5× 10−3 ms, and a grid spacing of �x = 0.01 mm. Since there are no exact solutions, we have used the wave 
speed v at the finest grid resolution ( �x = 0.002 mm) possible for this time step to compare our results. A plot of 
error as a function of the grid resolution is included in Supplementary Fig. S2 in the supplementary information.

The initial condition we use for the extracellular potassium concentration is in the form of a Gaussian given by,

This initial condition models a spike in potassium concentration at a localized region in space of width 
ξ = 0.5× 10−2 mm, which is the case when KCl is applied to instigate SD waves in experiments57. The initial 
spike is of magnitude [K]e,max = 50 mM. The initial resting values of all the ions and gating variables are noted 
in Supplementary Table S3 of the supplementary information. The boundary condition for [K]e and [Na]e are 
no-flux at x = 0 and x = LSD , where LSD = 6 mm is the spatial extent that we simulate the SD wave.

1D Navier–Stokes equation
Solving Eqs. (1–9) results in a traveling wave of [K]e , [Na]e and Em , in the positive x-direction. We next couple 
the spreading wave with the 1D Navier–Stokes equation. The coupling occurs due to a change in radius of the 
artery, induced by a spike in the [K]e concentration due to the SD wave. The traveling wave of [K]e leads to a spatial 
change in radius of the arteries which travels with the same velocity as the SD wave, when the arteries are aligned 
with the direction of wave propagation. We note that the radius of the artery forms the inner boundary of the 
PVS, r1 . We thus expect a change in the fluid dynamics of the CSF in the PVS, which can be induced by the SD 
wave. The conservation of mass and momentum for a 1D section of PVS subjected to a SD wave can be written as,
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here A∗ , Q∗ , and P∗ are the nondimensional area of the perivascular space (PVS), average volumetric flow rate, 
and average pressure respectively. We use the symbol ∗ to denote nondimensional variables throughout the text.

Equations (11, 12) are derived using a similar approach to Ref.58. In this approach, the governing equations of 
fluid flow are first cast using cylindrical coordinates in an annulus, assuming axisymmetric flow. The underlying 
assumption we then use is the lubrication approximation which is valid when the ratio of the length scales in the 
radial direction to the axial direction is small. In our setup, δr/� << 1 . This approximation allows us to neglect 
the variation of pressure in the radial direction ( ∂P

∂r = 0 ). The equations are then averaged in the radial direction 
and the variation of the arterial radius with time is incorporated. We use the steady state Poiseuille flow profile 
in an annulus to further reduce the radially averaged governing equations. The equations are nondimensional-
ized using a length scale of PVS width δr = r2 − r1 in the radial direction and a length scale � (the wavelength 
of the SD wave) in the axial direction. The time scale used for nondimensionalization is T = �/v , where v is the 
wave speed. T is defined as the wave period. We note that the frequency of the wave is f = 1/T = v/� . We have 
included a detailed derivation of Eqs. (11)–(12) in the supplementary information. The variable c∗ is obtained 
from the Poiseuille flow profile through a concentric circular annulus, and its dimensional value is

Although we assume the PVS to be a concentric circular annulus, it is important to point out that PVSs surround-
ing the pial arteries in mice have been shown to have varying eccentricity and ellipticity which can influence 
the hydraulic resistance through the PVSs66,67. Indeed, the hydraulic resistance has been found to be lower than 
a concentric circular annulus and the flow has been shown to be three-dimensional66,67. Additionally, we have 
assumed all the PVSs surrounding the pial and the penetrating arteries as open medium. Recent studies have 
indicated that the pial PVSs are open; however, it is unknown as to whether the penetrating PVSs are porous5,68. 
It would be interesting in the future to explore the coupling of SD and CSF flow through porous PVSs.

It is useful to point out that using the above mentioned non-dimensionalization, we retrieve an area scale of 
δ2r  , a volumetric flow rate scale Qscale = δ2r v , and a pressure scale Pscale = νρ�v/δ2r  , where ν is the coefficient of 
kinematic viscosity and ρ is the density. The Reynolds number Re in Eq. (12) is the ratio of inertial to viscous 
forces. Using the averaging approach outlined above, the Reynolds number can be written as

Typically, Re is very small ( O(10−3) ) for this problem. Equations (11–12) are solved using a finite difference 
approach that implements a predictor-corrector algorithm which is 4th order accurate in time and 2nd order 
accurate in space. The initial condition is Q∗ = 0 and P∗ = 0 inside the domain. At time t∗ = 0 , a deformation of 
the cross-sectional area A∗ is prescribed based on the SD-induced deformation of r1 . We assume the outer wall of 
the PVS r2 is stationary. The boundary conditions for pressure is P∗ = 0 at x = 0 and x = LPVS respectively, where 
LPVS is the length of the simulated PVS domain. We have conducted extensive spatial and temporal resolution 
tests to verify our numerical approach (for more details the reader is directed to the supplementary information).

Relationship between arterial lumen radius and extracellular potassium ion concentration
The lumen radius of the arteries ( r1 ) changes as a function of the excess potassium concentration during SD. To 
quantify this change in our model, we have used an empirical relation that relates the change in r1 to [K]e from 
experimentally realistic numerical models of neurovascular coupling35,36. The equation, adapted for our specific 
problem, relates the normalized lumen radius r̄1 and [K]e as

where a = 50 mM, b = 0.18 , c = 3 mM, and the resting value of potassium ion concentration [K]e,rest = 3.86 mM. 
Equation (15) is the primary relationship which couples the SD wave to the fluid flow through the PVSs in our 
model. The first term inside the parenthesis before the multiplication sign on the right hand side of Eq. (15) is the 
dilation response of r̄1 for small values of potassium ion concentrations. The second term inside the parenthesis 
after the multiplication sign is the constriction response for larger values of [K]e . As [K]e increases, r̄1 dilates from 
the base value of 1 to 1.16 for [K]e < 14 mM before constricting with further increase in potassium ion concen-
tration. A plot of r̄1 as a function of [K]e is included in Supplementary Fig. S1 in the supplementary information.

Results
We first plot the spatiotemporal variations of the ionic concentrations and membrane potential as the SD wave 
propagates in the cortex in Fig. 2. Figure 2a shows the variation of potassium ion concentration ( [K]e ) as a func-
tion of the spatial extent of the extracellular space at different instances of time. The initial spike in potassium 
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concentration travels to the right with a velocity of v=4.97 mm/min which we find by tracking the x-location 
of [K]e = 20 mM. We quantify the wavelength of the SD wave by determining the maximum width of the wave 
for [K]e > 4 mM, which yields � = 2.5 mm. It is useful to note that the initial resting value of potassium is 
[K]e = 3.86 mM. Figure 2b shows the variation of the normalized inner radius of the PVS, r̄1 , as a function of x 
at the same instances of time shown in Fig. 2a. Consistent with Eq. (15), we find in Fig. 2a–b, that for [K]e < 14 
mM, there is a small magnitude of vasodilation (almost 20%). However, the arteries undergo vasoconstriction 
for [K]e > 14 mM by about 80%.

Figure 2c shows a space-time plot of membrane potential Em . The typical value of the ionic potential of 
neurons is −70 mV. The neuronal membrane potential increases to −10 mV due to SD. As the wave propagates 
forward, new cells are depolarized, which then revert back to the base state after the wave has passed through. 
This is evident from the space-time plot where the leading portion of the wave drives a substantial depolarization 
(red). The trailing portion of the wave is where the neurons gradually start repolarizing to base state (green and 
yellow). The inverse of the slope of the contours in the space-time plot is equal to the wave velocity v.

Figure 2d shows the space-time plot of extracellular sodium concentration [Na]e . The base state value of 
sodium concentration in the extracellular spaces is 141.6 mM. Spreading depolarization causes a large influx of 
sodium ions into the neurons leading to a decrease in extracellular concentration. This is evident from the figure 
where the leading portion of the wave is immediately followed by a substantial decrease of [Na]e . As the wave 
passes through, the trailing cells gradually regain their base state as the [Na]e is restored.

We next show the coupling of the SD wave with CSF flow in the PVS in Fig. 3, where we have considered a 
PVS segment of length equal to the 2.5 times the wavelength of the SD wave, LPVS = 2.5� = 6 mm. We have 
also considered a baseline arterial radius of r1 = 23 µ m, and a PVS width of δr = 12.63µ m, which match with 
typical values for pial arteries in the murine brain9. Additionally, we have considered a PVS segment which is 
aligned with the direction of the wave propagation (i.e., θ = 0).

In Fig. 3a, we have plotted the dimensional PVS area A as a function of x at three different instances of time 
as the SD wave propagates, using the same convention as Fig. 2a. For coupling the SD with CSF flow, we have 
filtered the radius data to smooth out the sharp peak in the leading edge of the wave (around x ≈ 3 mm for 
the red curve in Fig. 2b). We found that resolving the sharp peak at the leading edge requires extremely fine 
spatial resolutions that make our simulations computationally expensive, which is why we have smoothed out 
that peak. We have conducted sufficient tests to establish that smoothing out the peak does not affect our results 
substantially (a detailed discussion can be found in Section 5 of the supplementary information). Since at lower 
concentrations of [K]e , arteries undergo vasodilation, the PVS area undergoes a small constriction from the 
baseline value of 2.34× 10−3 mm2 to 1.83× 10−3 mm2 or by 27% (for instance, see the red solid curve around 
x ≈ 0.7 mm in Fig. 3a). As the wave passes, the PVS area increases in a spatial region spanning almost the wave-
length of the SD wave, reaching a maximum value of 3.96× 10−3 mm2 , which is an increase by 69.2% from the 
baseline value of PVS area.

In Fig. 3b, we have plotted the dimensional volumetric flow rate Q as a function of x using the same conven-
tion as Fig. 3a. As the wave passes through, the volumetric flow rate increases and CSF flows in the +x direction. 
The increase is in a spatial region spanning almost the wavelength of the SD wave, reaching a maximum value 
of 7.34× 10−3

µl/min . The constriction of area induced by the trailing edge of the SD wave leads to a small 
amount of back flow in the −x direction of magnitude |Q| = 3.23× 10−3

µl/min . Figure 3c shows the variation 

Figure 2.   The variation of ionic concentrations, arterial radius, and membrane potential following spreading 
depolarization. (a) The variation of extracellular potassium ion [K]e (mM) as a function of x at three different 
instances of time, t = 34 s (red, solid curve), 44 s (green, dashed curve), and 54 s (blue, dashed-dotted curve), 
respectively. (b) The variation of normalized inner radius r̄1 as a function of x at the same instances of time as 
(a). (c) Spatiotemporal variation of membrane potential Em (mV) shown using a space-time plot. The color 
contours of Em are shown. (d) Space-time plot showing the spatiotemporal variation of the concentration of 
extracellular sodium ions [Na]e.
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in the dimensional pressure P as the SD wave travels through the PVS segment. In this case, the peak pressure 
in the PVS as the wave passes through is 6.75× 10−3 mmHg.

We next define a few variables which are useful to quantify the dependence of CSF flow on arterial radius, 
PVS width, angle of incidence of the SD wave, and the PVS length. We define 〈Q〉 as the average volumetric 
flow rate, which is calculated by averaging Q along the spatial extent of the PVS, LPVS , and for a period of 
t0 = (LPVS/�+ 1)T , which is the time it takes for the SD wave to enter and completely exit a domain of length 
LPVS . To characterize the variation of pressure, we define �Pmax as the maximum value (during time t0 ) of the 
instantaneous peak pressure difference �P . We calculate �P by subtracting the peak and trough pressure values 
at each instance of time (see Fig. 3c).

The effect of arterial radius and PVS width on CSF flow
We quantify the effect of lumen radius and PVS width on volume flow rate and pressure using the variable Ŵ which 
is the ratio of the area of the PVS ( π(r22 − r21 ) ) to the area of the artery ( πr21 ). This reduces to Ŵ = (r22 − r21)/r

2
1 

or in terms of PVS width and arterial radius,

The brain vasculature consists of vessels of variable radii, PVS width, and length. In all the results that follow, 
we have varied Ŵ in the range of 0.5 ≤ Ŵ ≤ 5 . Any value of Ŵ < 0.5 leads to nonphysical results because the PVS 
width approaches zero/negative values at the constriction induced at the trailing edge of the SD wave. Previous 
studies have estimated an upper bound for the area ratio as Ŵ = 25,9,59; however we have numerically probed 
larger PVS area ratios to gain further insights into the problem.

Figure 4a shows the variation of average nondimensional volume flow rate �Q∗� as a function of Ŵ . The simula-
tions are shown by the red data points where �Q∗� decreases monotonically with Ŵ . The solid line is a almost an 
inverse quadratic power-law curve fit of the form �Q∗� = αQ/Ŵ

ηQ , where αQ = 2.76 and ηQ = 1.9 . The inset in 
the figure shows the same data plotted on a log-log scale. Overall, the fit is excellent. The average dimensional 
volume flow rate can be obtained by multiplying Qscale to the above curve-fit,

Figure 4b shows the variation of average dimensional volumetric flow rate 〈Q〉 as a function of r1 . The data 
points are from the simulations while the black solid line is from the expression in Eq. (17), for different values 
of Ŵ ( Ŵ = 0.5 , 1, and 2, from top to bottom in Fig. 4b). We have varied the arterial lumen radius in the range of 
3 µm ≤ r1 ≤ 23 µm , which covers a range of vasculature radii from pre-capillaries (thinnest) to pial arteries 
(thickest)60–62. It is important to point out however, that PVSs surrounding the capillaries ( r1 < 5.5 µm61) are not 
expected to deform following SD, since capillaries do not possess smooth muscle cells necessary for contraction 
in the presence of excess concentration of potassium ions.

(16)Ŵ(δr , r1) = 2
δr

r1
+

(

δr

r1

)2

.

(17)�Q�(δr , r1) =
αQ

Ŵ1.9
δ2r v.

Figure 3.   The variation of the PVS area, CSF volume flow rate, and pressure following spreading depolarization. 
(a) The variation of the area of the PVS A as a function of x at three instances of time t = 34 s (red, solid curve), 
44 s (green, dashed curve), and 54 s (blue, dashed-dotted curve). (b) The variation of CSF volume flow rate Q as 
a function of x using the same plotting convention as (a). (c) The variation of pressure P as a function of x using 
the same convention as (a–b). The relevant parameters are r1 = 23 µ m, LPVS = 6 mm, θ = 0 , and Ŵ = 1.4.
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Figure 4c shows a colormap of 〈Q〉 in the two-dimensional space spanned by Ŵ and r1 , which is useful for 
quantifying how the intensity of 〈Q〉 varies with Ŵ and r1 . For instance, we find the maximum value of 〈Q〉 at the 
right bottom corner of the colormap, which is for the thickest vessel and smallest PVS area ratio. The colormap 
indicates that for any constant value of r1 , the volume flow rate will increase with decreasing values of Ŵ . This is 
because smaller PVS areas under sudden expansion lead to a large peak pressure difference that pulls in CSF. On 
the other hand, for any constant value of Ŵ , 〈Q〉 increases with r1 . This is because the considerable constriction 
(Fig. 2b) of an artery with a larger lumen will displace a larger volume of CSF. Figure 4d shows the colormap of 
the analytical expression given by Eq. (17), showing excellent resemblance to the simulations.

We next characterize the variation of maximum peak pressure difference in the PVS during SD, �Pmax , as 
a function of Ŵ and r1 , which is shown in Fig. 5. Figure 5a shows the variation of nondimensional maximum 
peak pressure difference �P∗

max as a function of the PVS area ratio. The data points are from simulations while 
the solid line is a curve fit. The nature of the data suggests that the peak pressure difference drops monotoni-
cally with Ŵ . Moreover, the drop is steep for Ŵ < 1 and is more gradual when Ŵ > 1 . This is also evident in the 
log-log plot in the inset of Fig. 5a, where the slope of the data when Ŵ < 1 is steeper than the data when Ŵ > 1 . 
We found that the data fits well to a curve which has two power laws describing the two regimes of the form 
�P∗

max = αP/Ŵ
ηP + βP/Ŵ

ζP , where αP = 1.19 , βP = 0.4 , ηP = 1/2 , and ζP = 6 . The dimensional peak pressure 
difference can be obtained by multiplying the above relationship by Pscale,

Figure 5b shows the variation of the dimensional maximum peak pressure difference �Pmax as a function of 
the arterial radius r1 for Ŵ = 0.5 , 1, and 2, from top to bottom in the figure, respectively. The data points from 
simulations are shown in red and the solid lines are curve fits of the form shown in Eq. (18).

Figure 5c shows a colormap of �Pmax in the space of Ŵ and r1 . The �Pmax data is represented by colors that 
scale logarithmically, with red and blue denoting large and small magnitudes, respectively. The figure shows that 
maximum peak pressure differences are created when both Ŵ and r1 are small (left bottom corner in the figure). 
As explained before, smaller PVS areas create large peak pressure differences upon sudden expansion. On the 
other hand, the pressure scales inversely as the square of the vessel radius ( Pscale ∝ 1/δ2r  ), which is why vessels 
with smaller radius lead to larger pressure differences. Pressure differences reach as high as 94 mmHg in the range 
of Ŵ and r1 that we have explored. However, it is important to note that the lower limit of radius of penetrating 
arterioles reported in rodents is 5.5 µm61. Any vessel with radius lower than this limit can be classified as a pre-
capillary, which lacks smooth muscle cells and therefore is not expected to be affected by SD-induced radius 
alteration. This lower radius limit for vessels affected by SD is indicated by a solid vertical line in Fig. 5b–d. For 
r1 = 5.5 µ m, we find a maximum peak pressure difference of about 24 mmHg for Ŵ = 0.5 . Figure 5d shows a 
colormap of the analytical form shown in Eq. (18) which exhibits excellent agreement with Fig. 5c.

The effect of variable angle of incidence of SD waves on CSF flow
An SD wave can approach a pial or a penetrating artery at different angles. We define θ as the angle a propagating 
SD wave is incident on an artery, such that 0 ≤ θ ≤ π/2 (see Fig. 1). For an SD wave with an angle of incidence 

(18)�Pmax(δr , r1) =
(

αP√
Ŵ

+
βP

Ŵ6

)

νρ�v

δ2r
.

Figure 4.   The variation of the spatiotemporally-averaged volume flow rate of CSF 〈Q〉 as a function of arterial 
lumen radius r1 and the width of the PVS quantified using the PVS area ratio Ŵ (Eq. 16). Other parameters 
are LPVS = 6 mm and θ = 0 . (a) Average nondimensional volume flow rate �Q∗� as a function of Ŵ . The red 
circular data points are from simulations and the black solid line is a curve fit through the data of the form 
�Q∗� = αQ/Ŵ

ηQ , where αQ = 2.76 and ηQ = 1.9 . The inset is the same plot in log-log scale. (b) 〈Q〉 as a function 
of arterial lumen radius r1 . From top to bottom in the figure, the data points are for Ŵ = 0.5 , 1, and 2 (shown 
by the dashed lines in (b)) respectively. The black solid lines are curve-fits through the data using the relation 
Eq. (17). (c) Color-map of average dimensional volumetric flow rate 〈Q〉 from simulations. The dashed lines are 
Ŵ values corresponding to (b). (d) Color-map of 〈Q〉 from the relation Eq. (17). The dashed lines are Ŵ values 
corresponding to the black solid curves in (b).
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θ , the effective wavelength of the wave is �θ = �/ cos θ and the effective velocity of the wave is vθ = v/ cos θ , 
whereas the PVS width and arterial radius stay constant. We can predict the volumetric flow rate and pressure 
variations with θ from the expressions derived in the previous section. From Eqs. (17) and (18) the average 
volumetric flow rate varies with wave velocity and wavelength as �Qθ � ∝ vθ and �Pmax ∝ vθ�θ , since r1 and δr 
do not change when the SD wave is incident at an angle. The average volumetric flow rate generated by an SD 
wave incident at an angle θ to the PVS thus reduces to �Qθ � = �Qθ=0�/ cos θ , where Qθ=0 is the volumetric flow 
rate when θ = 0 . Similarly, the maximum peak pressure difference generated due to an SD wave incident at an 
angle θ to the PVS thus reduces to �Pmax,θ = �Pmax,θ=0/ cos

2 θ , where �Pmax,θ=0 is the maximum peak pres-
sure difference when θ = 0.

The effect of PVS length on CSF flow
We next quantify CSF volume flow rate as a function of the length of the PVS, LPVS . The results discussed so 
far are for a PVS of length LPVS = 2.5� = 6 mm. The brain vasculature consists of vessel segments of variable 
lengths61,62. Here we have explored vessel segments with lengths varying in the range of 0.5 ≤ LPVS ≤ 6 mm. 
Images of mouse cerebral arteries obtained from light sheet microscopy indicate that this range is reasonable (see 
Fig. 1I in Ref.60). Additionally, the length of the middle cerebral artery in rats is around 9 mm69. Even though 
precise measurements of the wavelength of SD based on the potassium ion concentration is difficult to obtain 
experimentally, different numerical models of SD yield a wavelength based on potassium ion concentration of 
around � = O(1) mm23. Additionally, the wavelength of SD based on calcium imaging in experiments is � = O(1) 
mm (Fig. 3 in Ref.8). This implies that SD waves induce fluid flow in both vessels which are shorter and in vessels 
which are longer than the wavelength of an SD wave. Although the wavelength of SD waves can vary between 
numerical models and experiments, here we were interested in understanding the variation of CSF dynamics 
with the ratio of LPVS/� . In order to understand the effect of domain length on CSF flow rate induced by SD, 
we explore the variation of 〈Q〉 with the ratio of domain length to wavelength of the SD wave, LPVS/� in Fig. 6.

Figure 6a shows the variation of average nondimensional volumetric flow rate �Q∗� as a function of the 
domain length to wave length ratio LPVS/� . The data points are from simulations with varying Ŵ values. We find 
that �Q∗� increases monotonically for LPVS < � , reaches a maximum value around LPVS = � and then decreases 
monotonically for LPVS > � . This suggests that an optimum PVS length for maximizing the volumetric flow 
rate is LPVS ≈ �.

Figure 6b shows the colormap of the dimensional average volumetric flow rate 〈Q〉 in the space of Ŵ and 
domain length for a fixed arterial radius of r1 = 23 µ m. The colormap indicates that for any fixed value of domain 
length, 〈Q〉 increases as Ŵ decreases. Additionally, for all values of Ŵ , the average volume flow rate reaches its 
maximum when LPVS = �.

Figure 6c shows the colormap of the dimensional average volumetric flow rate 〈Q〉 in the space of r1 and 
domain length for a fixed PVS area ratio of Ŵ = 1.5 . The colormap indicates that 〈Q〉 decreases with arterial 
lumen radius r1 for any fixed value of domain length. Moreover, the plot also indicates that volume flow rate is 
maximized around LPVS = � for all values of r1.

Figure 5.   The variation of the maximum peak pressure difference in the PVS during SD as a function of 
arterial radius r1 and the width of the PVS quantified using the PVS area ratio Ŵ (Eq. (16)). Other parameters 
are LPVS = 6 mm and θ = 0 . (a) Maximum nondimensional peak pressure difference �P∗

max as a function of Ŵ . 
The red circular data points are from simulations and the black solid line is a curve fit through the data of the 
form �P∗max = αP/Ŵ

ηP + βP/Ŵ
ζP , where αP = 1.19 , βP = 0.4 , ηP = 1/2 , and ζP = 6 . The inset is the same 

plot on a log-log scale. (b) �Pmax as a function of arterial radius r1 . From top to bottom in the figure, the data 
points are for Ŵ = 0.5 , 1, and 2 (shown by the dashed lines in (c)), respectively. The black solid lines are curve 
fits through the data using the relation Eq. (18). (c) Colormap of dimensional pressure �Pmax from simulations. 
The horizontal dashed lines are Ŵ values corresponding to the data in (c). (d) Colormap of dimensional peak 
pressure difference �Pmax from the relation in Eq. (18). The horizontal dashed lines are Ŵ values corresponding 
to the black solid curves in (b). The data in (c) and (d) is represented by colors that scale logarithmically. The 
solid vertical line in (b), (c), and (d) is the lower limit for penetrating arteriole radius, r1 = 5.5 µ m, reported in 
rodents61; only results above this limit are expected to be physiologically relevant.
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Colliding spreading depolarization waves
SD events typically consist of multiple waves propagating in multiple directions. Indeed, collisions of multiple 
SD waves among themselves and with the boundaries have been observed in experiments, that lead to complex 
spatiotemporal dynamics47,49. SD waves are known to annihilate each other upon collision23,49. Here, we are 
interested in exploring the variation of CSF volume flow rate and pressure in a PVS when two SD waves collide.

Figure 7 shows the variations in PVS area, CSF volume flow rate, and pressure when two SD waves collide 
head-on. We simulate these two SD waves propagating in opposite directions, either parallel or anti-parallel to 
the vessel axis. The first wave is the regular SD wave studied so far which propagates in the +x direction and is 
initiated at x = 0 . The second wave is an SD wave that propagates in the −x direction and is initiated at x = LPVS . 
The two waves collide at x = LPVS/2 . For this study we use an arterial diameter of r1 = 23 µ m, a PVS width of 
δr = 12.63 µ m, and an angle of incidence of SD wave equal to θ = 0 , to drive meaningful comparisons with 
Fig. 3. It is important to note that similar to our previous results, we have again smoothed out the peaks at the 
leading edges of the colliding waves due to spatial resolution issues discussed in Section 3 and the supplementary 
information.

Figure 6.   The variation of the CSF volume flow rate with the length of perivascular spaces. (a) Nondimensional 
average volumetric flow rate �Q∗� as a function of domain length LPVS . The data points are from simulations 
with Ŵ = 0.5 (red, circles), Ŵ = 0.7 (green, squares), and Ŵ = 1.1 (blue, diamonds). (b) Colormap of 
dimensional average volume flow rate 〈Q〉 in the space of Ŵ and domain length LPVS for an arterial lumen radius 
of r1 = 23 µ m. (c) Colormap of dimensional average volume flow rate 〈Q〉 in the space of arterial lumen radius r1 
and domain length LPVS . The data corresponds to Ŵ = 1.5.

Figure 7.   The variation of the area of perivascular space (PVS), volumetric flow rate of cerebrospinal fluid and 
pressure during a collision of spreading depolarization waves. The arterial lumen radius is r1 = 23µ m, PVS 
width is δr = 12.63µ m, and the angle of incidence of the SD waves on the PVS is θ = 0 . (a) The variation of 
the area of the PVS, A as a function of x at different instances of time. The curves at different instances of time 
are numbered and colored for ease of visualization as t = 32.6 s (1, red), t = 41.9 s (2, orange), t = 47.6 s (3, 
yellow), t = 55.9 s (4, green), t = 60.6 s (5, blue), and t = 65.2 s (6, black). (b) The variation of volumetric flow 
rate of cerebrospinal fluid Q as a function of x using the same plotting convention as (a). (c) The variation of 
pressure as a function of x using the same convention as (a) and (b).
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Figure 7a shows the variation of PVS area with space at different instances of time as the two SD waves collide. 
The different instances of time are numbered in increasing order with time. The two waves start with similar 
amplitudes as the single-wave case, 3.96× 10−3 mm2 (see curves numbered 1, colored red at t = 32.6 s). The 
waves collide at t = LPVS/(2v) = 36.2 s. Right after the collision, the waves merge to form a large spatial region 
of excess potassium ion concentration which acts on the PVS area shown at t ≈ 41.9 s (numbered 2, orange). 
Immediately after this event, the waves annihilate each other as shown by the area decreasing to the baseline 
value as time progresses (see curves numbered and colored 3, yellow; 4, green; 5, blue; and 6, black).

Figure 7b shows the variation of CSF volume flow rate with space at different instances of time as the two SD 
waves collide. Before the collision, the absolute value of the maximum volumetric flow rate for both the waves 
is 7.34× 10−3

µl/min (see the curve numbered 1, colored red), which is similar to Fig. 3b. However, right after 
the collision when the waves merge, Q becomes larger attaining a maximum value of 1× 10−2

µl/min at time 
t = 41.9 s (see the curve numbered 2, colored orange). Q then decreases gradually with time as the SD waves 
annihilate each other and the PVS area decreases to its base value. It is interesting to point out that for this case, 
a collision of two SD waves lead to an instantaneous Q of magnitude 36% larger right after collision than the 
maximum value of Q driven by a single SD wave.

Figure 7c shows the variation of pressure in a single PVS segment due to the collision of two SD waves. Before 
the collision the peak pressure difference driven by the SD waves is about 7.5× 10−3 mmHg (see the curve 
numbered 1, colored red). Right after the collision when the waves merge, the peak pressure rises considerably 
to a maximum value of 0.06 mmHg (see curve numbered 3, yellow). This is a substantial increase in pressure 
difference, almost 8-fold larger than a single SD wave. In our study, we consider CSF flow in a PVS surrounding 
a single vessel with the source of CSF flow driven solely by PVS. However, in reality, CSF is already in motion 
in the brain due to various other mechanisms such as arterial pulsations9. In such a scenario, this instantane-
ous and localized increase in pressure may propel fluid from the PVS into the surrounding brain parenchyma, 
potentially worsening brain edema.

Conclusions
We have quantified the coupling of spreading depolarization waves with CSF flow in a PVS lining a single artery 
for a range of different parameters including length of the PVS, arterial radius, PVS thickness, and the angle of 
incidence of the SD wave on the PVS. Additionally, we have explored the variation of CSF flow rate and pres-
sure during a collision of two SD waves. Our modeling approach consists of coupling a physiologically realistic 
spreading depolarization wave in 1D with a 1D Navier–Stokes equation describing the variation in pressure and 
volume flow rate of CSF due to changes in the cross-sectional area of the PVS. The constriction and dilation of 
the PVS area is based on an empirical relation tied to excess potassium concentration in the extracellular space 
(Eq. 15)35,36.

We find that an SD wave can lead to substantial CSF flow and pressure gradients in the PVSs of pial and 
penetrating arteries. Our results show the volume flow rate increases with increasing arterial radius and decreas-
ing PVS width (Fig. 4). We derive an analytical expression of average volume flow rate that agrees well with our 
simulations in Eq. (17). We also find that the peak pressure difference increases as PVS width and/or arterial 
radius decrease (Fig. 5). Again, we derive an analytical expression for the maximum peak pressure difference 
through a PVS with arbitrary width and lumen radius in Eq. (18).

We also quantify the dependence of CSF flow on the length of the PVS (Fig. 6). Our results indicate that CSF 
flow is maximized around a PVS length which equals the wavelength of the SD wave ( LPVS = � ) for all values of 
PVS thickness and inner radius. Additionally, we find that the average volumetric flow rate and maximum peak 
pressure difference depend on the angle of incidence θ of the SD wave on the PVS, such that �Qθ � = �Qθ=0�/ cos θ 
and �Pmax,θ = �Pmax,θ=0/ cos

2 θ , where Qθ=0 and �Pθ=0 are volumetric flow rate and peak pressure differences 
when θ = 0.

Lastly, we explore the alteration in PVS area, CSF volume flow rate, and pressure following a collision of 
two SD waves (Fig. 7). We find that SD waves annihilate each other upon collision which agrees well with prior 
studies23,47,49. Right after the collision, our simulations indicate that the CSF volume flow rate increases and that 
SD waves can generate peak pressure differences in the PVSs which are eight-fold larger than the typical pres-
sure differences generated by a solitary SD wave. This excess instantaneous peak pressure difference may drive 
substantial CSF flow from the PVS, into the brain parenchyma.

There are several limitations in this work that are important to highlight. Firstly, we have used an idealized 
boundary conditions for the pressure which is P = 0 at each end of the PVS. In the future, the effect of different 
boundary conditions should be more carefully studied. Secondly, although we have explored the variation in 
CSF flow for a range of PVS thicknesses and vessel radii, we have not considered bifurcations. Bifurcating PVSs 
may induce different CSF flow response locally at the bifurcation due to an SD wave. A possible future direction 
is to couple the SD wave with a network model of CSF flow5,59.

Our model indicates that SD can induce substantial CSF flow. To compare our results with CSF flow measured 
in physiological conditions in the murine brain, we refer to the quantitative measurements reported by Mestre 
et al.9. For a typical PVS segment of radius r1 = 23 µ m, length LPVS = 6 mm, incident SD angle of θ = 0 , and 
area ratio of Ŵ = 1.4 , we obtain an average volume flow rate of �Q� = 1.2× 10−3

µl/min which is comparable to 
the CSF volume flow rate of 2.6× 10−3

µl/min measured in Ref.9. Additionally, our model indicates that there 
is an optimum PVS length (equal to the wavelength of the SD wave), which maximizes the CSF volume flow 
rate following SD. For instance, for the the same parameters outlined above, �Q� ≈ 1.8× 10−3

µl/min when 
LPVS = � . This implies that SD can drive significant CSF flow in the PVS, which may substantially exacerbate 
brain edema following stroke8, cardiac arrest28, and traumatic brain injury29,30. The analytical expressions that 
we have derived will be insightful for predicting CSF volume flow rate and pressure changes in a given PVS 
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following SD. For instance, using our results, we can predict regions of the brain which are more susceptible to 
edema following stroke due to the local orientation of the vasculature. This may, in turn, prove useful in reducing 
and/or preventing the progression of brain edema.

It is important to point out, however, that a complete picture of edema likely necessitates accounting for 
the swelling of neurons due to osmotic pressure gradients created by SD8. One possible future direction is to 
investigate how excess CSF flow in the PVSs, driven in via vasoconstriction following SD, subsequently enters 
the brain parenchyma due to the large osmotic pressure gradients created following SD33. This can be achieved 
by coupling our 1D model to a 2D/3D porous media model of the ECS10 with a spatially and temporally-variable 
extracellular volume fraction ε . The value of ε , which also appears in Eqs. (1–5), could be obtained by modeling 
the osmotic water influx into the cells following SD. Such a model could then be used to explore severity and 
prevention strategies for post-SD edema.

Our modeling approach is very general and can be easily adapted to study other spatiotemporal waves in the 
brain such as slow waves during sleep and functional hyperemia15,16,63. Recently, stimulation of cranial nerves 
(such as the vagus nerve) has been shown to enhance CSF flow41,64. Additionally, electrical stimulation creates 
local ion sinks which potentially may drive CSF flow via a mechanism similar to SD. Our model can help design 
such neural stimulation protocols. For instance, using our model one can predict CSF flow through PVSs lin-
ing vasculature adjacent to the nerve that is stimulated. Lastly, our results form a foundation for investigating 
localized augmentation of CSF flow in the brain by controlling SD, which may prove therapeutically beneficial. 
SD can be initiated in a controlled way through targeted neuromodulation of brain vasculature using externally 
applied electrical fields65. One could leverage this approach to initiate SD in a localized part of the brain with large 
amyloid-β buildup (linked with Alzheimer’s disease), potentially aiding its removal through the SD-associated 
CSF flow enhancement.

Data availibility
All data used in this paper is available on request. The corresponding author S.M. should be contacted for 
requesting the data from this study.
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