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Classification of magnetic order 
from electronic structure by using 
machine learning
Yerin Jang 1, Choong H. Kim 2,3* & Ara Go 1*

Identifying the magnetic state of materials is of great interest in a wide range of applications, 
but direct identification is not always straightforward due to limitations in neutron scattering 
experiments. In this work, we present a machine-learning approach using decision-tree algorithms to 
identify magnetism from the spin-integrated excitation spectrum, such as the density of states. The 
dataset was generated by Hartree–Fock mean-field calculations of candidate antiferromagnetic orders 
on a Wannier Hamiltonian, extracted from first-principle calculations targeting BaOsO

3
 . Our machine 

learning model was trained using various types of spectral data, including local density of states, 
momentum-resolved density of states at high-symmetry points, and the lowest excitation energies 
from the Fermi level. Although the density of states shows good performance for machine learning, 
the broadening method had a significant impact on the model’s performance. We improved the 
model’s performance by designing the excitation energy as a feature for machine learning, resulting 
in excellent classification of antiferromagnetic order, even for test samples generated by different 
methods from the training samples used for machine learning.

Magnetism plays a crucial role in many physical and technological phenomena, ranging from magnetic storage 
devices to superconductivity. Determining the presence of long-range magnetic ordering in materials is there-
fore essential for designing new functional materials with tailored magnetic properties. Neutron scattering is 
a powerful tool for directly determining magnetic order and is functional across a wide range of temperatures 
and pressures. However, neutron scattering experiments typically require access to specialized facilities, such 
as nuclear reactors or spallation sources, which can be costly. Additionally, it mandates a relatively large size 
and high-quality sample. The elements with high neutron absorption cross-sections also hinder clear scattering 
signals.

Despite the availability of direct measurement methods, the limitations mentioned make it challenging to 
identify magnetic order. Therefore, it would be beneficial to have a method for determining magnetic order that 
is more accessible and less expensive, even if it is not as direct as neutron scattering. For instance, specifying 
magnetic order based on the density of states (DOS), which can be accessed by various experimental methods, 
can be a compelling alternative. In principle, magnetic orders is closely connected with the particle–hole excita-
tion spectrum and the DOS displays distinct features of the corresponding order. The challenge is how to extract 
and quantify the correlation effectively.

The recent advancement of machine learning has had a significant impact in uncovering hidden correlations 
in the field of condensed matter physics1–9. This technology has also been applied to the study of magnetism, 
enabling for the prediction of physical quantities without the need for direct measurement or calculations10–23 
or probing orders from the data24–30.

Motivated by the capability of machine learning to uncover complex relationships within numerical data, 
we explore the use of decision tree algorithms for identifying magnetic order from the density of states. We also 
examine an alternative probe through momentum-resolved spectra, as the integration over the momentum space 
in the local density of states may mask crucial differences between various forms of magnetic order.

For the classification of magnetic order, a dataset comprising inputs and their respective magnetic order is 
necessary. We selected BaOsO3 as a target system for our machine learning study. The polycrystalline BaOsO3 
samples show metallic behavior31,32, but its high symmetry allows us to induce various distinct magnetic orders 
by lowering the symmetry. We employ Hartree–Fock (HF) mean-field theory to generate the data sets with 
multiple magnetic order candidates for machine learning. The system is ordered by local Coulomb interaction 
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depending on antiferromagnetic order parameters we set. The resulting DOS, momentum-resolved spectra, and 
antiferromagnetic orders are used to construct the data sets.

This paper is organized as follows. In “Model Hamiltonian”, we describe the model Hamiltonian and Har-
tree–Fock approximation we employed. The data preparation for machine learning and the performance of the 
trained model are discussed in “Machine learning”. “Conclusion” is devoted to conclusion and outlook.

Model Hamiltonian
Figure 1 shows the unit cell and electronic structure of BaOsO3 . The first-principles calculations were performed 
using density functional theory using projector augmented wave potentials within PBE exchange–correlation 
functional as implemented in Vienna Ab initio Simulation Package33,34. The crystal field lifts the degeneracy of 
the d-orbitals in Os atoms, placing the Fermi level in the t2g levels, which are well separated from other bands 
based on first-principles calculations. We used Wannier9035 to construct Maximally-Localized Wannier Func-
tions (MLWF) based tight-binding Hamiltonians for the t2g bands.

The model Hamiltoinan is represented as H = H0 +Hint , where the bilinear part is given by

where c†ilσ(cilσ ) creates (annihilates) an electron with spin σ in orbital l at site i. The hopping amplitude tll
′

ij  is 
adapted from the Wannier Hamiltonian. The hopping parameters have ideal cubic symmetry, allowing us to 
induce various magnetic orders for this machine learning study. In a 2× 2× 2 supercell, three types of antifer-
romagnetic (AF) orders were considered: A-, C-, and G-type, as illustrated in Fig. 2. In Fig. 2, we display the 
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Figure 1.   (a) Atomic structure of BaOsO3 . (b) First Brillouin zone with the path for band energies and 
projected density of states (PDOS) for t 2g subshells. In (b), the three t 2g orbitals have identical density of states 
due to the cubic symmetry of BaOsO3 . The dotted line denotes Fermi level at N = 4.
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Figure 2.   Schematic view and band energies with periodicity of (a) A-, (b) C- and (c) G-type antiferromagnetic 
order in a 2× 2× 2 supercell. The corresponding reduced Brillouin zones are represented as cyan-colored 
polyhedra. The number of bands is double that shown in Fig. 1 due to the display in the first Brillouin zone of 
the original lattice, ignoring the unit cell doubling for AF ordering. The Fermi level at N = 4 is indicated by the 
dotted line.
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three magnetic structures and their associated noninteracting band energies in the first Brillouin zone of the 
original lattice, which has been modified to reflect the periodicity when the respective antiferromagnetic order 
is stabilized.

The two-body interaction part is represented as,

where nilσ ≡ c†ilσ cilσ is a number operator, U is the on-site intra-orbital Coulomb interaction and J is the Hund’s 
coupling. We assume the rotational invariance, setting inter-orbital interaction terms, U ′ = U − 2J for two differ-
ent spins and U ′′ = U − 3J for the same spins. In order to stabilize an AF order, we introduce the Hartree–Fock 
approximation, which allows us to handle the many-body problem in Hint by using the following mean-field 
ansatz. The precise wave vectors are defined as

where nl(ml ) is an electron occupancy (staggered magnetization) of orbital l, rj is the position vector of site j, qα 
is the wave vector corresponding an AF type α=A, C, and G. To be precise, qA = (π , 0, 0) , qC = (π ,π , 0) and 
qG = (π ,π ,π) . Note that the Kronecker deltas force any nonlocal, interorbital, and interspin terms to be zero 
in this calculation, but introducing additional off-diagonal order parameters does not alter the applicability of 
this machine learning study.

We perform the self-consistent calculation with the HF ansatz Eq. (3) for the three AF types and obtain the 
phase diagrams as shown in Fig. 3. In general, the stronger interaction leads to larger staggered magnetization, 
but metal-insulator transition exhibits different behavior depending on the number of electrons per site N and 
the AF ordering. The G-type order is metallic in a broad range of parameter space except the half-filled ( N = 3 ) 
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Figure 3.   Hartree–Fock phase diagrams with A-, C- and G-type antiferromagnetic ordering are shown for 
(a) J/U = 0.0 and (b) J/U = 0.15 . The horizontal axis is the number of electrons per site and the vertical axis 
is the local Coulomb interaction U. The black bars indicate an insulating phase, while the color represents the 
staggered magnetization.
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case. This is due to the symmetry constraint of the AF order ( qG = (π ,π ,π) ), which requires the orbital occu-
pancies of the three t 2g orbitals to be the same. To open a gap, the number of electrons per unit cell must be an 
integer, and this symmetry constraint requires it to be a multiple of three. Therefore, the only possible case for 
an insulator is half-filling, as confirmed by HF calculations.

The A- and C-type antiferromagnetic orders have fewer restrictions compared to the G-type, requiring only 
two out of three orbital occupancies to be equal. The different combinations of the 2+ 1 occupancy splitting can 
result in different final solutions for a Hartree–Fock calculation. To account for the possibility of converging to 
metastable states instead of the ground state, multiple independent Hartree–Fock iterations are performed with 
various initial conditions and the solution with the lowest energy is selected to construct the phase diagrams.

To increase diversity in the machine learning samples, we have included data with nonzero values of J/U. 
The Hund’s coupling has two opposing effects on the metal-insulator transition in transition metal oxides36. At 
half-filling, it reduces the critical value of U, whereas for electron fillings other than half-filling, it increases the 
critical U. This is because the maximum total spin induced by the Hund’s coupling is much larger at half-filling, 
making gap formation easier. This unique behavior makes the half-filled case special, indicating that it may be 
challenging to obtain accurate predictions for this case unless a sufficient number of samples for the half-filling 
are included in the training set.

Machine learning
Data preparation.  We created the dataset for our machine learning study from the Hartree–Fock results 
discussed in the previous section. We obtained three phase diagrams for each of the three antiferromagnetic 
types, with J/U values of 0.0, 0.1, and 0.2. For each phase diagram we collected 9× 59 data points, where U is 
varied from 0 to 8 with increments of 1 and N ranges from 0.1 to 5.9 with a step of 0.1. This resulted in a total 
of 3× 3× 9× 59 = 4779 samples. The data generation took approximately 3 h using a single CPU (Intel Xeon 
Platinum 8360Y with 2.40 GHz). Still, this time could be reduced to a fraction using parallel production with 
multiple CPUs without sacrificing performance.

The antiferromagnetic order in HF calculations is determined by the selected HF ansatz which assumes that 
symmetry breaking occurs and is quantified by non-zero staggered magnetizations ( ml ). When U = 0 , the ml 
does not contribute to the Hamiltonian and the self-consistent solution would result in ml = 0, which is equivalent 
to the original Hamiltonian without magnetic order. Labeling such cases as antiferromagnetic data could nega-
tively impact the training process. Additionally, even if ml is not zero, extremely small values of ml only result in 
minimal changes to the Hamiltonian, which can confuse the machine learning model. To improve the efficiency 
of the model, we included only those samples in the dataset where ml is greater than 0.1.

As this study aims to identify magnetic orders based on spin-insensitive measurements, the input data for 
the machine learning should not reflect the modified periodicity in the magnetic orders, even though the spin-
integrated data contains crucial information to distinguish the AF orders. We restore the original periodicity by 
applying band unfolding transformations37 as illustrated in Fig. 4a.

In Hartree–Fock, a single particle approach, the energy axis is represented by bands as delta functions, and 
broadening is required to calculate the non-divergent density of states. Despite the broadening, each peak retains 
the same width, as the weights of the delta functions are unity, unless two band energies are in close proximity. 
This is not the case post the band unfolding process. The local density of states (LDOS) in Fig. 4b remains unaf-
fected by the unfolding as the weights are integrated over the Brillouin zone. However, the momentum-resolved 
density of states ( ρk ) in Fig. 4c shows a noticeable variation from its folded counterpart. The energy-dependent 
variations in the weights of the peaks are related to the antiferromagnetic order.

The selection of optimal features is crucial because redundant features can introduce noise or bias during 
the learning process, potentially leading to poor generalization or overfitting. We test three different features 
in this work as described below. We first evaluate two sets of features, one is the LDOS and the other is ρk on 
the high-symmetry points ( k = Ŵ , X, M, and R). The LDOS is calculated by integrating the ρk over the entire 
Brillouin zone, as follows.

where η is a Lorentzian broadening factor and n is the band index. The calculated DOS is a continuous function 
of energy. However, in order to utilize it as input features for machine learning, the DOS should be expressed as 
a set of numerical values. We discretize the DOS into Nbin points,

where I = 1, 2, . . . ,Nbin are frequency indices, ωI = −8+ Iδω , and δω = 16/Nbin . The original data is generated 
using 1024 grid points over the energy range [− 8:8], and the features for the given Nbin are extracted by integrat-
ing the cubic-interpolated LDOS. The ρk at each high-symmetry point is also extracted in a similar manner, but 
the number of bins is reduced by 1/4 to ensure a fair comparison between the two sets of features, LDOS and ρk.

We also design the third features based on the peak structure of the ρk feature, which will be introduced later. 
An additional advantage of the third feature is its reduced dependence on the broadening scheme. Broadening 
can arise from various sources, including instrumental resolution, thermal fluctuations, and excitations with 
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finite lifetimes. Given the inability to control all sources of broadening in experiments, it becomes necessary 
to incorporate broadening effects accurately through theoretical approaches. The third feature is motivated by 
various test evaluation in “Results of decision tree algorithms”. The features we utilized for the machine learning 
and testing procedure, performed in “Results of decision tree algorithms”, are summarized in Fig. 5.

Results of decision tree algorithms.  We used decision tree ensemble algorithms, including Random 
Forest, a bagging method available in scikit-learn38, as well as boosting methods such as XGBoost39, LightGBM40 
and CatBoost41. We divided the samples into a training and a test set in a 7:3 ratio and trained the model using 
Random Forest, XGBoost, LightGBM, and CatBoost algorithms. Figure 6 shows the confusion matrices and the 
precision–recall curves. An element of the confusion matrix is defined as Cαβ = (number of samples predicted as 
β order while the true label is α in the test set). The diagonal parts of the matrices represent cases that the trained 
model correctly predicts the AF labels for the test set. The off-diagonal parts indicate the number of incorrect 
answers, where the column represents which labels were incorrectly assigned.

The precision–recall curve illustrates how the balance between precision and recall changes with varying 
thresholds. Precision (P) represents the ratio of true positives ( Tp ) to the total number of cases predicted as posi-
tive; P =

Tp
Tp+Fp

 , and recall (R) denotes the proportion of Tp to the total number of actual positive samples; 
R =

Tp
Tp+Fn

 . Fp and Fn stand for false positives and false negatives, respectively. F1 score is the harmonic mean of 
precision and recall; F1 = 2 P×R

P+R . High precision and recall scores indicate good classification results, and the 
curve tends to be closer to the upper-right corner.

The performance of the models is generally good, however, errors are more frequent in cases where the filling 
is half or the value of ml is small. The half-filled case is different from the others with non-zero Hund’s coupling, 
making it difficult to accurately predict. Small values of ml result in small mean-field corrections, not providing 
sufficient information to distinguish different AF orders. Because this method captures the pattern of features, 
detecting weak magnetism using this method is a fundamental challenge. Adding more half-filled samples to 
the training set, however, can effectively mitigate errors for gapped cases.

The accuracy of the LDOS model is relatively lower compared to the ρk model as expected, because the 
integration process during the calculation of the LDOS results in the loss of momentum-resolved information. 
Despite both models having the same number of features, the performance difference suggests that feature selec-
tion is key to the success of this machine learning problem.

The method has an advantage in that it enables feature design optimization for specific applications. For 
example, angle-resolved photoemission spectroscopy (ARPES) measures hole excitation spectra, so a model that 
focuses on energy ranges with E < EF is necessary. Testing the model trained within the restricted energy range 
would provide valuable information for analyzing the spectra. Additionally, actual experiments can be influenced 
by various environmental noises, such as thermal broadening, which cannot be replicated precisely in theoretical 
calculations. Thus, validating the model with different types of noise is crucial for practical applications.

Figure 7 illustrates two spectra produced from the same HF solution but with different broadening methods. 
A constant broadening is applied to Fig. 7a, whereas the broadening in Fig. 7b increases as the energy decreases 
below the Fermi level as η(|E − EF |) = 0.1+ 0.4|E − EF |/8 . For validation purpose, the training set consists 
of DOS generated using constant broadening, while the test set is constructed using the linearly increasing 
broadening as the energy lowers below the Fermi level. The machine learning faces a more difficult situation as 
the test set, which is distinct from the training set, is now broadened using a different pattern from the training 
set. Note that we only use the ρk at high-symmetry points for machine learning, even though the spectra are 
visualized over a path connecting high-symmetry points.

We present the resulting confusion matrices in Fig. 8. Figures  6e–h and 8a–d are similar in terms of accuracy, 
indicating that limiting the energy range does not negatively impact the performance of the machine learning 
models. However, we observe a substantial drop in accuracy in Fig. 8e–h. This decline suggests that the broaden-
ing strength significantly affects the decision trees’ performance, as the trees make decisions based on numerical 
values that become smaller when the broadening strength η increases.

(c)(b)(a)

Figure 4.   (a) Unfolded band structure to restore the original periodicity for G-type order with N = 3 and 
U = 2 . Unlike the nonmagnetic bands whose weights are identical over all momenta, the unfolded bands 
are weighted ranging from 0 to 1. The color and the size of circle indicate the weights. (b) Corresponding 
local density of states ρLDOS(ω) and (c) k-projected density of states ρk(ω) at high symmetry points with a 
broadening factor η = 0.1.
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Suppose a trained decision tree checks whether a given sample has an LDOS value above a certain threshold 
in a specific energy range at the root node. If the LDOS is larger than the threshold, it returns True; otherwise, 
it returns False. When the test set is broadened by a larger broadening factor, it reduces the height of the peak 
in LDOS. Consequently, the root node sends the sample to the False branch, and the decision tree misclassifies 
the sample.

To investigate the impact of different broadening applied to the training and test set, we perform a systematic 
cross-test of ηtrain and ηtest . We divide the HF solutions into training and test sets, and apply ηtrain and ηtest to each 
set respectively. The resulting accuracy is presented in Fig. 9a,c,e. As expected, the best performance is achieved 
when ηtrain = ηtest . When ηtrain and ηtest are not equal, the incorrect predictions increase, especially when ηtrain 
is smaller than ηtest . This is because the decision trees choose a branch to follow at every nodes, based on the 
comparison between a certain feature and a threshold value. A larger ηtrain reduces these threshold values, mak-
ing samples with smaller ηtest more likely to be classified accurately than vice versa.

Based on the results of the cross-broadening tests, which suggest that the key aspect of the model is whether 
a feature (i.e. an averaged DOS within a bin) exceeds a threshold value, we devised a compact set of features. 
Despite the variation of the height and width of a peak on the energy axis as η changes with Lorentzian broad-
ening in Eq. (4), the energy at which the weight reaches the local maximum remains unchanged. This energy, 
originating from the corresponding band energy ( εn(k) in Eq. (4)), represents the lowest excitation from the 
ground state and is measured by the distance from the Fermi level to the peak position.

Figure 10 shows the extraction of features from the original ρk features. For each high-symmetry point k , 
the closest peak energy to the Fermi level for both electron and hole excitations. We use the energy difference as 
features, where a positive value represents an electron excitation and a negative value represents a hole excitation. 
If a peak of ρk is located on the Fermi level, the corresponding features are set to zeroes. This feature selection 
significantly reduces the number of features, from 256 to 8, which is 32 times smaller than the original size, 
enabling more efficient training.

The utilization of the lowest excitation energy as a feature contributes to not only efficient training but also 
accurate results, as demonstrated in Fig. 9b,d,f. The problematic η-dependence of the cross-η test vanishes, high-
lighting the significance of feature selection for classification based on spectral information. The test set encom-
passes both metallic and insulating solutions, with the model tending to produce more incorrect predictions 
for metallic samples. However, tests performed solely on insulating cases show over 95% accuracy, encouraging 
potential application for classifying antiferromagnetic insulators by this method.
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Figure 5.   Machine learning and data preparation roadmap. The combination of the features we used for 
training and testing is summarized with the resulting figures shown in this paper.
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Conclusion
In this study, we examined the application of a machine learning model for classifying antiferromagnetic (AF) 
orders in a model Hamiltonian targeting BaOsO3 . The dataset was created using Hartree–Fock calculations 

Figure 6.   Confusion matrices and precision–recall curves of the machine learning models (Random Forest, 
XGBoost, LightGBM and CatBoost) trained on the (a–d) ρ

LDOS
 features and (e–h) ρk at high symmetry points 

features with a broadening factor η = 0.2 . The color scale of the matrices represents accuracy, calculated by 
dividing each element of the matrix by the sum of its respective row, with the value written in small text below 
each element. In the precision–recall curves, the values for the three AF orders A, C, and G are displayed as a 
red solid line, a green dashed line, and a blue dash-dotted line, respectively, while their micro-average is denoted 
by a bold black line. The dotted line indicates the iso-F1 curve, which contains all points in the precision–recall 
space with the same F1 scores.
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with selected AF orders in a 2× 2× 2 supercell. Converged solutions were used to generate the local density of 
states (LDOS) and the momentum-resolved density of states ( ρk ). We trained the model using various features, 
including LDOS, ρk , and the lowest excitations, and evaluated its ability to identify AF orders in test samples. 
While both LDOS and ρk were designed to have the same number of features, the latter demonstrated superior 
performance, highlighting the importance of feature selection. The ρk features performed well when test sam-
ples had comparable broadening levels, but different broadening methods weakened the model’s performance. 
In contrast, the lowest excitations, with only 8 features per sample, surpassed these limitations and exhibited 
excellent performance across most samples.

We considered only three types of orders in this paper, but in principle, the approach can be extended to 
include more diverse types of orders. The Hartree–Fock calculation is computationally very cheap and enables 
us to have a flexible design of candidate orders followed by prompt testing for desired samples. This method 
will be useful for materials where conventional methods to identify magnetic orders are not applicable, such as 
two-dimensional materials, non-collinear orders.

The training based on mean-field level calculations may encounter challenge in application to real materials, 
in case the correlation effects lead the electronic structure to beyond the mean-field correction. Therefore, to 
ensure a successful application, it would be beneficial to validate the performance for test samples generated 

(b) (a) 

Figure 7.   Spectral weights of G-type order at N = 4 and U = 6 with (a) a constant broadening factor η = 0.2 
and (b) linearly increasing broadening as the energy lowers, η(|E − EF |) = 0.1+ 0.4|E − EF |/8.

Figure 8.   Confusion matrix of machine learning classifier trained on ρk at the high-symmetry points with 
ηtrain = 0.2 . The results of Random Forest, XGBoost, LightGBM, and CatBoost classifiers are shown when the 
test set is broadened using (a–d) constant broadening ( ηtest = 0.2 ) and (e–h) energy-dependent broadening 
( ηtest = 0.1+ 0.4|E − EF |/8 ). The color scale of the matrices represents accuracy, calculated by dividing each 
element of the matrix by the sum of its respective row, with the value written in small text below each element.
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Figure 9.   Accuracies of random forest model trained by data with (a,b) ηtrain = 0.1 , (c,d) ηtrain = 0.2 , and (e,f) 
ηtrain = 0.3 , as a function the broadening factor applied to the test set. The features used for the model are either 
ρk (displayed in (a,c,e)) or the lowest excitation energies (displayed in (b,d,f)).

Figure 10.   An illustration of the feature section for the lowest excitations of the ρk at high-symmetry points, for 
G-type order with N = 3 and U = 2 . The red and blue arrows indicate the selected values as the lowest electron 
and hole excitation features, respectively. The length of bars represents the ρk feature at each bin, extracted the 
HF solution shown in Fig. 4. The vertical axes are ρk feature indices ranged from k 01 to k 64 for each k . From 
the original ρk features, 256 values (4 × 64 numbers per k ), we choose eight features (two per k , one positive and 
one negative) located above and below the Fermi level, marked by dotted gray line.
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by methods incorporate beyond mean-field fluctuations. For instance, identifying the AF order in dynamical 
mean-field calculations would be a reasonable test as a bridge toward applications to real materials.
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