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Target of selective auditory 
attention can be robustly followed 
with MEG
Dovilė Kurmanavičiūtė 1*, Hanna Kataja 1, Mainak Jas 1,3, Anne Välilä 1 & Lauri Parkkonen 1,2

Selective auditory attention enables filtering of relevant acoustic information from irrelevant. Specific 
auditory responses, measurable by magneto- and electroencephalography (MEG/EEG), are known 
to be modulated by attention to the evoking stimuli. However, such attention effects have typically 
been studied in unnatural conditions (e.g. during dichotic listening of pure tones) and have been 
demonstrated mostly in averaged auditory evoked responses. To test how reliably we can detect 
the attention target from unaveraged brain responses, we recorded MEG data from 15 healthy 
subjects that were presented with two human speakers uttering continuously the words “Yes” and 
“No” in an interleaved manner. The subjects were asked to attend to one speaker. To investigate 
which temporal and spatial aspects of the responses carry the most information about the target of 
auditory attention, we performed spatially and temporally resolved classification of the unaveraged 
MEG responses using a support vector machine. Sensor-level decoding of the responses to attended 
vs. unattended words resulted in a mean accuracy of 79%± 2% (N = 14) for both stimulus words. 
The discriminating information was mostly available 200–400 ms after the stimulus onset. Spatially-
resolved source-level decoding indicated that the most informative sources were in the auditory 
cortices, in both the left and right hemisphere. Our result corroborates attention modulation of 
auditory evoked responses and shows that such modulations are detectable in unaveraged MEG 
responses at high accuracy, which could be exploited e.g. in an intuitive brain–computer interface.

Selective auditory attention enables filtering of relevant acoustic information from irrelevant and is often studied 
using dichotic  listening1,2 where the listener is exposed to simultaneous but different auditory streams to each 
ear and is asked to follow one stream while suppressing the other, akin to the cocktail party  problem3. Selectively 
attending to one stream manifests as changes in auditory evoked responses that can be measured non-invasively 
with electroencephalography (EEG) and magnetoencephalography (MEG)4–8.

More recently, machine-learning methods have been applied to EEG/MEG data to study attention modula-
tion of transient auditory evoked  responses9, auditory steady-state  responses10,11 or responses to continuous 
 speech12–15. Exploiting such attention modulation in a brain–computer interface has been probed in several 
 studies16–25, some of which have employed natural sounds as stimuli and yielded a useful-in-practice classification 
accuracy also when applied to patients that cannot  communicate26,27. However, these auditory speller-type BCI 
systems require extensive training that might be exhausting for a patient. Furthermore, in patients with disorders 
of consciousness, using this type of a BCI may exceed the capacity of their working  memory25,28, which could 
drastically drop the accuracy. In comparison to speller-BCIs, BCIs based on either speech tracking or on detect-
ing infrequent and unexpected changes in auditory streams could be designed such that their working-memory 
load is  limited21,29–31. However, BCIs utilizing speech tracking often require long data spans (usually tens of 
seconds) to output one bit since the dynamics of continuous natural speech are complex and thus the responses 
less salient than those for isolated words or simple tone pips (see e.g., Ref.32). Yet, near real-time performance 
has been demonstrated through advanced  modelling33.

Auditory streaming BCIs often employ oddball streams, comprising frequently-occurring stimuli (standard) 
and a rarely-occurring exception (deviant)30. Selective attention then increases the amplitude of the response 
to a deviant compared to an unattended  stimulus16,34,35. However, this approach allows attention target to be 
determined only at the rate the deviants are presented, and this rate cannot be increased above 10 or 20% of all 
stimuli without diminishing the overall amplitude of the deviant responses. Therefore, the information transfer 
rate of such a BCI remains modest.
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In this study, we propose a novel paradigm for eventual BCI applications that differs from the conventional 
cocktail party problem by employing simple, minimally overlapping word stimuli in two rapid sequences, thereby 
enabling fast tracking of the target of attention. By embedding sequence deviants, we can also include a task that 
allows behavioural quantification of the deployment of attention. Our aim was to provide a paradigm that could 
be efficiently used in a simple yet intuitive brain–computer interface.

To this end, we created an acoustically realistic scene with two concurrent auditory stimulus streams. Stimuli 
comprised of two human speakers uttering the words “Yes” and “No” in an interleaved manner at − 40 and + 40 
degrees from the line forward from the subject, mimicking a real-life situation where two persons are speaking 
simultaneously on the sides of the subject. In each stream, the pitch of the word alternated (standard) but this 
implicit rule was occasionally broken by presenting two same-pitch versions of the stimulus word in succession 
(deviant). We measured MEG in 15 subjects while they were presented with these stimuli and were asked to cov-
ertly count these deviants in the attended stream and report the number at the end of each measurement block.

Results
Behavioral data. On average, the subjects reported 40± 17.6% (deviant probability 10%, N = 5 ) and 
97± 0% (deviant probability 5%, N = 6 ) of the deviants in the stream they were instructed to attend to. Three 
subjects were not included in this analysis due to technical problems in collecting their deviant counts.

Sensor-level analysis. Time-resolved decoding was performed on the unaveraged epochs comprising all 
channels at each time point. At the group level, decoding “Attended No” vs. “Unattended No” and “Attended Yes” 
vs. “Unattended Yes” both showed peaks around 160 ms (Fig. 1a).

Spatially-resolved decoding indicated that the most informative signals arose from temporal regions; the pat-
terns of decoding accuracy were qualitatively similar across the subjects; see Fig. 1b for a representative subject 
and for the group result.

To aim at the highest accuracy in determining the direction of attention, we also decoded using the entire 
epoch, that is, all time points and all channels at once. First, we tested with 1-s epochs (− 200 ... 800 ms) which 
yielded a mean accuracy of 79% ± 2% (range 67–91%) for “Attended No” vs. “Unattended No” and 79% ± 2% 
(range 68–91%) for “Attended Yes” vs. “Unattended Yes”; see Fig. 2. The group mean accuracy was not signifi-
cantly different between the stimulus words (paired t-test; p = 0.874).
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Figure 1.  Temporally and spatially resolved decoding reveals highest decoding accuracy around 160 ms after 
each stimulus word and in the MEG channels above the auditory cortices. (a) Time-resolved decoding in a 2-s 
time window of attended vs. unattended word stimulus plotted for a representative subject (top) and for the 
group (bottom). The mean decoding accuracy is shown as a dark blue line for the “Yes” and as a light blue line 
for the “No” stimulus word. The standard deviation (SD), computed across the cross-validation folds of the 
classifier training and testing, is shown as dark/light blue shading. (b) Spatially-resolved decoding accuracy 
maps in a representative subject (top) and at the group level (bottom) for attended vs. unattended stimulus 
words. Prior to the decoding, epochs of the high- and low-pitch words were concatenated.
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Prolonging the decoding epoch to 2 s (− 500 ... 1500 ms) resulted in an average decoding accuracy of 83% ± 
2% (range 71–94%) for “Attended Yes” vs. “Unattended Yes” and 83% ± 2%; (range 68–94%) for “Attended No” 
vs. “Unattended No”. Using the 2-s vs. 1-s epochs increased the classification accuracy in all 14 subjects, which 
is a statistically significant change (binomial test:p = 0.000061).

To further characterize the stimulus-related information present in the auditory evoked responses, we 
decoded also for the stimulus word (not for attention). The mean accuracy was 88% ± 2% (range 75–96%) for 
the 1-s epochs and 93% ± 1% (range 82–99%) for the 2-s epochs when decoding “Attended Yes” vs. “Attended 
No”. Similarly, when decoding for “Unattended Yes” vs. “Unattended No”, we obtained an average decoding 
accuracy of 88% ± 2% (range 76–95%) for the 1-s epochs and 92% ± 2% (range 77–98%) for the 2-s epochs. Thus, 
the accuracy of word-wise decoding did not depend significantly on whether the words were attended or not 
( p = 0.80 for the short epochs and p = 0.53 for the long epochs). Compared to attention decoding, this word-
wise decoding gave statistically significantly higher accuracy for both the short ( p < 0.005 for all four possible 
comparisons) and long ( p < 0.005 ) epochs.

We also performed pitch-wise decoding (unaveraged evoked responses to high-pitch vs. low-pitch versions of 
the word stimuli), which yielded above chance-level decoding accuracy of 70% ± 3% (“Attended No”), 71% ± 3% 
(“Unattended No”), 71% ± 3% (“Attended Yes”) and 72% ± 3% (“Unattended Yes”) across all subjects (N = 14).

The average evoked responses to each attention condition (“Attended Yes”, “Unattended Yes”, “Attended No”, 
“Unattended No”) for a single subject and for the group can be found in Supplementary Fig. S1. In that figure, 
each condition represents pooled responses to the low- and high-pitch stimuli. These average evoked responses 
were computed only for the sensor- and source-level visualizations, and all decoding was performed on unaver-
aged (single-trial) responses.

The group-averaged evoked responses peaked at 250 ms (at channel ’MEG 1322’) after the stimulus onset for 
the “Attended Yes” and at 136 ms (‘MEG 1322’) for the “Unattended Yes” condition. For the condition “Attended 
No”, the responses peaked at 340 ms (‘MEG 0242’) and for “Unattended No” at 350 ms (‘MEG 0212’). The planar 
gradient strength maps (Supplementary Fig. S1) are compatible with sources in auditory cortices.

Source-level analysis. The group-level source estimates depicted in the Fig.  3 show the responses to 
attended and unattended word stimuli at three different latencies. In the right hemisphere, the activation peaked 
at 270 ms after the onset of the attended “Yes”. Activation to the attended “No” peaked at 330 ms in the left 
hemisphere after the stimulus onset. The interindividual variation in the response latencies and amplitudes was 
considerably higher in the left vs. right hemisphere, which led to smearing of the group-average source dynamics 
in the left hemisphere (Fig. 3).

Spatial-searchlight decoding (Fig. 4) revealed that the source signals giving the highest decoding accuracy 
arose from the auditory cortices but significantly also from sensorimotor cortex that has been associated with 
auditory stimuli processing as  well36. However, the spatial peaks of accuracy, as show in Fig. 4, did not align well 
in time and space across subjects, which led to low group-average accuracy for any single location on the cortex.

Discussion
In this study, we recorded brain signals while presenting simple, minimally overlapping spoken-word stimuli and 
demonstrated that the target of selective auditory attention to these concurrent streams can robustly (accuracy on 
average 79% and up to 91% in the best-performing subject) be decoded from just 1 s of MEG data. The decoding 
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Figure 2.  Target of selective auditory attention could be reliably detected in all subjects. The dark blue circles 
and light blue squares indicate the accuracy of the entire-epoch (all data points in a 1-s window and all channels 
given to the decoder) classification of responses to attended vs. unattended “Yes” and “No” word-stimuli for all 
subjects. The standard deviation (SD) was computed over the five cross-validation folds of the decoder and is 
shown as plot whiskers for each subject.
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accuracy peaked around 160 ms after the onset of both stimulus words and remained above chance level for 
several hundred milliseconds. The highest accuracy was obtained with signals arising from the auditory cortices.

Previous studies have shown that non-semantic acoustic properties, such as sound-source-specific  pitch37, are 
crucial for solving the cocktail party problem at the perceptual  level38,39. Although our paradigm did not strictly 
adhere to the conventional cocktail-party definition as our stimulus words overlapped only minimally, the corti-
cal representation of these properties and the MEG signals evoked by them may still contribute to our ability to 
decode the target of attention. The presence of pitch-related information in our data was demonstrated by the 
above-chance-level accuracy when decoding for the pitch (low vs. high pitch) instead of attention. Similarly, we 
obtained a high accuracy when decoding for the stimulus word (group mean of 88% for the 1-s epochs) or for the 
stimulus pitch (range 70–72%) instead of attention, which also speaks for the presence acoustic information in 
the MEG responses; differing stimulus durations (the two words and their pitch variants are of slightly different 
lengths) and the corresponding variation in the evoked responses is probably the most important feature that 
the decoder uses to achieve this higher accuracy.

Our behavioural results showed that by doubling the number of deviants in the stimulus sequence (10% 
instead of 5%), their detection rate dropped drastically, suggesting that the higher deviant rate was too demand-
ing a task. The load theory of  attention40—mostly studied in the visual domain—suggests that with a higher 

8006004002000–200
Time, ms

8006004002000–200

0.35

0.25

0.15

0.05A
ct

iv
at

io
n 

(A
U

)

LH RH

330 ms

A
ct

iv
at

io
n 

(A
U

)

270 ms

A
tte

nd
ed

150 ms

U
na

tte
nd

ed

Attended YES Unattended YES

0.40

0.30

0.15
0.20
0.25

0.35

Attended NO Unattended NO

Figure 3.  Source estimation of the MEG evoked responses corroborates attention modulation in auditory 
cortical regions. Top: Source estimates of the evoked responses to attended and unattended word stimuli; 
estimates averaged across the group (N = 11). The colour represents the source amplitude first normalized to the 
absolute peak value of each individual source estimate and then averaged across subjects. Bottom: The temporal 
dynamics of left (LH) and right (RH) auditory-cortex activation to attended and unattended stimulus words 
(“Yes”/“No”), extracted from the source estimate at the coloured dots (green/blue in the top panel).
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Figure 4.  Auditory cortical regions generate the signals most informative of the attended stimulus stream. The 
colour gradient (yellow highest) represents the source-space spatial searchlight decoding result averaged across 
the subject group (N = 11). Each color dot represents the accuracy peak in one subject.
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attention demand, the task performance drops, which is in line with our data. The current view of load  theory41 
is that the load on working memory and cognitive control processes would hamper target detection, whereas 
load to visual short-term memory would do the opposite, that is, would reduce detecting distractors. However, 
the debate is still ongoing (for a review,  see42).

Earlier studies have demonstrated that rich naturalistic stimuli, compared to monotonous tones, not only 
improve the users’ ergonomic evaluation of the situation but also yield higher decoding  accuracy21,43. Further, it 
has been shown that subjects perform better on selective attention tasks when presented with naturalistic speech 
in comparison to other kind of naturalistic  stimuli44. Thus, the naturalistic, spoken-word stimuli that we used 
have likely contributed to the high classification accuracy.

In our study, the pitch difference between the spoken-word streams due to speaker gender (male and female 
voices) likely helped focusing attention to one speaker. Yet, the pitch itself did not seem to play a role in either 
stream alone as the attention decoding accuracy for each word-stream was very similar (Fig. 2).

Stimulus timing likely has an effect on decoding accuracy as it influences the amplitude and latency of the 
attention-modulated evoked responses. Stimulus onset asynchrony (SOA) has been shown to affect accuracy in 
decoding attention to simple tones by Höhne et al.45; they found that SOA of 1000 ms gave the best decoding 
accuracy but the highest information transfer rate was achieved with short SOA’s (87–175 ms). Other studies 
that used virtual sound stimuli observed that SOA of 400–600 ms provided the best decoding  accuracy28,46. 
Given those previous studies, our SOA of 1000 ms was likely optimal in terms of decoding accuracy but probably 
would not have yielded the highest information transfer rate, if our paradigm was applied in a brain–computer 
interface (BCI).

Typically, using a longer span of data for decoding improves accuracy if all data are informative; for example, 
Maÿe and colleagues have demonstrated this in the BCI  context47. Also our results showed that using the long 
(2-s) instead of the short (1-s) epoch increased the accuracy of decoding the target of attention in all 14 subjects. 
Again, for a BCI, the long epochs may not be the optimal choice to maximize the information transfer rate.

Spatial searchlight decoding across the cortex yielded accuracy peaks at locations similar to those of the largest 
differences in the source estimates of the evoked responses to the two attention conditions. This agreement of 
the two analysis methods further supports the notion that the selective auditory attention-modulated cortical 
activity is mostly in the primary auditory  cortex48. Regardless of the roughly similar cortical location of the most 
attention-informative source in each subject, these locations did not fully overlap, which led to a dispersed group 
average even though interindividual variation of cortical anatomy was reduced by surface-based morphing of 
the individual brains to an average brain. This variation—although minor—in the location and orientation of 
the source providing the highest decoding accuracy likely means that classifiers do not generalize well across 
subjects but that the classifier should be trained separately for each subject if one is aiming to the highest accuracy.

Left and right hemispheres are differently specialised to process auditory stimuli. Language-specific areas 
are typically lateralised to the left  hemisphere49. For instance, left hemisphere has been found to respond more 
than the right to the temporal aspects of auditory  stimuli50. For comparison, right hemisphere has been found to 
be more involved in spectral processing of e.g. tones and  music51. Previous studies found that right hemisphere 
responds to the manipulation of pitch in human  speech50,52,53.

Based these previous findings and our data, we suggest that selective attention is engaged to follow the regular 
pitch alternation and thus to support the detection of its infrequent deviants in the indicated stimulus sequence. 
In our data, such an engagement was manifested in the responses in the right hemisphere (attended vs. unat-
tended stimuli) at around 270 ms after the stimulus onset. The left hemisphere was activated later (at around 
330 ms) and had higher activity for the attended vs. unattended stimuli while such a difference was not as clear 
in the right hemisphere. The peak of left-hemisphere source could potentially be related to the processing of 
lexical/semantic information as, e.g., for visual word  stimuli54.

It is conceivable that in our experiment participants applied different strategies of keeping their attention to 
one auditory stream or they might have even changed their strategy in the course of the experiment. This pos-
sibility could be studied by training the decoder by samples from specific parts of the recording (e.g. only from 
the beginning) and comparing the obtained classification accuracy. In addition, the influence of stimulation 
rate to selective attention and its decoding from brain signals could be tested. Moreover, future studies could 
assess individual differences in response latency and spatial patterns on the MEG sensor array that may limit 
across-subject generalization.

Using the current experimental paradigm, one could test how robustly the observed attention modulation 
of brain responses could be detected by EEG instead of MEG. Spatial separability of cortical sources is typi-
cally poorer in EEG compared to  MEG55,56 and thus the accuracy of decoding the attended word stream from 
EEG would likely be lower; yet, the accuracy could remain at a level which enables a portable and intuitive 
brain–computer interface.

Conclusions
We showed that the attended spoken-word stream can reliably be decoded from just one-second epochs of 
unaveraged MEG data. The achieved high decoding accuracy shall enable future investigations on the neural 
mechanisms of attentional selection and it may also be exploited in a MEG- or EEG-based streaming brain-
computer interface.

Materials and methods
Participants. Fifteen healthy adult volunteers (4 females, 11 males; mean age 28.8±3.8 years, range 23–38 
years) participated in our study. Two subjects were left-handed and the rest right-handed. Participants did not 
report hearing problems or history of psychiatric disorders. The study was approved by the Aalto University 
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Research Ethics Committee. The research was carried out in accordance with the guidelines of the Declaration 
of Helsinki, and the subjects gave written informed consent prior the measurements.

Stimuli and experimental protocol. The subjects were presented with two auditory streams, one com-
prising the spoken word “Yes” and the other the word “No”. The words alternated such that the words did not 
overlap. In each stream (“Yes” and “No”), the stimulus onset asynchrony (SOA) was 1000 ms, and the duration of 
the stimulus words were 450–550 ms depending on the word and its pitch variant. Fig. 5 illustrates the stimulus 
timing (Fig. 5a), positioning in the acoustic scene (Fig. 5b) and the structure of the stimulus sequence Fig. 5c.

To create a realistic acoustic scene, the stimuli were recorded with a dummy head (Mk II, Cortex Instruments 
GmbH, Germany) at the center of a room with dimensions comparable to those of the magnetically shielded 
room where the MEG recordings were performed later. The speakers were standing at about at − 40 and + 40 
degrees from the front-line of the dummy head at a distance of 1.13 m. The word “Yes” was uttered by a female 
and the word “No” by a male speaker. Thus, in the experiment, the sound of each speaker was presented to both 
ears of the subject as recorded with the dummy head; see Fig. 5a.

Subjects were asked to attend to one of the two asynchronously alternating spoken word streams at a time by 
a visual cue (“LEFT-YES” or “RIGHT-NO”) shown next to the fixation cross and accordingly on left or right side 
of the screen. Each stream had two alternating pitches of the spoken word (denoted as [..., yes, YES, yes, YES, ...] 
and as [..., no, NO, no, NO, ...]). The original voice recordings were used as the low-pitch stimuli, and the pitch 
was increased by 13% and 15% for the high-pitch versions of “Yes” and “No”, respectively. In each spoken-word 
stream, occasional violations (deviants) of otherwise regular pitch alternation (standards) occurred. The subjects 
were instructed to count the deviants in order to keep their attention to the indicated spoken word stream stimuli. 
The stimulus sequence always started with the low-pitch word; see Fig. 5c.

Deviants were presented with the probability of 10% in both streams for the first seven subjects and with 
probability of 5% for the rest of the subjects. The deviant frequency was decreased based on subject feedback to 
reduce the mental load of memorizing the deviant count.

The experiment comprised 8 blocks, each lasting about 135 s. Two seconds before a block started, the subject 
was instructed to direct his/her attention to one of the streams by the cues “LEFT-YES” or “RIGHT-NO” on the 
screen. The task of the subject was to focus on the indicated word stream, covertly count the deviants, maintain 
gaze at the fixation cross displayed on the screen and verbally report the count at the end of the block.

During the cue “LEFT-YES”, the evoked responses to the word “Yes” were assigned to the condition “Attended 
Yes” and the evoked responses to “No” were assigned to the condition “Unattended No”. Similarly, during the cue 
“RIGHT-NO”, evoked responses to “No” were assigned to the condition “Attended No” and, accordingly, evoked 
responses to “Yes” were assigned to the condition “Unattended Yes”.

The experiment always started with a block with the cue “LEFT-YES” and was followed by a block with the 
cue “RIGHT-NO”. The order of the remaining six blocks was randomized across subjects. The first blocks were 
not randomised due to our main goal to use the first two blocks for training the classifier. The total length of the 
experiment was 50–60 min including the breaks between the blocks.

PsychoPy version 1.79.0157,58 Python package was used for controlling and presenting the auditory stimuli 
and visual instructions. The stimulation was controlled by a computer running Windows 2003 for the first nine 
subjects and Linux Ubuntu 14.04 for the rest. Auditory stimuli were delivered by a professional audio card (E-MU 
1616m PCIe, E-MU Systems, Scotts Valley, CA, USA), an audio power amplifier (LTO MACRO 830, Sekaku 
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Electron Industry Co., Ltd, Taichung, Taiwan), and custom-built loudspeaker units outside of the shielded room 
and plastic tubes conveying the stimuli separately to the ears. Sound pressure was adjusted to a comfortable level 
for each subject individually. Due to timing inaccuracies in the stimulus presentation system, the delay from the 
trigger to sound onset for the “Yes” stimuli varied with a standard deviation of 7 ms while that for “No” varied 
with a standard deviation of 11 ms.

MEG data acquisition. MEG measurements were performed with a whole-scalp 306-channel Elekta—
Neuromag VectorView MEG system (MEGIN Oy, Helsinki, Finland) at the MEG Core of Aalto Neuroimaging, 
Aalto University. During acquisition, the data were filtered to 0.1–330 Hz and sampled at 1 kHz. Prior to the 
MEG recording, anatomical landmarks (nasion, left and right preauricular points), head-position indicator coils, 
and additional scalp-surface points (around 100) were digitized using an Isotrak 3D digitizer (Polhemus Naviga-
tional Sciences, Colchester, VT, USA). Bipolar electrooculogram (EOG) with electrodes positioned around the 
right eye (laterally and below) was recorded. Fourteen of the 15 subjects were recorded with continuous head 
movement tracking. All subjects were measured in the seated position. The back-projection screen for deliver-
ing the visual instructions was 1 m from the eyes of the subject. If needed, vision was corrected by nonmagnetic 
goggles.

The MEG recording of one subject had technical problems and this dataset had to be dropped from the 
analysis.

Data pre-processing. The MaxFilter software (version 2.2.10; MEGIN Oy, Helsinki, Finland) was applied 
to all MEG data (magnetometers and planar gradiometers) to suppress external interference using temporal 
signal space separation and to compensate for head  movements59. Further analysis was performed using the 
MNE-Python60,61, version 0.21; and  ScikitLearn62, version 0.23.2; software packages.

Infinite-impulse-response filters (4th-order Butterworth, applied both forward and backward in time) were 
employed to filter the unaveraged MEG data to 0.1–30 Hz for visualization of the evoked responses and for sen-
sor- and source-level decoding. Ocular artifacts were suppressed by removing those independent components 
(1–4 per subject, on average 3) that correlated most with the EOG signal.

For the subsequent data analysis, only planar gradiometers were used due to the straightforward interpreta-
tion of their spatial pattern; they show the maximum signal right above the active source.

Epochs with two different pre- (200 ms and 500 ms) and post-stimulus (800 ms and 1500 ms) periods were 
extracted from the MEG data at every word stimulus. Epochs were rejected if any of the planar gradiometer 
signals exceeded 4000 fT/cm. Deviant epochs were excluded from data analysis. The trial counts were equalized, 
and the responses averaged across each condition (“Attended Yes”, “Attended No”, “Unattended Yes” and “Unat-
tended No”) for visualization and source estimation.

Source estimation. Head models were constructed based on individual magnetic resonance images (MRIs) 
by applying the watershed algorithm implemented in the FreeSurfer  software63–65, version 5.3. Using the MNE 
software, single-compartment boundary element models (BEM) comprising 5120 triangles were then created 
based on the inner skull surface. In addition to the one subject with technical problems in MEG recording, the 
MRIs of three subjects were not available, leaving 11 subjects for the source estimation.

For the source space, the cortical mantle was segmented from MRIs using FreeSurfer and the resulting triangle 
mesh was subdivided to 4098 sources per hemisphere. The dynamic statistical parametric  mapping66, dSPM; 
variant of minimum-norm estimation was applied to model the activity at these sources. The noise covariance 
was estimated from the 2-min resting-state measurement of each subject. These data were pre-processed similarly 
as the task-related data.

The source amplitudes for the attention conditions “Attended Yes”, “Unattended Yes”,“Attended No” and 
“Unattended No” were estimated for all subjects individually. For the group-level source estimate, the obtained 
source amplitudes were first normalized such that the absolute peak value of the attended condition became one, 
the estimates were morphed to the FreeSurfer average brain and then averaged across subjects. The morphing 
procedure from individual brains to the average brain is described by Greve et al.67.

Decoding. Sensor‑level decoding. A linear support vector  machine68, SVM; classifier implemented in the 
Scikit-learn  package62 was applied to unaveraged epochs to decode the conditions “Attended Yes” vs. “Unat-
tended Yes” and “Attended No” vs. “Unattended No”. For comparison, decoding was also performed stimulus-
word-wise, i.e. “Attended Yes” + “Unattended Yes” vs. “Attended No” + “Unattended No”. In addition, pitch-wise 
and single pitch variant attention-wise decoding were performed.

The pre-processed MEG data (filtered to 0.1–30 Hz) were down-sampled by a factor of 8 to a sampling rate 
of 125 Hz to reduce the number of features while preserving sufficient temporal information. Amplitudes of the 
planar gradiometer channels were concatenated to form the feature vector. Shuffled five-fold cross-validation 
(CV) was applied with an 80/20 split; 80% of data were used for training and the rest for testing. The empirical 
chance level was around 55% for our sample size of 500 epochs in this two-class decoding  task69. We also verified 
the empirical chance level by the method by Ojala and  Garriga70 and in our case it was 53%.

Decoding was separately performed on data of (1) the entire 2-s epoch (250 time points × 204 channels; long‑
epoch decoding), (2) the entire 1-s epoch (125 time points × 204 channels; short‑epoch decoding), (3) one time 
point (1 time point × 204 channels; time‑resolved decoding), and (4) one channel (250 time points × 1 channel; 
spatially‑resolved decoding).
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Source‑level decoding. A linear SVM decoder with five-fold cross-validation (80%/20% split for training/test-
ing) was applied to the individual source estimates for the attention conditions “Attended Yes” vs. “Unattended 
Yes” and “Attended No” vs. “Unattended No” calculated from all MEG planar gradiometer channels. A spatial 
searchlight decoding across the source space was used on the 1-s (− 200 to 800 ms after stimulus onset) epochs, 
and the resulting accuracy maps were morphed to the FreeSurfer average brain and averaged across the subjects 
(N = 11). The accuracy maps for attention conditions “Attended Yes” vs. “Unattended Yes” and “Attended No” vs. 
“Unattended No” were then averaged to obtain a general accuracy map.

Data availability
The datasets generated and analysed during the current study are not publicly available due to the local legislation 
on research on humans but are available from the corresponding author on reasonable request.
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