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Viral kinetics, stability 
and sensitivity analysis 
of the within‑host COVID‑19 model
Islam M. Elbaz 1,2*, H. El‑Metwally 3 & M. A. Sohaly 3

This paper delves into the investigation of the COVID‑19 dynamics within a host using the Target‑
Latent‑Infected‑Virus (TLIV) model, presenting a fresh approach compared to previous studies. Our 
model introduces a latent class and explores sensitivity analysis, aspects that have received limited 
attention in prior research. A significant contribution of this study is the analysis of both local and 
global stability of equilibrium states, subject to specific sufficient conditions based on the basic 
reproduction number R

0
 . By examining these stability properties, we aim to gain insights into the 

factors underlying variations observed in the findings of different studies. Additionally, we identify 
the death rate of infected cells as the parameter most susceptible to influence in our model. To 
minimize its impact and facilitate recovery, it is crucial to implement appropriate medical therapies 
and consume immune‑boosting foods. Some computer simulations are carried out to strengthen the 
theoretical results.

The novel coronavirus SARS-CoV-2, emerged as a global health crisis in history that has been uncovered by 
the year 2020. In Wuhan, Hubei Province, China in December 2019, coronavirus (COVID-19) disease was first 
 reported1. The virus affected more than two hundred countries and killed millions of people according to the 
World Health Organization. The infection can be controlled by physical social distancing, self-isolation at home, 
face masks, hand-washing, and surface  cleaning2,3. Several countries have proposed strict social distancing and 
lock-down regulations to stop the spread of the virus. It is primarily transmitted through respiratory droplets 
when an infected individual coughs, sneezes, talks, or breathes. The virus can also spread by touching con-
taminated surfaces and then touching the face. Common symptoms of COVID-19 include fever, cough, fatigue, 
shortness of breath, and loss of taste or smell, although asymptomatic cases are also  prevalent4.

The disease severity ranges from mild to severe, with some cases progressing to acute respiratory distress 
syndrome and multi-organ failure, particularly in vulnerable populations such as the elderly and those with 
underlying health  conditions5,6. Rapid and widespread transmission led to the declaration of a pandemic by the 
World Health Organization (WHO) in March 2020, prompting the implementation of various control meas-
ures like social distancing, mask-wearing, and vaccination  campaigns7. Efforts to combat the disease have also 
focused on testing, contact tracing, and the development and distribution of vaccines. Understanding the basic 
details of COVID-19 is crucial for effectively managing and mitigating its impact on public health systems and 
communities worldwide.

Mathematical epidemiological models play a crucial role in understanding the dynamics of infectious dis-
eases, providing valuable insights into how these diseases spread within populations. These models capture the 
rapid fluctuations in the number of infected individuals, serving as the fundamental principle of mathematical 
modeling. A wide range of mathematical models that describe various types of diseases can be found in the 
 literature8–14. Numerous studies with many intriguing mathematical models that have examined the dynamic 
behavior of SARS-CoV-2 can be found  in2,15,16.

Within the human body, biological mathematical models offer valuable insights into the complex dynamics of 
infectious diseases at an individual level. These models integrate principles from both biology and mathematics 
to depict the interplay between pathogens, the immune system, and host  cells17. By considering factors such as 
viral replication, dynamics of immune responses, and the effects of treatments, these models facilitate a deeper 
comprehension of disease progression and contribute to informed therapeutic  interventions18.

Few research papers could predict the dynamics of COVID-19 disease accurately and according to World 
Health Organization, dozens of vaccine candidates are in clinical research, and about ten vaccines are authorized 
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for public  use19,20. Clinically, there is no effective treatment that can remove the virus from the human body, 
however, the available treatments help like Ebola, Influenza, and SARS-CoV-1.

It is known that several works have focused on forecasting the number of infected individuals in 
 populations21,22. Forecasting for COVID-19 is exceedingly difficult and has failed in many papers because of the 
type of mathematical models, missing data, and/or the random behavior of this  virus23. We think it is time to 
study the dynamics of COVID-19 within-host instead of between the human populations.

Within‑host COVID‑19 model. Based on current data, it is estimated that around 80% of COVID-19 
cases are classified as mild to moderate, and individuals in these cases typically experience a full recovery from 
the  infection24. Previous research has indicated that the humoral response, involving the production of antibod-
ies, to SARS-CoV-2 infection is commonly observed in individuals who have been infected. The level of antibod-
ies, specifically the anti-SARS-CoV-2 IgG titers, has been strongly linked to the extent of virus-specific CD4+ 
and CD8+ T cell responses in the  bloodstream25. However, it should be noted that most samples of convalescent 
plasma, collected from individuals recovering from COVID-19, did not exhibit high levels of neutralizing activ-
ity. Furthermore, only a small number of individuals who were analyzed showed the presence of rare antibodies 
that possess potent antiviral activity against specific viral  proteins26.

The angiotensin-converting enzyme 2 (ACE2) receptors present on the surface epithelial cells are bound by 
the SARS-CoV-2 virus. These cells, which express ACE2, are considered susceptible to viral infection and are 
referred to as target cells in mathematical models. The distribution of these target cells varies notably across 
different sections of the respiratory system, with the lungs having the highest density, followed by the nose, and 
finally, the tissues of the trachea/bronchi. Consequently, COVID-19 patients often experience pneumonia, mak-
ing it a relatively frequent  occurrence27,28.

Our proposed model in this paper comprises four variable quantities, the susceptible targeted cells, T(t), latent 
cells, L(t), infected cells, I(t), and free virus particles, V(t). The model assumes that there is a constant of regen-
eration d1T(0) susceptible targeted cells. These cells are infected by free virus particles with a bilinear incidence 
rate βT(t)V(t) and these infected cells produce with a rate p free virus particles. Parameters d1, d2, d3, and d4 
are the death rate of susceptible target cells, latent cells, infected cells, and free virus particles, respectively. Latent 
cells on average span 1/k units of time in L class and then join the infected class of cells. It should be noted that 
d1 is a natural death rate or natural clearance rate while d2, d3 and d4 are a combination of the natural clearance 
rate and the role of the immune system in the elimination of these cells.

Our work presents a novel mathematical model that incorporates latent class analysis to describe the dynamics 
of COVID-19 within the host. Unlike previous studies that focused solely on estimating the basic reproductive 
 number29, or analyzing the stability of equilibrium  states30, our model delves deeper into the impact of various 
parameters on the system. By conducting sensitivity analysis, we have identified the death rate of infected cells 
as the most sensitive parameter in our model. This finding sheds light on the critical role this parameter plays in 
shaping the dynamics of COVID-19 infection and highlights its potential implications for disease progression 
and management strategies.

Authors  in29,30 have studied the viral kinetics of COVID-19 without latent class of cells, we consider the 
mathematical within-host model in the form

The originality of our model lies in the inclusion of a new class, namely the latent cells, to capture the dynamics 
of COVID-19 within the human body. Within this class, individuals or cells have been exposed to the disease 
but have not yet reached the infectious state. The duration of this latent period, determined by the delay param-
eter, signifies the time it takes for individuals or cells to become infectious. This approach is applicable to more 
general fractional systems,  see31.

In the traditional model, only the susceptible, infected, and viral load compartments were considered. How-
ever, by introducing the latent class, we aim to provide a more realistic representation of the disease progres-
sion. This addition accounts for the incubation period during which the virus replicates within the body before 
symptoms become apparent. By incorporating the latent class, our model captures an essential aspect of the 
disease phenomenon, enhancing its accuracy and predictive capabilities. It can serve as a valuable tool for study-
ing the effectiveness of interventions and informing public health strategies aimed at controlling the spread of 
COVID-19.

Here are the model assumptions: 

1. In COVID-19, the respiratory system’s cell population remains constant due to the slow turnover of respira-
tory epithelial cells.

2. d1T(0) is assumed to be a constant of regeneration of cells.
3. Once cells recover from the infection and become immune, the model assumes that they remain immune 

indefinitely.
4. Cell variations in susceptibility are not considered.
5. During the latent period, cells are considered non-infectious or have a low probability of transmitting the 

disease to other cells.

(1)

Ṫ(t) = d1T(0)− βT(t)V(t)− d1T(t),

L̇(t) = βT(t)V(t)− (d2 + k)L(t),

İ(t) = kL(t)− d3I(t),

V̇(t) = pI(t)− d4V(t).
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6. There are no major changes in the characteristics or behavior of cells within the latent class during the mod-
eling period.

Graph of the system. By performing parameter estimation in a similar way  to29,30, using the Monte Carlo 
Markov Chain (MCMC) method, and in light of the chest radiograph score data, the estimated values of parame-
ters are T(0) = 50, β = 1, d1 = 0.2, d2 = 2, d3 = 1.1, d4 = 3, k = 1.7 and p = 0.05 . In this scenario, the graph 
of our model (1) can be sketched in Fig. 1 in 30 days.

Basic properties of the system like the nonnegativity and uniform boundedness of the solution are shown in 
the next section. The equilibrium states of the model and the basic reproduction number are provided in Sec-
tion “Equilibrium states and the basic reproduction number”. Local and global stability of the equilibrium states 
E0 and E∗ with some computer simulations are shown in Section “Extinction and persistence”. Viral kinetics 
of the COVID-19 model using sensitivity and elasticity analysis of R0 towards the effective parameters in the 
model are shown in Section “Sensitivity and elasticity of R0”. Conclusions and some future works are devoted to 
Section “Conclusion and further directions.

Nonnegativity and uniform boundedness of the solutions of (1)
In this section, we study the nonnegativity and the uniform boundedness of the solutions of the within-host 
model (1) with respect to the initial conditions

The next theorem proving nonnegativity and uniform boundedness in the mathematical model of cell popula-
tion dynamics ensures valid interpretations and prevents unrealistic predictions, supporting reliable analysis 
and decision-making in cell biology and related fields.

Theorem 2.1 Assume that the initial values (2), then all solutions of (1) are nonnegative and uniformly bounded.

Proof The first equation of model (1) is

(2)(T(0), L(0), I(0),V(0)) ∈ R
4
+.

Ṫ(t) = d1T(0)− (βV(t)+ d1)T(t),
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Figure 1.  Graph of the cell populations shows the extinction of infected cells and virus-free particles over time 
with phase planes that show the behavior of each compartment with the targeted cells.
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Using the integrating factor

we have

i.e.,

Similarly,

Regarding the boundedness of the solutions of (1), the total population of cells N(t) = T(t))+ L(t)+ I(t) , 
where

Assume that d = min{d1, d2, d3} , then

and

Consequently, all solutions of (1) with respect to (2) are bounded in a biologically feasible region

Clearly, the number of free virus particles is also bounded at any time t.   �

Equilibrium states and the basic reproduction number
Equilibrium states of this model satisfy the following algebraic equations

Clearly, we have two equilibrium states at most, the infection-free equilibrium state 
E0 = (T0, L0, I0,V0) = (T(0), 0, 0, 0) , and a positive endemic equilibrium state

Using the method of Next Generation Matrix (NGM) used  by32, we calculate the basic reproduction number 
R0 . The three compartments of infection are

where

e
∫ t
0 (βV(s)+d1)ds ,

Ṫ(t)e
∫ t
0 βV(s)ds+d1t ≥ d1T(0)e

∫ t
0 βV(s)ds+d1t ,

T(t)e
∫ t
0 βV(s)ds+d1t ≥ T(0)

∫ t

0
d1T(0)e

∫ τ
0 βV(s)ds+d1tdτ ,

T(t) ≥ T(0)e−
∫ t
0 βV(s)ds+d1t + e−

∫ t
0 βV(s)ds+d1t

∫ τ

0
d1T(0)e

∫ τ
0 βV(s)ds+d1tdτ > 0.

L(t) = L(0)e−
∫ t
0 (d2+k)ds + e−

∫ t
0 (d2+k)ds

∫ t

0
βT(τ )V(τ )e

∫ τ
0 (d2+k)dsdτ > 0,

I(t) = I(0)e−
∫ t
0 d3ds + e−

∫ t
0 d3ds

∫ t

0
kL(τ )e

∫ τ
0 d3dsdτ > 0,

V(t) = V(0)e−
∫ t
0 d4ds + e−

∫ t
0 d4ds

∫ t

0
pI(τ )e

∫ τ
0 d4dsdτ > 0.

Ṅ(t) = d1T(0)− d1T(t)− d2L(t)− d3I(t)

≤ d1T(0)−min{d1, d2, d3}(T(t)+ L(t)+ I(t)).

Ṅ(t) ≤ d1T(0)− dN(t),

lim sup
t→∞

N(t) =
d1T(0)

d
.

Ŵ =

{

(T(t), L(t), I(t)) ∈ R
3
+

∣
∣
∣T(t)+ L(t)+ I(t) ≤

d1T(0)

d

}

.

d1T(0) = βTV − d1T , βTV = (d2 + k)L(t),

kL(t) = d3I(t), pI(t) = d4V(t).

E∗ = (T∗, L∗, I∗,V∗)

=

(
(d2 + k)d3d4

βkp
,
d1T(0)

d2 + k
−

d1d3d4

βkp
,

d1kT(0)

d3(d2 + k)
−

d3d4

βp
,

d1T(0)kp

d3d4(d2 + k)
−

d1

β

)

.

d

dt

[
L(t)
I(t)
V(t)

]

=

[
βT(t)V(t)− (d2 + k)L(t)

kL(t)− d3I(t)
pI(t)− d4V(t)

]

= F− V,
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The Jacobians of F and V are

Then

The basic reproduction number R0 is defined as the spectral radius of F0V
−1
0  , consequently

Then for R0 > 1 , there is a unique positive equilibrium that can be written again in the form

Extinction and persistence
In this section, we shall perform the stability analysis, in terms of the basic reproduction number R0 , we study the 
extinction and the persistence of the disease inside the human body by focusing on the local and global stability 
of E0 and E∗ . Evaluating the Jacobian matrix J at the equilibrium states, the LaSalle-invariance principle and the 
Routh-Hurwitz  criterion33 are used for investigating the local stability of these equilibrium states. Introducing 
appropriate Lyapunov functions around the equilibrium states is very helpful in investigating the global stability 
of these  states34.

Extinction. Theorem 4.1   If R0 < 1 , the infection-free equilibrium E0 is locally asymptotically stable. And if 
R0 ≤ 1 , then E0 is globally asymptotically stable.

Proof The Jacobian matrix for the right hand side of (1) is

Evaluating J at the infection-free equilibrium E0

Let �i be the eigenvalues of this matrix for i = 1, 2, 3, 4 such that

If R0 < 1,
∏4

i=1 �i > 0 , then the infection-free equilibrium state is locally asymptotically stable. For global 
stability of E0 , choose the Lyapunov function in the form

F =

[
βT(t)V(t)

0
0

]

, V =

[
(d2 + k)L(t)

−kL(t)+ d3I(t)
−pI(t)+ d4V(t)

]

.

F0 =

[
0 0 βT0

0 0 0
0 0 0

]

=

[
0 0 βT(0)
0 0 0
0 0 0

]

,

V0 =

[
d2 + k 0 βT0

−k d3 0
0 − p d4

]

.

F0V
−1
0 =





βT(0)kp
(d2+k)d3d4

βT(0)p
d3d4

βT(0)
d4

0 0 0
0 0 0



.

R0 =
βT(0)kp

(d2 + k)d3d4
.

E∗ =

(
1

R0
,
d1d3d4

βkp
(R0 − 1),

d1d4

βp
(R0 − 1),

d1

β
(R0 − 1)

)

.

J(T , L, I ,V) =






−βV − d1 0 0 − βT
βV − (d + k) 0 βT
0 k − d3 0
0 0 p − d4




.

J
�
�
�
E0

=






−d1 0 0 − βT0

0 − (d2 + k) 0 βT0

0 k − d3 0
0 0 p − d4




.

4∑

i=1

�i = Tr

(

J
∣
∣
∣
E0

)

= −(d1 + d2 + k + d3 + d4) < 0

4∏

i=1

�i = det

(

J
∣
∣
∣
E0

)

= −d1
(
βT0kp− d3d4(d2 + k)

)

= −d1d3d4(d2 + k)

(
βT0kp

d3d4(d2 + k)
− 1

)

= −d1d3d4(d2 + k)(R0 − 1).
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where

Then dVdt < 0 if R0 < 1, and dVdt = 0 if only V = 0 or R0 = 1 . According to the LaSalle-invariance  principle34, 
the equilibrium state E0 is globally asymptotically stable.   �

The theorem’s implications are significant for disease control strategies, as it offers insights into conditions favor-
ing infection eradication and emphasizes the significance of minimizing the basic reproduction number ( R0 ) to 
prevent outbreaks and ensure the well-being of the cell population.

The Euler method scheme is utilized for simulating the within-host COVID-19  model35. This numerical 
approach partitions time into small intervals and estimates variable changes within each interval. Through the 
iterative application of this scheme, the model can simulate disease progression over time, considering param-
eters such as viral replication, immune response, and cell death rates. Other numerical schemes have also been 
employed to simulate COVID-19 and other various disease models within-host and between  individuals36–38.

Us i n g  t h e  i n i t i a l  v a l u e s  (T(0), L(0), I(0),V(0)) = (50, 15, 15, 3) a n d  t h e  p a r a m e t e r s 
β = 2, d1 = 0.9, d2 = 1.8, d3 = 3.1, d4 = 4.5, k = 0.07 and p = 0.9 , we can see the convergence of the trajec-
tory of the solution to the infection-free equilibrium state. Infected cells, Latent cells, and free virus particles 
will be eliminated from the human body for R0 < 1 as shown in Fig. 2a. The relations between target cells and 

V =
pk

d3(d2 + k)
L+

p

d3
I + V

dV

dt
=

pk

d3(d2 + k)
(βTV − d2L− kL)+

pkL

d3
− d4V

= d4V

(
pkβT

d3d4(d2 + k)
− 1

)

−
d2pkL

d3(d2 + k)
−

pk2L

d3(d2 + k)
+

pkL

d3

≤ d4V(R0 − 1)+
pkL

d3

(

1−
d2

d2 + k
−

k

d2 + k

)

= d4V(R0 − 1)
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(a) SARS-CoV-2 extinction within-host.
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Figure 2.  (a) Stable disease-free equilibrium implies the extinction of the within-host COVID-19 with 
R0 = 0.2415 < 1 . The behavior of the cell classes with the targeted class is shown in graphs (b–d).
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the other compartments are shown by the phase planes in Fig. 2b–d. The disease dies out within the human 
body for R0 < 1.

Persistence. Theorem 4.2   The positive endemic equilibrium E∗ is locally asymptotically stable and globally 
asymptotically stable if R0 > 1.

Proof Evaluating J at the positive endemic equilibrium implies

The characteristic equation is

Now, for R0 > 1,

and

Then according to the Routh–Hurwitz criterion, the positive endemic equilibrium E∗ is locally asymptotically 
stable. Regarding the global stability of E∗ , choose the Lyapunov function

Then

Using the equations

implies

J
�
�
�
E∗

=






−βV∗ − d1 0 0 − βT∗

βV∗ − (d2 + k) 0 βT∗

0 k − d3 0
0 0 p − d4




.

�
4 +

(
βV∗ + k + d1 + d2 + d3 + d4

)

︸ ︷︷ ︸
a1

�
3

+
(
(βV∗ + k + d1 + d2 + d4)d3 + (βV∗ + k + d1 + d2)d4 + (d2 + k)(βV∗ + d1)

)

︸ ︷︷ ︸
a2

�
2

+
(
((βV∗ + d1 + d2 + k)d4 + (d2 + k)(βV∗ + d1))d3 + (d2 + k)(βV∗ + d1)− kβpT∗

)

︸ ︷︷ ︸
a3

�

+ (d2 + k)(βV∗ + d1)d3d4 − βd1kpT
∗

︸ ︷︷ ︸
a4

= 0.

�1 = |a1| = βV∗ + k + d1 + d2 + d3 + d4 = β

(
d1

β
(R0 − 1)+ k + d1 + d2 + d3 + d4

)

> 0.

�2 =

∣
∣
∣
∣

a1 a3
a0 a2

∣
∣
∣
∣
= a1a2 − a3 > 0,

�3 =

∣
∣
∣
∣
∣

a1 a3 a5
a0 a2 a4
0 a1 a3

∣
∣
∣
∣
∣
= a3�2 − a21a4 > 0.

V = T − T∗ − T∗ ln
T

T∗
+ L− L∗ − L∗ ln

L

L∗
+ I − I∗ − I∗ ln

I

I∗
+ V − V∗ − V∗ ln

V

V∗
.

V̇ = d1T(0)− d1T − d2L− d3I − d4V + pI − d1T(0)
T∗

T
+ βT∗V + d1T

∗ − β
L∗TV

L
+ d2L

∗

+ kL∗ − k
I∗L

I
− d3I

∗ − p
V∗I

V
+ d4V

∗

d1T(0) = d1T
∗ + βT∗V∗,

d4 =
pI∗

V∗
,

k =
d3I

∗

L∗
,

β =
d2L

∗

T∗V∗
+

kL∗

T∗V∗
,
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As the arithmetic mean is greater than or equal to the geometric mean, then V̇ < 0 and V̇ = 0 only if 
S = S∗, L = L∗, I = I∗ and V = V∗ . Then according to the LaSalle-invariance principle, the positive endemic 
equilibrium E∗ is globally asymptotically stable.   �

Using the same initial values of the numerical simulation in Fig.  2a, and the parameters 
β = 1.3, d1 = 0.6, d2 = 0.8, d3 = 2.1, d4 = 4.5, k = p = 0.9 , the disease persists within the human body. Figu-
re3a shows the convergence of the trajectory of the solution towards the positive equilibrium state E∗ for R0 > 1 
with some phase portraits that show the behavior of the target cells with each compartment in Fig.3b–d.

Sensitivity and elasticity of R
0

The basic reproduction number R0 quantifies the average number of secondary cases generated by the intro-
duction of a disease into a susceptible population. It is a vital measure for assessing the potential for disease 
 transmission39. Many papers have used optimal control strategies and sensitivity analysis of many disease models 
including COVID-19,  see40,41. In our study, we examine the impact of the basic reproduction number R0 on the 
dynamics of infected cells and free virus particles over a span of six weeks, as illustrated in Fig. 4. During this 
time interval, we observe that higher values of R0 lead to a greater peak in the number of infected cells and free 
virus particles. This suggests that a higher R0 is associated with a more pronounced spread of the infection within 
the host. Furthermore, in Fig. 5, we present surface plots that depict the relationship between R0 and the vari-
ous parameters incorporated into our model. These plots allow us to visualize how changes in these parameters 

V̇ = 2d1T
∗ − d1T − d1L− d3

(T∗)2

T
+ pI −

pT∗V

V∗
+ pI∗ − p

V∗I

V
+ kL∗ − k

I∗L

I
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Figure 3.  (a) Stable endemic equilibrium implies the persistence of the within-host COVID-19 with 
R0 = 3.2773 > 1 . The behavior of the cell classes with the targeted class is shown in graphs (b–d).
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influence the value of R0 , providing insights into the factors that impact the transmissibility and progression of 
the infection.

In order to gain insights into the factors that have the most significant impact on the number of infected cells 
and free virus particles, we conducted a sensitivity analysis. This analysis allowed us to determine the sensitivity 
of the basic reproduction number R0 with respect to a specific parameter ω by calculating the derivative ∂R0

∂ω
 . By 

plotting the dynamics of infected cells I(t) and free virus particles V(t) for various values of the infection rate β , 
we observed an interesting trend: when the infection rate was low, the number of infected cells and free virus 
particles exhibited a slower rate of decrease. Additionally, we found that the sensitivity of parameter d2 and the 
latent period 1k have a similar impact to β , which is demonstrated in Fig. 6.
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Figure 4.  Impact of R0 towards the number of infected cells and free virus particles. Extinction of the disease 
within-host occurs for smaller values of the basic reproduction number R0.

Figure 5.  Variation of R0 as a measure of the disease’s potential for spread within a population. The 3D plots 
show the impact of the parameters o the system on R0.
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The death rate of free virus particles d4 and the rate of free virus production p exhibit similar effects on the 
number of infected cells I(t) and free virus particles V(t), particularly impacting the abundance of free virus 
particles. However, the parameter that demonstrates the highest sensitivity to both I(t) and V(t) is the death rate 
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Figure 6.  The sensitivity analysis of within-host model parameters involves examining the impact of 
variations in parameters on the model’s output. By systematically altering these parameters, we can assess their 
influence on key model outputs such as viral load, disease progression, and the effectiveness of interventions or 
treatments.
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of infected cells d3 . As we mentioned previously, this death rate represents a combination of natural clearance 
mechanisms and the role of the immune system. Therefore, it becomes essential to consider treatments that can 
reduce the infection within the host. Notably, increasing the death rate of infected cells leads to a decrease in the 
number of free virus particles, as depicted in Fig. 6. To further examine the influence of d3 , the most sensitive 
parameter, we plot the variation of R0 with different values of other parameters in Fig. 7. This analysis provides 
valuable insights into the interplay between key parameters and their impact on the spread of the infection 
within the host.

Another control measure is the elasticity index which measures the change of R0 with respect to the change 
in the parameters. The elasticity of R0 with respect to the parameter ω can be calculated by ϒω

R0
=

∂R0

∂ω
×

ω

R0
 . 

Consequently,

The elasticity of R0 exhibits positive correlations with respect to the parameters β , p and k. Decreasing these 
parameters leads to a reduction in the value of R0 , indicating that the infection can be effectively eliminated from 
the human body. Conversely, negative correlations are observed with parameters d2 and d3 . This implies that 
increasing the death rates of latent cells and infected cells, possibly through treatments such as plasma therapy, 
monoclonal antibodies, and immune system-boosting foods, can contribute to the eradication of the disease. 
These correlation relationships, highlighting the impact of parameter changes on R0 , are visualized in Fig. 8. 
Understanding these relationships is crucial for designing effective interventions and treatment strategies to 
combat the infection.

There is a positive correlation between R0 and T(0) which means a larger initial number of target cells T(0) in 
a limited cell population can lead to a higher probability of infection and potentially faster virus spread.

Based on this discussion, there are additional real applications to the considered problem. Firstly, in Treat-
ment Optimization, the sensitivity analysis identifying the death rate of infected cells as a critical parameter can 
inform the development of enhanced treatment strategies, leading to improved patient outcomes. Secondly, 
in Vaccine Development, the incorporation of latent class analysis into our model enables its use in assessing 
and refining COVID-19 vaccine candidates, aiding in the development and evaluation of effective vaccination 
strategies. Lastly, in Risk Assessment and Management, our model’s sensitivity analysis offers valuable insights 
into the relative significance of various parameters in shaping disease outcomes. This information can assist in 
conducting risk assessments, informing mitigation strategies, and efficiently allocating healthcare resources.

Conclusion and further directions
In this study, we present a novel formulation of a within-host COVID-19 mathematical model. Unlike previous 
studies, our model takes into account the latent class, providing a new perspective on disease dynamics. We 
examine the nonnegativity and ultimate boundedness of the analytical solution to gain insights into the behavior 
of the system. Furthermore, we investigate the extinction and persistence of the disease within the human body 
by analyzing the local and global stability of equilibrium states, specifically E0 and E∗ . To support our findings, we 
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Figure 7.  The basic reproductive number R0 with respect to d3 for different values of other parameters. 
Identifying d3 as the most sensitive parameter highlights its significant influence on the within-host dynamics. 
This knowledge aids in prioritizing interventions targeting infected cells, potentially leading to improved patient 
outcomes by modulating d3.
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perform numerical simulations and validate the results through the examination of sensitivity and elasticity of R0 
concerning the model’s parameters. Our results reveal that the disease dies out when R0 < 1 without treatment, 
whereas it persists when R0 > 1 . Of notable importance is the death rate of infected cells, which emerges as a 
highly sensitive parameter that can be enhanced through appropriate medical therapy and a diet that supports 
the immune system. Additionally, we propose that our research can be expanded to incorporate discrete and 
distributed delays, further enhancing our understanding of the disease dynamics. Moreover, fractional models 
offer a more accurate representation of complex and heterogeneous systems. They capture the intricate nature of 
disease transmission, taking into account factors such as varying susceptibility, heterogeneous mixing patterns, 
and non-integer order  derivatives42,43.
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