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Super‑resolution of magnetic 
systems using deep learning
D. B. Lee 1,2, H. G. Yoon 1, S. M. Park 1, J. W. Choi 3, G. Chen 4,5, H. Y. Kwon 3* & C. Won 1*

We construct a deep neural network to enhance the resolution of spin structure images formed by 
spontaneous symmetry breaking in the magnetic systems. Through the deep neural network, an 
image is expanded to a super‑resolution image and reduced to the original image size to be fitted 
with the input feed image. The network does not require ground truth images in the training process. 
Therefore, it can be applied when low‑resolution images are provided as training datasets, while high‑
resolution images are not obtainable due to the intrinsic limitation of microscope techniques. To show 
the usefulness of the network, we train the network with two types of simulated magnetic structure 
images; one is from self‑organized maze patterns made of chiral magnetic structures, and the other 
is from magnetic domains separated by walls that are topological defects of the system. The network 
successfully generates high‑resolution images highly correlated with the exact solutions in both 
cases. To investigate the effectiveness and the differences between datasets, we study the network’s 
noise tolerance and compare the networks’ reliabilities. The network is applied with experimental 
data obtained by magneto‑optical Kerr effect microscopy and spin‑polarized low‑energy electron 
microscopy.

Computational approaches have been extensively applied to study various scientific systems. As well as the 
numerical simulation, one of the representative conventional methods widely performed to understand the 
physical properties of the systems, deep learning techniques based on deep artificial neural networks have been 
adopted as a novel and innovative computational approach recently. For example, deep learning techniques are 
used to solve many-body  problems1–4 and to explore phase  transitions5–8 in various physical systems.

In magnetism studies, deep learning techniques are also effectively applied to investigate the physical proper-
ties of magnetic systems. In magnetic systems, the spin Hamiltonian governing the physics of the systems includes 
various energy terms, and the competition between the energy terms induces interesting magnetic properties. 
Specifically, it is well known that unique magnetic structures, such as the magnetic stripe  domains9–11 and mag-
netic  skyrmions12–15, can appear on various magnetic systems. These magnetic structures have been intensively 
studied using not only conventional micro-magnetic simulation  techniques16–19 but also numerical approaches 
based on deep learning  techniques20–24 for applications to new spin devices.

To reveal the existence of magnetic structures and to investigate their physical properties, experimental 
observations using microscopy techniques are usually used in most of the experimental studies in magnetism 
literature. However, it is often difficult to obtain high-resolution images of magnetic domains due to the physical 
limitations of the experimental equipment. This limitation may disturb the quantitative and detailed analysis of 
the magnetic structures from the experimentally observed images. Therefore, it is expected that enhancing the 
resolution of raw images will bring significant advances in understanding the physical properties of magnetic 
systems.

In this situation, image resolution enhancement technology using deep  learning25–28, called a super-resolution 
(SR) technique, has emerged and been applied to various scientific research fields. In particular, several studies 
to enhance the resolution of images from scanning electron microscopy, electron backscatter diffraction, and 
atomic force microscopy have been conducted using deep learning techniques based on convolutional neural 
network (CNN), generative adversarial network, and residual  network29–35. The conventional SR techniques based 
on deep learning require high-resolution data as the target of the supervised learning. However, high-resolution 
data may be hardly obtainable or even not be available.

In this study, we present an unsupervised deep learning technique to produce the SR data from low-resolution 
(LR) spin configuration data. We construct a deep neural network structure using multiple CNN layers, referred 
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to as an SR network in this study. It is designed to require only the LR images for the training process, and train-
ing proceeds through unsupervised learning.

To check the effectiveness of our approach, first, we train the SR network using the simulated spin configura-
tion images. Using a Monte Carlo simulated annealing method, we generate two different types of spin configu-
ration datasets, one is for the spin configurations composed of magnetic labyrinth textures, and the other is for 
the spin configurations composed of alternating out-of-plane magnetic domains with thin magnetic domain 
walls. These two datasets are separately used to train two identically structured SR networks. After the training 
process, we confirm that the trained networks can properly produce SR data and the capability of our approach 
certainly exceeds the conventional upscaling algorithms based on usual interpolation methods. We explain that 
SR networks are trained to catch the physical properties of each dataset by cross-feeding datasets and checking 
noise response. Finally, we apply the method to the magnetic domain images obtained by magneto-optical Kerr 
effect microscopy and spin-polarized low-energy electron microscopy.

Results
Super‑resolution network. Our purpose is to enhance the resolution of the input image using deep learn-
ing techniques in an unsupervised manner without involving high-resolution images in the training process. 
Since it is often impossible to secure the high-resolution image dataset in experiments, for example, due to the 
limitation of resolution power, it is desirable to enhance the resolution of LR images without the high-resolution 
data. To achieve this goal, we construct the SR network according to the workflow shown in Fig. 1a.

The SR network is composed of two main parts. One is an up-sampling deep neural network composed of 
several CNN and simple up-sampling layers. This network transforms LR input data into SR data with a larger 
image size. The other is the resolution-lowering process from the SR data to the LR output. In this process, we 
use a Gaussian kernel down-sampling method that combines Gaussian blurring and average pooling. One should 
consider the original limitation causing low-resolution images to choose the resolution-lowering process used in 
the algorithm. Depending on the reason, for example, diffraction limit or thermal noise, one can determine the 
down-sampling process, thus, the process is not unique. One can choose other down-sampling methods which 
contain the Gaussian blurring, noise addition, resolution dropping, or mosaic processing to use a similar dete-
rioration mechanism occurring in actual data acquisition. Note that the resolution-lowering process is chosen 
and fixed, not altered by training. Detailed network architecture and Gaussian kernel down-sampling process 
are described in the “Experimental section”.

We train the SR network to minimize the reconstruction loss between the LR input data and LR output data, 
as shown in Fig. 1a; using a well-trained SR network, the LR input fed into the network can be reproduced exactly 
as the LR output. Through the training process, we expect that the SR data that are the output of the deep neural 
network become the high-resolution images corresponding to the LR input images because the LR output results 
from a deterministic down-sampling from the SR data.

Simulated spin configuration dataset. To verify the effectiveness of our approach, first, we train the 
SR network using the simulated spin configuration dataset. We generate spin configurations (high-resolution 
ground truth images) formed on a 128× 128 square grid system using a simulated annealing method imple-
mented by a Monte-Carlo method which is used in several previous studies to simulate the magnetic structures 
appearing on magnetic  systems18,19,36.

The spin configuration dataset comprises two different types of spin texture, referred to as Type I and Type II, 
in this study. Type I is for self-organized structures where similar patterns cover the space. We use the labyrinth 
texture that shows randomly oriented patterns with a constant structural length scale and chiral spin ordering. 
It is known that this type of structure originates mainly from the competition between the exchange interaction 
and Dzyaloshinskii-Moriya interaction (DMI) which is commonly considered in the studies about the chiral 

Figure 1.  Super-resolution network structure and training dataset. (a) Schematic diagram of the Super-
resolution network structure used in this study. LR, SR, Conv., and Upsamp. indicate low-resolution, super-
resolution, convolutional neural network, and upsampling layer, respectively. (b) Sample images from two types 
of data. Type I and II data are LR samples of spin configurations composed of (I) labyrinth textures and (II) large 
domains with thin domain walls. For more details, see the “Experimental section”.
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magnetic structures appearing on the systems with broken inversion  symmetry18,19,36. Type II is for topological 
defect structure between domains formed by spontaneous symmetry breaking. We use the magnetic domains of 
locally uniform magnetization separated by domain walls. The characteristics of the domain and domain walls 
are determined by the exchange interaction, perpendicular magnetic anisotropy, and magnetic dipole–dipole 
 interaction11,37–40. Details of the data generation process, Hamiltonian, and physical parameters are described 
in the “Experimental section”.

To obtain the LR datasets, as shown in Fig. 1b, we apply a typical downsizing method based on a Gaussian 
filter to the simulated spin configurations; the original 128× 128 image size of the simulated spin configuration 
is reduced to a smaller size such as 32× 32 , 16× 16 , or 8× 8 . In this study, the term “ ×N ” is used to represent 
the scale of resolution enhancement when the SR layer is constructed to produce Na ×Na ( = 128× 128 ) size 
image to increase the resolution of the LR image with a × a size. We have prepared a dataset containing 40,100 
LR images of Type I and 40,100 LR images of Type II. Out of them, 40,000 images are used as training dataset, 
and 100 images from each type are used as test dataset. The detailed information of the dataset is described in 
the “Experimental section”.

SR network performances for Type I and II datasets. We train our SR networks using the LR datasets 
until they properly reconstruct the input LR images. In this study, the SR networks trained with Type I and II 
are called Net. I and II, respectively. We compare the performances of Net. I and II with simple conventional 
resolution enhancing methods, such as bilinear, and bicubic interpolation. For quantitative analysis, we use 
several metrics measuring the image similarity typically considered in usual SR literature, such as mean square 
error (MSE), peak signal-to-noise ratio (PSNR), and spin–spin correlation (Corr.) between the ground truth and 
SR results. The details of how to calculate the spin configuration similarity are described in the “Experimental 
section”.

Net. I. We investigate the performances of Net. I trained with 32× 32 and 16× 16 LR images, and compare 
them with the results of simple interpolation methods and ground truth simulation images as shown in Fig. 2.

The red-boxed images are the results from our network’s SR layer, surpassing other conventional interpolation 
methods. Indeed, they are very close to the ground truth images both in ×22 and ×23 processes. Especially in the 
×23 process, while the simple interpolation methods cannot properly generate high-resolution images, our SR 
network generates high-quality SR images from the degraded quality of the input image.

We calculate the MSE, PSNR, and Corr. for 100 test data for more quantitative analysis, as shown in Table 1. 
Our SR network results show superior results compared with the Gaussian kernel up-sampling. It indicates the 

Figure 2.  Results of ×2
2 and ×2

3 processes with Type I test dataset. The first column shows input images. The 
second column with images in red boxes is from the SR layer of our network. The following two columns show 
simple interpolation methods (Gaussian, bilinear, and bicubic), and the final one is the ground truth images 
from the original simulation result.

Table 1.  Performance table. MSE, PSNR, and Corr. are calculated for the SR network with 100 Type I test data 
and compared with other simple methods.

Ratio Metric Gaussian Bilinear Bicubic SR network (ours)

×2
2

MSE 0.64 0.062 0.061 0.0016

PSNR 24.00± 0.20 24.14± 0.24 24.22± 0.30 39.96± 0.02

Corr 0.74 0.77 0.85 0.9976

×2
3

MSE 0.236 0.243 0.262 0.0065

PSNR 18.33 ± 0.13 18.20± 0.18 17.89± 0.26 33.96± 0.03

Corr 0.301 0.353 0.44 0.99
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trained up-scaling method in our network is not simple Gaussian up-scaling, though we use Gaussian kernel 
down-sampling from SR layer to LR layer. Our SR network shows the smallest value in MSE, the highest value 
in PSNR, and the closest to 1 in Corr., regardless of the SR ratios. These results indicate that our SR network 
produces highly reliable SR images from LR images, surpassing other simple interpolation methods.

Net. II. Unlike Type I data, Type II has no unique periodicity for domain width and no global chirality in spin 
configuration but shows wide domain areas separated by domain walls. Thus, it is a more challenging problem 
for our SR network. The SR network is trained on the data lowered to 32× 32 , 16× 16 , and 8× 8 using the 
Gaussian filter downsizing from the ground truth data with a size of 128× 128.

Figure 3 shows the results when images of 32× 32 , 16× 16 , and 8× 8 pixel data are fed into an SR network 
and the results from simple interpolation methods (Gaussian, bilinear, and bicubic). We confirm that the domain 
walls shown in our SR results are more precise than other interpolation methods. In the result of the ×24 process, 
the ground truth and the result of our network are slightly different. However, it still shows the most physically 
plausible result than other simple interpolations.

The quantitative analysis for Type II data is presented in Table 2 with MSE, PSNR, and Corr. analysis between 
ground truth and upscaling results with 100 test data. Our SR network shows the smallest value in MSE, the 
highest value in PSNR, and the closest value to 1 in the Corr. of all methods.

Cross‑feeding data to the trained networks with Type I and Type II. The networks trained by Type 
I and Type II datasets show excellent performance in increasing resolution. In this section, we explain that our 
SR network increases the resolution not only with a general high-order interpolation but also using specific 
properties of input data obtained during the training process. To verify that our network has trained the basic 
physical characteristics of images, we perform cross-feeding data by feeding Type II as an input to Net. I, denoted 
as Net. I (Type II), and Type II as an input to Net. II, denoted as Net. II (Type I).

Figure 4a shows the spin configurations of the input data of Type I and Type II in the case of cross-feeding 
and compares them with the ground truth. When Net. I is fed with Type II, it converts the spin direction fol-
lowing the chirality rule trained with Type I dataset, though it is not correct for Type II data. When Net. II is fed 

Figure 3.  Results of ×2
2 , ×2

3 , and ×2
4 processes with Type II test data. Inputs, SR network results, Gaussian, 

bilinear, bicubic, and ground truth simulation images are compared.

Table 2.  The performance table (MSE, PSNR, and Corr.) for the SR network for 100 Type II test data.

Ratio Metric Gaussian Bilinear Bicubic SR network (ours)

×2
2

MSE 0.0060 0.0059 0.0058 0.00018

PSNR 34.49 ± 2.76 34.60± 3.01 34.70± 3.56 49.68± 1.2

Corr 0.974 0.978 0.986 0.9997

×2
3

MSE 0.027 0.028 0.029 0.00046

PSNR 27.90± 2.67 27.90± 2.91 27.81± 3.37 45.68± 1.13

Corr 0.91 0.92 0.94 0.999

×2
4

MSE 0.0883 0.0913 0.0975 0.0061

PSNR 22.80± 2.63 22.66± 2.79 22.41± 3.02 34.45± 2.24

Corr 0.76 0.78 0.82 0.99
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Type I, the results are close to the ground truth, thus showing good improvement of image resolution, though 
the quality is not better than the case of Net. I.

We compare statistically how the performance is lowered when the data is cross-fed. Figure 4b shows graphs 
for ×22 process and ×23 process from four cases, Net. I with Type I dataset, Net. I with Type II dataset, Net. II with 
Type I dataset, and Net. II with Type II dataset. We confirm that high performance is shown in the order of Net. 
II (Type II), Net. I (Type I), Net. II (Type I), and Net. I (Type II) of the four cases. The cross-feeding results are 
still better than the simple interpolation results, which means the SR network trains the general rule of resolution 
enhancement by interpolation whether it is trained by either Type I or Type II data. However, the network also 
catches the exclusive characteristics of the training dataset, thus, the performance is lowered when it is applied 
to a different dataset. For example, when Net. I is applied to Type II, it applies the unique chirality rule on the 
Type II data, which originally do not have the rule and the results of Net. I (Type II) have higher MSE, lower 
PSNR, and lower Corr. than those of Net. II (Type II), as shown in Fig. 4.

Noise response. Two datasets have a distinctive difference in the distribution of structural information in 
the images. Type I dataset contains chiral patterns in which the direction of spin continuously changes, and the 
structural information is distributed evenly in the image. In contrast, the Type II dataset contains topological 
defects, and the information is mostly concentrated in the shallow area, thus constructing an SR image from 
the Type II is a more subtle and difficult problem. To check the stability of the networks and their capability to 
handle nonuniformity, the networks are tested with noise-injected data. There are extensive studies of denois-
ing with deep learning  networks23,41–43 and generating data similar to trained data from random  data23. We add 
noise to the spin configuration; Ŝ′ = L2(Ŝ + αN̂) , where Ŝ′ is a reconstructed new spin configuration with added 
noise, Ŝ is the spin configuration before noise is added, N̂ is the added noise vector with a unit random vector 
map, α represents the intensity of the noise and L2 is the L2-normalization process.

We use a recursive process that feeds the output data from the SR network back to the input data. The recur-
sive process is performed for 100 iterations of each of the 100 Type I and Type II test data. and we analyze each 
data with various noise intensities.

In the case of Type I, α is changed from 0 to 200 and the output spin configuration results according to the 
noise intensity are compared. Figure 5a shows the SR results when the SR network is fed to a recursive process 

Figure 4.  Analysis for cross-feeding different types of spin configuration data. (a) Input, SR result, and ground 
truth data of the spin configurations for Net. I (Type II) and Net. II (Type I). (b) The distributions of MSE, 
PSNR, and Corr. of Net. I (Type I), Net. II (Type II), Net. I (Type II) and Net. I (Type II) of 100 test data. The 
yellow and red arrows of PSNR represent the average value of the bilinear interpolation process for Type I and 
Type II, respectively.
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with various noise levels. When the noise intensity is below 1, the noise is removed by the network, and the 
structure of the spin configuration preserves the input structure. When noise intensity exceeds 1, noise is also 
removed, but the spin configuration is not kept the same as the original structure.

We analyzed how much the original structures are transformed. Figure 5b shows the Corr. between the ground 
truth high-resolution spin configuration and the result of the SR spin configuration depending on the recursive 
process iteration. As the iteration increases, Corr. tends to increase with the first few iterations and decrease 
slowly thereafter, mostly around its maximum. It increases in the first several iterations because the noise is get-
ting removed, but then it decreases slowly as the error accumulates while repeating the recursive process. As the 
noise intensity increases, the obtainable maximum of the Corr. decreases.

Figure 5c shows how the peak value changes according to the noise intensity. It decreases only slightly until 
the noise level is around 1.0 and it begins to decrease rapidly as the noise intensity increases above 1.0. Because 
the spin data is normalized, a noise intensity over 1.0 means it exceeds the signal and becomes sufficient to erase 
the original spin configuration information. At higher noise intensities, the noise intensity is so strong that the 
input spin configuration can be considered random. Even in this case, it generates a new spin configuration with 
the same characteristics as Type I. Therefore, it suggests that the SR network learns general features of the system 
even enough to be used as a generator.

In the case of Type II, α is changed from 0 to 50. Figure 6a shows the SR results when the SR network is fed to a 
recursive process without noise or with various noise levels. When the noise intensities are small, the SR network 
reduces the noise as in Type I. But as noise intensity is close to 1.0, the domain walls of the SR spin configuration 
are broken due to added noise. In SR results at relatively large noise, the large-size domains disappear, and only 
the small dotted structures remain which is very different from the original structure. Thus, we can see that the 
network trained on type II is sensitive and fragile to noise.

Figure 6b shows the statistical calculation results of the Corr. When noise intensities are less than 1.0, the 
Corr. initially increases during the first few iterations, then decreases rapidly. It initially increases by removing 
noise, similar to the result of Type I. However, it decreases rapidly at a further recursive process. When the noise 
intensities are higher, it only reduces with the recursive process, as the noise of the data cannot be removed and 
the domains are broken. The type II magnetic structures, unlike type I, contain the topological defect, or domain 
wall, separated by domains. The added noise tends to be interpreted as domain walls, thus, extensive noise extends 
defect structures and may weaken the reliability of SR networks, which suggests that the interpretation of SR 

Figure 5.  Analysis for noise tolerance in Type I data. (a) The original data and noise-added data (top layer), 
and corresponding results after the recursive process of 20 iterations (bottom layer). (b) Average values of Corr. 
for each iteration when the recursive process is progressed for 100 Type I test data. (c) The maximum values of 
Corr. according to the noise intensity after 100 recursive iterations. The inset figure is to magnify the low noise 
intensity region.
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results in practice should be careful when the system has defects or consists of various length-scale structures. 
Figure 6c shows the trend of the maximum value of the Corr. as a function of noise intensity. The Corr. decreases 
more sharply in Type II than in Type I, because Type II is more sensitive to noise than type I.

Application to the SR network on the experimental data. In order to demonstrate the advantage 
of our SR network, that is, converting low-resolution data into super-resolution data without the target, we 
apply the network to real experimental data. Several microscopy techniques, such as magneto-optical Kerr effect 
(MOKE)  microscopy44–46, scanning transmission X-ray microscopy (STXM)14,47,48, spin-polarized low-energy 
electron microscopy (SPLEEM)37,38,40,49,50, are used to obtain magnetic domain images. These microscopy tech-
niques have limitations in the resolution at which magnetic structures can be observed. Here, we show that the 
application of the SR network can convert relatively low-resolution MOKE and SPLEEM experimental magnetic 
domain images into high-resolution images.

Figure 7a shows the MOKE microscopy data of the magnetic domain of a [Pt(3 nm)/GdFeCo(5 nm)/
MgO(1 nm)]20 multilayer system. The images show complex labyrinth patterns which are similar to the Type I 
datasets. Detailed information about the magnetic domains in this material system is given in a previous  study14. 
We split the Fig. 7a into 24,000 data and train the SR network using them. After training the SR network, we 
feed the MOKE data as input data to our SR network as shown in Fig. 7b, and the resulting converted ×23 data 
is shown in Fig. 7c. The original data shows blocks like a mosaic, but the resulting SR-network-applied data is a 
smooth image where the magnetic structure is more clear. The results obtained by other interpolation methods 
are shown in Fig. 7d,e for the comparison.

Figure 7f shows the experimental SPLEEM magnetic domain images of a Ni/Co/W system. The images show 
domains separated by domain walls, which are similar to the Type II datasets. Detailed information about the 
experimental environments and experimental systems is given in a previous  study40. We concatenate Fig. 7f 
data to each of Sx , Sy , and Sz , normalize, split to 2800 data, and train the SR network using them. After training 
an SR network using the split data, we feed an image shown in Fig. 7g as the input, and the resulting ×23 data 
from the SR network is shown in Fig. 7h. The data is denoised due to the SR network, and the domain part and 

Figure 6.  Analysis for noise tolerance in Type II data. (a) Input and output images for Type II dataset. The noise 
is increased by 0.6 from 0.1 to 2.5. and the results are shown after 10 recursive processes. (b) Average values of 
Corr. for each iteration. The recursive process is progressed for 100 Type II test data. (c) The maximum values of 
Corr. according to the noise intensity after 100 recursive iterations. The inset figure is to magnify the low noise 
intensity region.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11526  | https://doi.org/10.1038/s41598-023-38335-y

www.nature.com/scientificreports/

the domain wall part become more distinct. Except the noise reduction, the SR results do not show a significant 
difference, when they are compared to other interpolation methods (Fig. 7i,j).

The results cannot be compared with the true high-resolution data or prove its superiority to other conven-
tional interpolation methods because the images do not have corresponding images with a higher magnification 
ratio. Nevertheless, our results show that low-resolution data can be converted to high-resolution data in practice 
by utilizing our SR network in an environment where high-resolution data is desirable but unobtainable. The 
SR network results depend on the resolution-lowering process in the network. We have used the same Gauss-
ian kernel down-sampling used in the simulation dataset. The other down-sampling method better fitted with 
experimental situations may further enhance the SR results.

Our SR network has superiority compared with other deep learning techniques for  SR32–35 because it does 
not require a high-resolution dataset in the training process. Most of the deep learning techniques use the high-
resolution data as the target data of the supervised learning algorithm, thus it cannot be applied when the high-
resolution data is not obtainable. In contrast, our SR network can be applied to LR data because it minimizes 
the reconstruction loss at the low-resolution level. Our approach shows that training without high-resolution 
data can efficiently provide correct results when the training data contained patterns based on the same physical 
origin. In these cases, the networks obtain global properties from the locally dispersed structural information, 
and SR images are constructed based on the properties.

Figure 7.  Producing high-resolution images using the SR network with the experimental data. (a) The spin 
structure from MOKE; scale bar indicates 2 μm. (b) The original MOKE data in the red box of (a). (c) The ×2

3 
SR result from (b). (d,e) The ×2

3 Gaussian and bicubic interpolation results from (b). (f) The spin structure data 
from SPLEEM; scale bar indicates 1 μm. (g) The original resolution SPLEEM data in the red circle of (f). (h) The 
×2

3 SR result from (g). (i,j) The ×2
3 Gaussian and bicubic interpolation results from (g). The parts we want to 

observe in detail are marked with red boundary line.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11526  | https://doi.org/10.1038/s41598-023-38335-y

www.nature.com/scientificreports/

Conclusion
In this study, we devised SR networks using the deep learning method inferring super-resolution images without 
requiring high-resolution data in the training process. Our deep learning method has the potential to produce 
high-resolution images maintaining the physical properties of the target system. The trained networks with 
simulation data proved their utility with much-enhanced performance, compared with conventional interpola-
tion methods. Through cross-feeding and noise response, we found that the networks were trained to follow the 
characteristics of the training dataset. Using this SR network for experimental data such as MOKE images and 
SPLEEM images, we confirmed the usability of our SR network in the experimental data. Our technique can 
be utilized in a lot of other scientific research areas where it is required to analyze and investigate image data 
characterizing physical states by converting low-resolution data into high-resolution.

Experimental section
Data generation. We choose the two types of two-dimensional magnetic spin configuration datasets gen-
erated under each Hamiltonian condition. The datasets are selected to evaluate the purpose of our SR network. 
Thus, the datasets should have various patterns with the same characteristics, and quantitative evaluations 
should be possible. The Type I dataset contains various patterns of labyrinth spin configurations, and the Type II 
dataset contains domains separated by domain walls.

To generate a Type I dataset, we use a square lattice Heisenberg spin model of two-dimensional magnetic 
systems with 128 × 128 size. Hamiltonian model, H = −J

∑
<ij>

−→
S i ·

−→
S j +

∑
<ij>

−→
DMij ·

(
−→
S i ×

−→
S j

)
, is used. 

J is the exchange interaction parameter, −→DM is the Dzyaloshinskii-Moriya interaction vector, −→S  is a normalized 
spin vector, and i and j represent grid sites. The length scale of the spin structure is determined by the ratio of J 
and |−→DM| and we choose J = 1 and 

∣∣∣
−→
DMij

∣∣∣ = 0.3 to have enough spin structure in the images.
The Type II dataset is also generated with a square lattice Heisenberg spin model of two-dimensional magnetic 

s y s t e m s  w i t h  1 2 8  ×  1 2 8  s i z e .  A  s i m p l e  H a m i l t o n i a n  m o d e l  i s  u s e d ; 

H = −J
∑

<ij>

−→
S i ·

−→
S j − D

∑
<ij>

(
−→
S i ·

−→r ij

)(
−→
S j ·

−→r ij

)
−
−→
S i ·

−→
S j|

−→r ij|
2

|−→r ij|
5 − K

∑
i S

2
i,z . D is the magnetic dipolar inter-

action strength, −→r ij is the displacement vector between the i  and j sites, and K  is the magnetic anisotropy 
strength. To have the sizeable magnetic domain separated by the magnetic domain walls, the condition for small 
effective anisotropy is used. We choose J = 1 , D = 0.03, and K = 0.215.

Many studies have been done on both types of systems, and we generated the spin configurations with a simu-
lated annealing process based on those studies. Since the magnetic system temperature is gradually decreased 
from above the Curie temperature to 0, various metastable states are generated. We use this process to generate 
the 40,100 datasets for Type I and Type II each. Of each data type, 40,000 are used as training data, and 100 are 
used as test data.

Data preprocessing: Gaussian filter downsizing. Periodic padding processes are performed on input 
data [128, 128, 3] size, input data sizeoutput data size is used as stride, and data are downsized by convolution with a Gaussian fil-
ter. In this study, the size of the Gaussian filter is [23, 23], and the sigma value of the Gaussian filter is 1. Through 
the Gaussian filter downsizing process, input data of 128× 128 size are converted into 32× 32 size, 16× 16 size, 
and 8× 8 size as needed.

SR network structure. This study aims to devise a neural network for super-resolution spin configura-
tion from low-resolution spin configuration using deep learning. We construct a convolutional neural network 
structure to obtain the low-resolution spin configuration from the same size input spin configuration. The SR 
spin configuration we ultimately want to obtain is a structure from the SR layer in front of the output layer. The 
network structure is constructed with two parts: expanding filter and a decoder. The expanding filter part, com-
posed of four Convolutional Neural Network (CNN) layers with 64 filters, increases the input spin configuration 
of the three-dimensional vector map to 64 filters with 3× 3 filter sizes. Since our training spin configuration 
datasets are generated by satisfying the periodic boundary condition, we add a periodic padding process before 
all CNN layers to train the network under the same conditions. The batch normalization layer and the leaky rec-
tified linear unit (Leaky ReLU) activation layer are constructed after all CNN layers. The decoder part decodes 
the high-dimensional filter map into the SR spin configuration. It consists of the number of up-sampling blocks 
for each ratio. The single up-sampling block comprises the periodic padding process, CNN layer with 3× 3 filter 
sizes, batch normalization layer, leaky ReLU activation layer, and an up-sampling layer of a 2× 2 filter. The up-
sampling layer of the 2× 2 filter doubles the data size horizontally and vertically. So ×2n process ( n is an integer) 
is constructed of n upsampling blocks. According to ×22 , ×23 , and ×24 , the number of filters for the CNN layers 
are (16 and 8), (32, 16 and 8), and (48, 32, 16 and 8). After the up-sampling blocks, we add a periodic padding 
process and one CNN layer with three filters. The input and output data dimensions are the same. The input 
data are the Type I and Type II spin configurations generated under the two different Hamiltonians described 
above. The output data are two-dimensional spin configuration data composed of three-dimensional vectors 
reconstructed from the SR network.

We want to train the network structure so that the SR data are transformed into low-resolution spin configura-
tion through Gaussian filter downsizing, and the output is a vector map. Therefore, we use the MSE �(−→S −

−→
S

′
)
2
� 

as the total loss function. We train the SR network to lower the total loss. We verify our network’s suitability dur-
ing the SR network training by calculating the super-resolution validation loss. The validation loss is calculated 
from the MSE value between the ground truth data and the SR data, and validation loss is not used for training. 
Minimizing the total loss means that the output vector map approximates the input spin configuration and 
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minimizing the validation loss means that the SR data approximates the correct ground truth data; therefore, 
after the training SR network, we can effectively estimate the SR data from the low-resolution data. We adopt 
the Adam  optimizer51 to minimize the total loss, and its learning rate is fixed at 0.01.

Spin configuration similarity measurement. We use well-known methods such as MSE, PSNR, and 
Corr. to quantitatively evaluate the similarity between ground truth and SR data from low-resolution test data. 
MSE is defined as 1

mn

∑m−1
i=0

∑n−1
j=0

[
−→
S
(
i, j
)
−

−→
S

′(
i, j
)]2

 , where −→S  and −→S
′
 represent ground truth spin con-

figuration and reconstructed SR spin configuration respectively, and i and j represent the row and column num-
ber index of the grid site, respectively. PSNR is defined as 10log10

(
MAX2

MSE

)
 , where MAX is the maximum value. 

In our study, the spin values are represented from −1 to 1, and MAX is equal to 2. Corr. is defined as 
1
mn

∑m−1
i=0

∑n−1
j=0

−→
S
(
i, j
)
·
−→
S ′

(
i, j
)
 . Since the spin values   in our study range from −1 to 1, the values range from 

−1 to 1. When the value is 1, two spin data are entirely in the same state, and when it is 0, there is no relationship 
between them.

Data availability
The data used in the study is available from H. Y. K. and C. W. on reasonable request. The type I and II datasets 
used in this work are available on the following websites: https:// data. mende ley. com/ datas ets/ 2vfnc 426x3, https:// 
data. mende ley. com/ datas ets/ mhzyd mtzzs.
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