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Molecular basis of GDF15 induction 
and suppression by drugs 
in cardiomyocytes and cancer cells 
toward precision medicine
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GDF15 has recently emerged as a key driver of the development of various disease conditions 
including cancer cachexia. Not only the tumor itself but also adverse effects of chemotherapy have 
been reported to contribute to increased GDF15. Although regulation of GDF15 transcription by BET 
domain has recently been reported, the molecular mechanisms of GDF15 gene regulation by drugs 
are still unknown, leaving uncertainty about the safe and effective therapeutic strategies targeting 
GDF15. We screened various cardiotoxic drugs and BET inhibitors for their effects on GDF15 regulation 
in human cardiomyocytes and cancer cell lines and analyzed in‑house and public gene signature 
databases. We found that DNA damaging drugs induce GDF15 in cardiomyocytes more strongly than 
drugs with other modes of action. In cancer cells, GDF15 induction varied depending on drug‑ and 
cell type‑specific gene signatures including mutations in PI3KCA, TP53, BRAF and MUC16. GDF15 
suppression by BET inhibition is particularly effective in cancer cells with low activity of the PI3K/Akt 
axis and high extracellular concentrations of pantothenate. Our findings provide insights that the risk 
for GDF15 overexpression and concomitant cachexia can be reduced by a personalized selection of 
anticancer drugs and patients for precision medicine.

GDF15 has been found to be a key driver of cachexia syndrome, significant body weight loss that often occurs 
in chronic diseases including cancer or in case of drug-induced organ  injury1,2. It is a cytokine that mediates the 
body response to various stress factors such as oxidative stress, tissue injury and drug toxicity. When binding to 
GDNF-family receptor α-like (GFRAL), localized mainly in the brain stem, it mediates anorexia, alterations in 
overall metabolism and energy homeostasis and activation of other endocrine stress responses. In health, these 
mechanisms alert the body to exo- and endogenous toxins by mitigating the exposure and preventing further 
organ damage through metabolic reprogramming. In disease such as cancer, GDF15 levels can be elevated up 
to 100-fold, thereby causing pathological  conditions3,4.

Various types of cancer cells have been reported to heavily secret GDF15 or other factors that induce GDF15 
expression in host  cells5,6. Drug-induced cardiotoxicity is a serious problem often associated with  chemotherapy7. 
Anticancer drugs used in chemotherapy can cause cellular stress and death leading to drastic GDF15 induction 
in both cancer and host  cells8–10 (Fig. 1A). Cardiomyocytes are one of the host cells known to overexpress GDF15 
when exposed to certain cardiotoxic anticancer drugs as well as in heart  failure11–13. Under these circumstances, 
elevated GDF15 levels were found in humans as well as in cardiomyocyte cell culture  models14–16.

Both pro- and anti-tumorigenic pathways were found to directly or indirectly induce GDF15 transcription. 
 EGR117,  p5318, SMAD2/319,  NR5A220, C/EBPβ21 and C/EBP homologous protein (CHOP)22 were reported to 
bind directly to the GDF15 promoter and function as transcription activators. GSK3β23,  NFkB24 and p38  MAPK22 
were identified to indirectly activate GDF15 expression through transcription activators (Fig. 1B).

The latest research suggests that gene expression of GDF15 also depends on bromodomain and extratermi-
nal (BET) proteins, more particularly bromodomain-containing protein 4 (BRD4)20. BET proteins have been 
known to regulate the expression of many genes involved in inflammation, such as cytokines and transcription 
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factors, including the GDF15-activating factors NR5A2 and  NFkB20,25. By recruiting a variety of coactivators 
and transcription factors to the transcription site, BET proteins can serve as nucleator for the formation of 
super-enhancers26. In addition, the BET protein BRD4 was reported to increase topoisomerase activity to release 
accumulated DNA supercoiling ahead of pausing RNA  polymerases27. These mechanisms might enable the 
rapid and strong induction of cytokine expression that is needed for a fast reaction and adaptation to the faced 
stressor. However, in disease states such as cancer or heart failure, BET-dependent stress responses contribute to 
exaggerated expression of cytokines or genes involved in  pathogenesis28,29. So far ~30 clinical studies have been 
conducted with more than 10 BET inhibitors mostly for diverse  cancers30.

Cachexia has been considered as an epiphenomenal and unpreventable complication with severe cancer pro-
gressions and anticancer treatment. Patients who suffer from cachexia are less responsive to anticancer treatment 
because of their overall  weakness31. Currently, treatment of cachexia is predominantly focused on non-specific 
approaches such as to increase appetite or muscle  mass3. However, the identified causal relations of cachexia with 
 chemotherapy2,32, tumor-secreted  factors6, specific molecular pathways and key  molecules1 suggest that cachexia 
is instead a discrete and targetable condition. Specific antibodies targeting GDF15 or its receptor GFRAL have 
been developed recently to be tested in clinical  studies33. These approaches could alleviate the direct effects of 
GDF15 but do not tackle the underlying transcriptional dysregulation. Although GDF15 overexpression has been 
identified as an etiological key driver of cachexia, little efforts have been made yet to characterize the molecular 
basis of GDF15 induction and suppression by drugs. A tool to predict whether a patient will react to a particular 
anticancer drug with GDF15 overexpression could help reduce risks for chemotherapy-driven development of 
cachexia. Furthermore, the prevention of GDF15 transcription, e.g., by epigenetic intervention, has the potential 
to effectively counteract cachexia. This study was therefore designed to understand the molecular basis of drug-
specific and cell type-specific regulation of GDF15 gene induction and suppression by screening cardiotoxic 
drugs in human cardiomyocytes and analyzing in-house and public gene signatures database of cancer cell lines.

Results
Cardiotoxic drugs induce GDF15 expression in hiPSC‑CMs depending on the drug’s mode of 
action. As many anticancer drugs are cardiotoxic and GDF15 is a well-known biomarker for heart failure, 
we employed a human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) model to investigate 
the effect of drug-induced cardiotoxicity on GDF15 expression in host tissues. To adequately replicate cardiotox-
icity using this model, we selected drugs whose cardiotoxic effect in vivo is based on cytotoxicity to cardiomyo-
cytes. Cell viability screening of 105 known cardiotoxic drugs identified 20 drugs which exerted direct cytotoxic-
ity (Fig. 2A; Supplementary Figure S1). Media concentrations of GDF15 initially measured for the sublethal and 
highest concentrations (10 µM) of the drugs showed more than threefold increase exclusively by DNA damaging 
drugs such as anthracyclines (doxorubicin and idarubicin), amsacrine, camptothecin and etoposide (Fig. 2B). 
An ad-hoc analysis for a broader range of concentrations confirmed the drug-specific GDF15 induction. Within 
the range of high drug concentrations, reduced GDF15 production caused by general cytotoxicity highly varied 
(Fig. 2C). In contrast, drugs targeting ion channels, kinases or tubulin polymerization did not induce GDF15 
more than 1.6-fold despite their cytotoxic effect on hiPSC-CMs (Fig. 2B,C).

Taken together, we found that induction of GDF15 in hiPSC-CMs by cardio- and cytotoxic drugs varies 
greatly depending on the drug’s mode of action.

GDF15 induction by anticancer drugs in cancer cells correlates with the drug’s mode of action 
and cell type‑specific mutation status/expression patterns. To get further insights into how chem-
otherapy influences GDF15 expression in cancer, we analyzed public gene expression data of NCI-60 cancer 
cell lines treated with 15 different anticancer  drugs34. We used linear regression to quantify the cell line’s drug-
specific responsiveness regarding GDF15 induction and categorized the cell lines as “responsive” or “resistant”. 
Comparing the number of responsive cell lines per drug, we found the ratio of responsive cell lines ranged from 
4% for sirolimus to 71% for sorafenib (Supplementary Figure S2). Drugs with DNA damaging properties tended 
to induce GDF15 more strongly than drugs with other modes of action. However, drugs with a similar mode 
of action did not necessarily lead to similar GDF15 fold-changes (Supplementary Figure S2) and the extent of 
GDF15 induction by a drug also varied between individual NCI-60 cell lines (Supplementary Figure S3).

Figure 1.  Contributors to increased GDF15 expression in cancer patients. (A) Cancer and host cells as sources 
of increased GDF15 expression. (B) Reported molecular pathways upstream of GDF15 induction.
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For a more differentiated view, we generated a Pearson correlation coefficient matrix by calculating pairwise 
15-factorial correlation coefficients of the 60 cell lines. By performing a hierarchical clustering on that matrix, we 
identified four major cell line clusters with every cluster containing cell lines of multiple tissue types (Fig. 3A).

Figure 2.  Effect of cardiotoxic drugs on hiPSC-CMs viability and GDF15 secretion and modes of action of 
applied drugs. (A) hiPSC-CMs viability after 48 h treatment with 20 cardiotoxic drugs. (B) Fold-change of 
GDF15 expression upon 48 h treatment with 20 cardiotoxic drugs and their reported modes of action. GDF15 
expression upon treatment with 10 µM, sublethal drug concentrations and maximal GDF15 induction (from 
concentration series depicted in (C)). Mean fold-change of 4 biological replicates with a 95% confidence 
interval were normalized by DMSO-only control. (C) Drug-induced GDF15 expression for different drug 
concentrations. Fold-change of GDF15 protein concentration upon 48 h treatment with ten cardiotoxic drugs 
(marked with * in A and B). As the GDF15 concentrations induced by 1 µM idarubicin and 1 µM daunorubicin 
exceeded the upper limit of quantification, the maximum measurable concentration was used.
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Comparing the relative amount of responsive cell lines per identified cluster, we found that all cell lines of clus-
ter A were responsive to sorafenib, all of cluster B to bortezomib and all of cluster D to azacytidine. Cluster C was 
most responsive to doxorubicin with 63.6% of its cell lines being responsive (Fig. 3B; Supplementary Figure S4).

Analyzing global genome- and transcriptome data, we tried to find potential explanations for why the four cell 
line clusters reacted differently to the 15 applied anticancer drugs regarding GDF15 induction. We searched for 
the most significant differences in expression, mutation and activity of genes that are involved in known GDF15 
induction pathways. Additionally, we quantified the correlation of GDF15 and BRD4 fold-change upon treat-
ment. We found that each NCI-60 cell line cluster has distinguishing characteristics that differentiate it from the 
other clusters (Supplementary Table S1). Cluster C contained only 40.4% cell lines with mutated TP53, whereas 
90.9% of the other NCI-60 cell lines showed mutations of that gene. In cluster D, 66.7% of cell lines had muta-
tions in PIK3CB and BRAF genes. Cluster A had the lowest basal GDF15 expression and the lowest correlation 
of GDF15 and BRD4 fold-change upon treatment. Cluster B had the highest correlation with BRD4 induction 
and Cluster C the highest basal expression of GDF15.

We used the identified differences in expression of single genes and gene signatures to deduce basal signal-
ing activities in the clusters. Using the QIAGEN Ingenuity Pathway Analysis (IPA), we generated a network 
comprising key proteins involved in known GDF15 inducing pathways and added reported direct and indirect 
interactions. We complemented the resulting network with the identified characteristic expression and activity 
patterns of the four cell line clusters described above. Based on the software-included interactions, we predicted 
the cluster-specific resulting activities of different GDF15 induction pathways (Fig. 3C).

The identified differences in mutations and gene expressions between cell line clusters indicated that cell-
line-specific parameters could correlate with the individual extent of GDF15 induction by certain drugs. By dif-
ferential analysis and statistical testing of gene expression data from individual cell lines with remarkable GDF15 
induction behaviour, we identified additional potentially correlating genes. Together with the previously found 
cluster-typical expression patterns (Supplementary Table S1), we compiled a list comprised of 79 members whose 
expression level or mutational status can be expected to correlate with drug-specific GDF15 induction (Supple-
mentary Table S2). Using Pearson correlation coefficients and statistical testing, we squared these cell-line-specific 
molecular factors with the GDF15 fold-changes for each of the 60 cell lines and all 15 tested drugs. The analysis 
identified 22 significantly correlating molecular factors for six of the 15 drugs among the 1185 tested possibili-
ties. We found sets of molecular factors for bortezomib, gemcitabine, geldanamycin, cisplatin, doxorubicin and 
sorafenib that correlated significantly with GDF15 induction in NCI-60 (Fig. 4A). They comprise correlating 
tendencies in expression of single genes and proteins, gene signatures, hallmark gene sets as well as correlating 
occurrence of amino acid mutations, which can serve as potential predictors for GDF15 induction upon treat-
ment. Strong GDF15 induction upon bortezomib and sorafenib treatment correlated positively with, inter alia, 
ER-α protein expression, activity of late estrogen response and mutations in PIK3CA. Cell lines with mutated 
TP53, low NIBR p53 scores (a gene signature that indicates p53 pathway activity) and high protein expression 
of p38 MAPK were less prone to GDF15 overexpression upon doxorubicin treatment. Similarly, cell lines with 
a low NIBR p53 score, BDNF expression and TGREP2 scores (a gene signature that indicates DR5 dependency) 
induced less GDF15 upon gemcitabine treatment. Mutations in BRAF correlated negatively with the cell line’s 
tendency for GDF15 induction upon geldanamycin and sorafenib treatment. We also found that cell lines with 
mutated PIK3CA were more likely to show an increased GDF15 expression across different drug treatments, 
whereas mutations in TP53, BRAF and MUC16 generally accompanied reduced GDF15 induction (Fig. 4B).

To summarize, our results revealed that anticancer drugs differentially induce GDF15 expression in cancer 
cell lines depending on the drug and the cell line’s mutational and gene expression profile.

GDF15 induction upon anticancer drugs is frequently accompanied by BRD4 induction in can‑
cer cells. It has recently been reported that basal GDF15 expression depends on BRD4 in pancreatic and mel-
anoma cancer cell  lines20,35. However, it remains unknown if transcription of GDF15 relies on BRD4 throughout 
different cancer cell types. To address that, we searched for correlations of GDF15 and BRD4 linear regression 
slopes upon treatment in NCI-60 cancer cell lines. When squaring the 15 drug-specific slopes of the 60 cell lines, 
we found a positive correlation (Pearson correlation coefficient > 0.4) of GDF15 with BRD4 induction in 50.0% 
and a negative correlation (Pearson correlation coefficient <  − 0.4) in 18.3% of NCI-60 cell lines. Among the dif-
ferent tissue types 75% of renal and 83% of CNS cancer cell lines showed a positive correlation of GDF15 and 
BRD4 induction. In a comparison of GDF15 and BRD4 induction between all GDF15 inducing drugs, we found 
a significant positive correlation for lapatinib, erlotinib and sorafenib (all of which are kinase inhibitors) and no 
significant correlation for other GDF15 inducing drugs.

BET Inhibition suppresses GDF15 overexpression in a defined subset of cancer cell lines and 
in hiPSC‑CMs. GDF15 overexpression can be both chemotherapy- and cancer-driven. Various cancer cell 
types were reported to overexpress GDF15, thereby exacerbating the development of  cachexia5. Whilst a person-
alized selection of chemotherapeutic agents has the potential to mitigate chemotherapy-driven GDF15 overex-
pression in cancer cells, it leaves basal overexpression of GDF15 unaffected. Through the data analysis described 
above, we found a correlation between BRD4 and GDF15 expression in 50% of NCI-60, indicating that GDF15 
expression might depend on BRD4 in those cell lines. To test this further, we analyzed our own gene expression 
data of 21 lung and colorectal cancer cell lines treated with the BET inhibitor BI  89499926. It turned out that 
in 9 of the 21 treated cell lines, GDF15 expression was significantly reduced through BET inhibition (Fig. 5A). 
Additionally, we analyzed fold-changes of GDF11 which is well known for its rejuvenating effect but also associ-
ated with cachexia, partially through upregulation of  GDF1519. Interestingly, we found that GDF11 expression 
was increased by BET inhibition in 19 cell lines with GDF11 and GDF15 fold-changes being inversely correlated 
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Figure 3.  NCI-60 cell line clustering. (A) Hierarchically clustered correlation matrix of GDF15 gene expression 
levels by NCI-60 cell lines upon 15 drug treatments. Pearson correlation coefficients were calculated evaluating 
linear regression slope of GDF15 expression within the first 24 h of drug treatment. Clustering of cell lines 
was performed using Weighted Pair Group Method with Arithmetic Mean (WPGMA) algorithm based on 
Pearson correlation coefficients. Four cell line clusters were identified. Tissue types of cell lines are color coded. 
(B) Drug-specific fraction of responsive NCI-60 cell lines in each identified cell line cluster for 15 anticancer 
drugs. Responsiveness was assumed when linear regression slope of GDF15 expression within 24 h of drug 
treatment was > 0.02 and R-squared > 0.5. (C) Predicted basally activated or inhibited pathways for the cell line 
cluster based on identified differences in gene expression.
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(Pearson correlation coefficient − 0.67). The more GDF15 expression was reduced, the more GDF11 expression 
tended to get increased upon BET inhibition in the respective cell lines (Fig. 5A).

Host cells are known to contribute to elevated GDF15 levels in cachexia patients when exposed to drug 
 toxicity36. Many anticancer drugs are cardiotoxic and cardiomyocytes are known to express GDF15 particu-
larly strongly in response to drug toxicity, both in vitro and in vivo10,11,15. Hence, it would be important to 
reduce GDF15 expression not only in cancer cells but also in cardiomyocytes that overexpress GDF15 because 
of drug toxicity. We tested the BET inhibitors JQ1, I-BET762, PFI-1, I-BET151, CPI203, OTX015, BI 894999 
and the structurally closely related BI 894987 in doxorubicin-treated hiPSC-CMs for their influence on drug-
induced GDF15 expression. hiPSC-CMs reacted on doxorubicin treatment with up to sevenfold increased GDF15 

Figure 4.  Identified gene signatures that correlate with GDF15 induction upon treatment. (A) Drug-specific 
gene signatures. Cell lines in x and respective correlating molecular factors in y. (B) Mutations significantly 
correlating with GDF15 induction upon treatment. 95% confidence interval, t-test, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001.
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expression on RNA level. However, when treated with BET inhibitor OTX015 or BI 894999 subsequently, GDF15 
overexpression was suppressed (Fig. 5B). To confirm that the suppressed GDF15 expression is not due to general 
cytotoxicity of the drugs, we measured LDH released into the media to find no increase by the BET inhibitors 
(Supplementary Figure S5). Similarly, treatment with each of the BET inhibitors JQ1, I-BET762, PFI-1, I-BET151, 
CPI203, OTX015 and BI 894987 suppressed doxorubicin-induced GDF15 overexpression (Supplementary Fig-
ure S6A and S6B; Fig. 5C). We plotted GDF15 fold-changes against the respective reported half maximal inhibi-
tory concentrations  (IC50) of each BET inhibitor for BRD2, BRD3 and BRD4, whenever available. GDF15 fold-
change thereby meant the ratio of GDF15 expression induced by doxorubicin only and doxorubicin combined 
with BET inhibitor normalized to cell viability. The strongest negative relation was observed between  IC50(BRD4) 
and GDF15 fold-change (nonlinear regression, R-squared = 0.82, Fig. 5C). The higher the inhibitory effect against 
BRD4 was, the less GDF15 induction through doxorubicin treatment was observed.

Figure 5.  GDF15 gene suppression by BET inhibitors. Effect of BET inhibition on basal GDF15 and GDF11 
expression in 21 cancer cell lines and on doxorubicin-induced GDF15 overexpression in hiPSC-CMs. (A) 
Treatment of cancer cell lines with the BET Inhibitor BI 894999 (Supplementary Table S3). Fold-change of 
relative gene expression. Normalized gene expression analysis performed using RNA sequencing and qPCR, 
95% confidence interval. (B) Fold-change of GDF15 gene expression in hiPSC-CMs after successive treatment 
with doxorubicin and BET inhibitors. Normalized to non-treated control. Box plot of quartiles, median, 95% 
confidence interval, standard one-sided t-test. (C) IC50 values for BRD2, BRD3 and BRD4 against fold-change 
of GDF15 expression in hiPSC-CMs upon treatment with 300 nM of each of seven BET inhibitors. Nonlinear 
regression.
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We searched for specific molecular factors that may help predict whether cancer cells reduce GDF15 expres-
sion upon BET inhibition and serve as biomarkers for patient selection. Therefore, we categorized the tested 
lung and colon cancer cell lines in two groups depending on GDF15 reduction and GDF11 induction upon BET 
inhibition and explored differences in protein expression, gene dependency, drug sensitivity and metabolites 
(Fig. 6). Cell lines that reduced GDF15 and increased GDF11 expression when treated with BI 894999 had sig-
nificantly higher p38 and 4E_BP1 protein levels compared to more resistant cell lines. They were less sensitive to 
GSK3-beta, MDM, Akt and Bcl inhibitors, more sensitive to a Bax activator and more dependent on BRAF. We 
identified media concentration of pantothenate to correlate with BET inhibitor responsiveness, as its concen-
tration was significantly higher in cell lines that reacted with GDF15 reduction and GDF11 induction on BET 
inhibition compared to more resistant cell lines (p < 0.001, Fig. 6).

To summarize, our results revealed that BET inhibition reduces basal GDF15 expression in a subset of can-
cer cell lines that share similar biochemical and metabolic properties. Six tested BET inhibitors all suppressed 
doxorubicin-induced GDF15 expression in hiPSC-CMs to a varying extent depending on their inhibitory effect 
on BRD4.

Discussion
Our results show that drug-induced GDF15 overexpression in cardiomyocytes is dependent on the drug’s 
mechanism. DNA interacting drugs and topoisomerase inhibitors had the strongest inducing effect on GDF15 
expression in cardiomyocytes. This is consistent with previously described relations of DNA damaging radiation 
and transcriptional stress with GDF15  overexpression16,37,38. Mitochondrial stress has been known to induce 
 GDF1539,40. As DNA damaging drugs often also induce mitochondrial  toxicity41 and mitochondrial dysfunction 
appears to be a major cause of anthracycline-induced cardiotoxicity, it is very likely that mitochondrial toxicity 
is one of the major causes of GDF15 induction we observed in our drug screening in hiPSC-CMs. In NCI-60 
cancer cell lines, we observed different effects on GDF15 expression for the two FLT3 inhibitors sorafenib and 
sunitinib. Whilst sorafenib led to a threefold induction of GDF15 on average, sunitinib did not lead to notable 
GDF15 regulation in any of the NCI-60 cancer cell lines. A possible explanation for this difference in GDF15 
regulation, despite the similar mode of action, is the mitochondrial toxicity that sorafenib was found to induce 
whereas sunitinib was  not42. At clinically relevant and even low concentrations, sorafenib increases nitric oxide 
generation disrupting mitochondrial membrane potential in cancer  cells43,44.

In the present study, we found that topoisomerase inhibitors, e.g., anthracyclines induce GDF15 expression in 
hiPSC-CMs strongly. However, BET inhibitors effectively suppressed doxorubicin-induced GDF15 overexpres-
sion depending on its inhibitory effect on BRD4. This suggests that the mechanism behind GDF15 overexpres-
sion by topoisomerase inhibiting drugs relies on BRD4. We hypothesize that this BRD4-dependence of GDF15 
overexpression might be due to BRD4-driven super-enhancer formation. Topoisomerase inhibiting anticancer 
drugs, such as doxorubicin, impede transcription by increasing DNA  supercoiling45. Super-enhancer forma-
tion would explain how GDF15 overexpression can be achieved, despite the overall transcription inhibition by 
topoisomerase inhibition. As BRD4 partially promotes transcription by increasing topoisomerase  activity27, it 

Figure 6.  Differential analysis of protein expression patterns, drug sensitivity, gene dependency and 
pantothenate secretion between strongly and weakly responsive cell lines. Based on GDF15 reduction and 
GDF11 activation upon BET inhibition. Box plot of quartiles, median, 95% confidence interval, t test, *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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is likely that BRD4 can compensate for topoisomerase inhibition by an increased recruitment of coactivators 
and the formation of super-enhancers.

In 50% of NCI-60, we thereby found a correlation between drug-induced GDF15 and BRD4 expression. Rea-
nalysis of our previously published ChIP-seq data from AML cell  lines26 revealed a reduction of BRD4 bound to 
putative enhancers in close vicinity to the GDF15 gene locus by the BET inhibitor BI 894999 in a concentration-
dependent manner (Supplementary Figure S7). These results suggest that the BRD4-dependence observed for 
doxorubicin-induced GDF15 overexpression in cardiomyocytes also applies to those cancer cell lines.

Besides drug-induced GDF15 overexpression, some tumors contribute to elevated GDF15 levels in the 
patients by heavy GDF15 secretion, independently of anticancer  treatment5. We showed that this basal GDF15 
expression gets significantly reduced upon BET inhibition using BI 894999 in a subset of tested cancer cell 
lines, in which concomitant upregulation of GDF11 was observed. To confirm whether this negative correlation 
between GDF15 and GDF11 is the result of target-specific inhibition of BRD4 or due to a non-specific effect of 
the drug on other targets, we looked up literature for gene expression profiling after BRD4 gene knockdown in 
cancer cell lines. Wu et al.’s study included pan-BRD4 knockdown in MDA-MB-231 and MCF-7 cell lines using 
 siRNA46. The retrieved data for GDF15 and GDF11 genes showed a negative correlation between the 2 genes 
in MDA-MB-231 cells, whereas both genes’ expression was not affected in MCF-7 despite similar reductions 
of BRD4 expression in both cell lines. This finding is in accord with our findings confirming the up-regulation 
of GDF11 can be caused by BET inhibition in certain types of cancers and negatively correlated with GDF15. 
Although BET inhibition also induced GDF11 expression which was described to promote weight loss partially 
through  GDF1519, the BET inhibitor JQ1 was found to counteract cancer-driven cachexia in mice suggesting 
that the advantageous effects of BET inhibition for the alleviation of cachexia clearly  predominate47. In that 
mouse study, however, neither GDF15 nor GDF11 level was analyzed. The interplay of GDF11 and GDF15 in 
cachexia and the potential effects of GDF11 induction by BET inhibition in that context still remain to be further 
elucidated. By differential analysis, we found that the subset of tested cancer cell lines that responded to BET 
inhibition with GDF15 reduction and GDF11 induction show a higher activity of p38 MAPK and a significantly 
lower activity of and dependency on proteins involved in the PI3K/Akt pathway, namely GSK3B, Akt, Bcl and 
B-Raf, compared to the weakly responding cell lines. It is in accordance with the finding that PI3K pathway acti-
vation promotes resistance of neuroblastoma to BET inhibition which was discovered by Iniguez et al. through 
genome-scale screening and multiomics  analysis48. NF-kB and p53, two of the seven reported GDF15-inducing 
pathways, are directly or indirectly activated by GSK3B and  Akt49,50. Based of the observed low sensitivity to 
GSK3B and Akt inhibition, we presume that the BET inhibitor responsive cell lines have low basal activities of 
GSK3B and Akt so that NF-kB and p53 can be expected to have low activities in this subset of cell lines, too. Their 
high sensitivity to Bax activation might be due to this presumed low activity of p53, as Bax is activated by p53 51. 
We searched for metabolic markers that reflect the cell line’s pathway activities related to the susceptibility of its 
GDF15 expression to BET inhibition. We found high basal concentrations of pantothenate to correlate signifi-
cantly with effective GDF15 reduction upon BET inhibition. Pantothenate kinase 1 involved in CoA synthesis 
from its precursor pantothenate has been known to be transcriptionally activated by p53, and PI3K signaling 
stimulates CoA  synthesis52,53. Hence, high pantothenate concentration might be due to low activity of p53 and 
PI3K signaling, which is consistent with the results of our differential gene expression analysis discussed above. 
Variable efficacy and dose-limiting toxic effects of BET inhibitors such as thrombocytopenia are commonly 
observed in preclinical and clinical studies and strongly imply that the discovery of biomarkers that can help 
predict therapeutic response is a prerequisite for effective and safe treatment using BET  inhibitors54. The observed 
differences in extracellular pantothenate concentration indicate that pantothenate could be developed into a 
potential biomarker for the selection of patients who would benefit from GDF15 reduction upon BET inhibition.

We found that NCI-60 cancer cell lines can be classified in clusters according to the extent of GDF15 induction 
by different drugs. We were able to attribute the differences in GDF15 induction to activity patterns of GDF15-
inducing pathway. As most GDF15-inducing pathways are involved in cancer genesis, they are often directly 
targeted by anticancer  drugs55. Due to the heterogeneity of dysregulations in cancer, it can be assumed that every 
cancer cell line comes with a distinct setting of GDF15-inducing pathway activities. It is therefore expected that 
a drug leads to varying extents of GDF15 induction depending on the cell line’s basal pathway activities and 
how they interplay with the drug’s mode of action. This also points out the importance of establishing precision 
medicine tailored to the individual requirements. We identified six drug-specific gene signatures, consisting 
of specific genes whose expressional or mutational status significantly correlate with the cell line’s tendency to 
overexpress GDF15 upon drug treatment (Fig. 4A). Those gene signatures could be used to predict the effect of 
a drug on the individual regulation of GDF15 expression. Our data were, however, obtained from in vitro cell 
culture studies. Biological response of cells in vivo could be different. Also, the 60 cancer cell lines we included 
in our correlation analysis might not sufficiently represent the variety of cancers. With further data analysis 
using larger sample sizes and additional validation strategies employing patient samples, the identified gene 
signatures could be refined and used for a personalized selection of chemotherapy agents and patients, depend-
ing on pheno- and genotype of the tumor. Thus, chemotherapy-induced GDF15 overexpression followed by the 
concomitant risk for developing cachexia could be reduced.

Materials and methods
Cell culture. hiPSC-CMs were prepared according to the method described in ref.56 with minor modifica-
tions, using hiPSC lines SB-AD02-Cl02 and SFC086-03–01 obtained from the StemBANCC consortium. Briefly, 
after differentiation by CHIR99021 (Biomol, Cay13122-5) and Wnt-C59 (Selleck Chemicals, S7037) in CDM-3 
(chemically defined RPMI1640 medium containing albumin and ascorbic acid) and metabolic selection with 
lactate, hiPSC-CMs were plated at 3 ×  104 cells/well on 96-well plates or 1 ×  106 cells/well on 6-well plates and 
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cultured in CDM3-M medium (RPMI1640 medium, no glucose (Gibco, 11879020) supplemented with 500 µg/
ml recombinant human albumin (Sigma Aldrich, A9731), 4 mM sodium L-lactate (Sigma Aldrich, A71718), 
1 mM sodium pyruvate (Sigma Aldrich P5280), 213 µg/ml L-ascorbic acid 2-phosphate (Sigma Aldrich, A8960), 
10 mM D-galactose (Carl Roth, 4987.2), 200 ng/ml triiodo-L-thyronine (Sigma Aldrich, T6397), 20 µg/ml Insu-
lin (Invitrogen, RP-10908) and 1 × chemically defined lipid concentrate (Gibco, 11905031)) containing 20% FCS 
(Lonza, DE14-701F) for 24 h before switching to CDM3-M without FCS.

Cancer cell lines were authenticated by short tandem repeat analysis performed according to the manufac-
turer’s instructions and treated with 10 nM, 35 nM or 100 nM BI 894999 BET inhibitor for 4 h or 24 h (Supple-
mentary Table S3).  RNA57 and DNA  sequencing58 was performed as described previously.

Drug treatment. Cardiotoxic drug (SCREEN-WELL® Cardiotoxicity library, BML-2850, ENZO) library 
was prepared by serial dilution of 10 mM stocks in DMSO to 9 different concentrations ranging from 0.001 
to 10 mM, which were further diluted into assay plates to final concentrations ranging from 0.001 to 10 µM. 
BI894987 (Boehringer Ingelheim), BI 894999 (Boehringer Ingelheim), CPI203 (Sigma-Aldrich, SML1212), 
GSK1210151A (Sigma-Aldrich, SML0666), I-BET762 (Cayman Chemical, Cay10676), JQ1 (Cayman Chemical, 
Cay11187), OTX015 (eNovation Chemicals LLC, D372528), PFI-1 (Adooq Bioscience, A12545) and Doxoru-
bicin (Sigma-Aldrich, D1515) were dissolved in DMSO to make 30 mM or 10 mM stocks which were seri-
ally diluted in DMSO and assay media to concentrations as indicated. The final concentration of DMSO for 
hiPSC-CMs assay was 0.1%. To investigate the influence of BET inhibitor treatment on doxorubicin induced 
GDF15 mRNA expression, hiPSC-CMs were pre-treated with 20 nM or 200 nM doxorubicin for 48 h and kept 
in medium without compound for 24 h before 24 h treatment with either 100 nM BI 894999 or 500 nM OTX015. 
We screened the BET inhibitors JQ1, I-BET762, PFI-1, I-BET151, CPI203, OTX015 and BI 894987 for their 
effect on doxorubicin-induced GDF15 secretion in hiPSC-CMs by simultaneous treatment with 100 nM doxo-
rubicin and 0.1 to 1000 nM of each BET inhibitor. Cancer cell lines were treated with 10 nM, 35 nM or 100 nM 
of BI 894999 for 4 h or 24 h (Supplementary Table S3).

Cell viability assay. After drug treatment, cell culture medium was replaced with fresh medium containing 
0.014 mg/ml resazurin (Sigma, R7017) and incubated for 2 h at 37 °C. The fluorescence of resorufin generated by 
the cells was measured on a BioTek Synergy HTX microplate reader equipped with an excitation filter 530/25 nm 
and an emission filter 590/35 nm. After correction for background medium fluorescence and averaging of bio-
logical replicates, we calculated cell viability relative to untreated control for each compound concentration.

GDF15 expression analysis. For GDF15 mRNA quantification, total RNA was isolated from the cells 
using an RNeasy kit (Qiagen, 74106) to synthesize cDNA using a Taqman Reverse Transcription kit (Applied 
Biosystems, N8080234). Quantitative real-time PCR analysis was performed using QuantiNova SYBR Green 
PCR Kit (Qiagen, 208052) on a CFX96 Real-Time System (Bio-Rad) under the following amplification con-
ditions: 95 °C for 2 min followed by 40 cycles of 95 °C for 5 s and 60 °C for 10 s. The primer sequences are 
GDF15-F: 5′-GAG CTG GGA AGA TTC GAA CA-3′, GDF15-R: 5′-AGA GAT ACG CAG GTG CAG GT-3′, ACTB-F: 
5′-GTC TTC CCC TCC ATC GTG -3′ and ACTB-R: 5′-AGG GTG AGG ATG CCT CTC TT-3′. PCR data were ana-
lyzed using a modified relative expression software tool (REST) and the expression level of GDF15 gene was 
normalized to that of β-actin. For secreted GDF15 protein quantification, cell culture medium was collected 
after drug treatment and stored at − 20 °C until ELISA was performed using Human GDF-15 ELISA Kit (Abcam, 
ab155432) according to the manufacturer’s instruction. Resulting GDF15 concentrations were normalized to 
non-treated control and respective relative cell viability.

Data collection of cancer cell line properties. We obtained basal gene expression values and muta-
tional status of all cancer cell lines from our in-house cancer cell line database. Gene expression data of NCI-60 
after compound treatment, basal protein expression, drug sensitivity data, gene dependency data, metabolite 
expression and compound specifications such as IC50 values and modes of action were collected from different 
studies and data bases, as described in the supplementary information.

Clustering. Each NCI-60 cell line was assigned to an array containing 15 drug-specific linear regression 
slopes of GDF15 mean fold-change. We calculated the Pearson correlation coefficient for every cell line pair 
to build a 60 × 60 correlation matrix. For agglomerative hierarchical clustering, we applied a “Weighted Pair 
Group Method with Arithmetic Mean” (WPGMA) algorithm to the resulting correlation matrix. The identified 
clusters represent groups of cell lines that are closely positioned to each other in this 15-dimensional data set 
and therefore have more similarities regarding GDF15 expression upon treatment with the 15 drugs compared 
to cell lines of other clusters.

Differential analysis. The bioinformatics tool  CLIFF59 was used for differential analysis. We searched for 
significant differences between the four identified NCI-60 cell line clusters in terms of protein expression, gene 
signature and hallmark gene set scores and mutations. Besides in-house gene expression and DNA sequencing 
data, we extracted protein expression values from a public data  set60. We applied a modified t-test to identify 
proteins that differed significantly in their expression level between the different cell line clusters. We included 
proteins with p-values from 0.001 to 0.05 among which are involved in pathways upstream of GDF15 regulation 
or reported targets of any of the tested drugs. All the proteins with p-values below 0.001 were included regard-
less of their involvement in GDF15 regulation or drug mechanisms. Differences in mutation prevalence were 
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quantified using Fisher’s exact test and included whenever the p-value was below 0.05 and the respective gene 
is involved in GDF15 regulation or is a known target of a tested drug. We additionally deduced specific protein 
and pathway activities from gene and protein expression data using reported gene signatures and hallmark gene 
set scores. Detailed references are described in the supplementary information. The resulting scores were addi-
tionally used for comparison of the cell line clusters, whenever p-values were below 0.05. GDF15 gene expres-
sion values were extracted from NCI-60 Transcriptional Pharmacodynamics  Workbench34. We compared basal 
GDF15 gene expression and correlation coefficients of GDF15 and BRD4 induction upon treatment between 
cell lines of different clusters using standard two-sided t-test. Differences in metabolite concentration between 
cancer cell lines with strong and weak responsiveness to BET inhibition regarding GDF15 and GDF11 (Supple-
mentary Table S4) were assessed using modified t-tests and considered as significant whenever the p-value was 
below 0.05 and the individual data points of the two groups did not overlap.

Correlation analysis. To identify potential candidates for correlating molecular factors, we first performed 
differential analysis with three NCI-60 cell lines that showed exceptionally high or low GDF15 induction upon 
treatment, NCI-H460, UACC-257 and MCF7. Genes and proteins that stood out in these cell lines in terms of 
expression or mutations were included for further analysis as well as previously identified distinguishing genes, 
proteins and scores of the NCI-60 cell line clusters. Pearson correlation coefficients were used to compare gene, 
protein, gene signature and hallmark gene set expressions with drug-specific GDF15 fold-change and slope 
upon treatment. We selected those molecular factors whose Pearson correlation coefficients of both GDF15 fold-
change and slope were greater than 0.4 (Supplementary Table S1). Additionally, we sorted out all factors whose 
correlation with GDF15 fold-change was based only on individual outliers instead of a continuous tendency. 
To identify correlating mutations, we performed a standard two-sided t-test and considered differences with 
p-values below 0.05 for both GDF15 fold-change and slope as significant.

Activity prediction analysis. Using Ingenuity Pathway Analysis (QIAGEN), we generated a network con-
sisting of 44 proteins involved in pathways upstream of GDF15. Depending on the studied cell line cluster, this 
network was supplemented with respective characteristic expression patterns. We connected the entered pro-
teins (Supplementary Table S5) with direct and indirect interactions that are recorded in the QIAGEN Knowl-
edge Base. To the resulting network, we added the characteristic gene expression patterns and activities that we 
obtained from differential analysis and used the Molecule Activity Predictor to deduce basal signaling states.

Data availability
RNA sequencing data used in this study are available in Gene Expression Omnibus (GEO) database under 
the accession numbers GSE210542 and GSE183214.
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