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Beat‑wise segmentation 
of electrocardiogram using 
adaptive windowing and deep 
neural network
S. M. Isuru Niroshana 1, Satoshi Kuroda 2, Kazuyuki Tanaka 2 & Wenxi Chen 1*

Timely detection of anomalies and automatic interpretation of an electrocardiogram (ECG) play a 
crucial role in many healthcare applications, such as patient monitoring and post treatments. Beat-
wise segmentation is one of the essential steps in ensuring the confidence and fidelity of many 
automatic ECG classification methods. In this sense, we present a reliable ECG beat segmentation 
technique using a CNN model with an adaptive windowing algorithm. The proposed adaptive 
windowing algorithm can recognise cardiac cycle events and perform segmentation, including 
regular and irregular beats from an ECG signal with satisfactorily accurate boundaries.The proposed 
algorithm was evaluated quantitatively and qualitatively based on the annotations provided with 
the datasets and beat-wise manual inspection. The algorithm performed satisfactorily well for the 
MIT-BIH dataset with a 99.08% accuracy and a 99.08% of F1-score in detecting heartbeats along with 
a 99.25% of accuracy in determining correct boundaries. The proposed method successfully detected 
heartbeats from the European S-T database with a 98.3% accuracy and 97.4% precision. The algorithm 
showed 99.4% of accuracy and precision for Fantasia database. In summary, the algorithm’s overall 
performance on these three datasets suggests a high possibility of applying this algorithm in various 
applications in ECG analysis, including clinical applications with greater confidence.

A typical electrocardiogram (ECG) depicts the heart’s electrical activity and is a well-established cardiology 
technique for analysing the heart’s medical state and diagnosing heart anomalies. Careful examination of an ECG 
by an expert cardiologist or a physician is one of the standard practices in routine clinical procedures as ECG is 
recognised as a primary vital signal that ties with the physiology of the human body. The ECG beats’ regularity 
is also used as a diagnostic tool in specific topics such as evaluating mental stress1,2. However, the traditional 
diagnosis is becoming inefficient because, large amounts of heterogeneous data generated with the rapid spread 
of heart-related disorders in modern society. ECG inspection is essential to detect severe cases and perform close 
inspections after treatments, due to high prevalence of heart related complications3,4.

Various techniques have been proposed and implemented to perform automatic computer-based ECG clas-
sification in the past decades. Many follow three phases to perform the detection; (i) pre-processing, (ii) heartbeat 
segmentation (iii) beat-wise classification5–7. Automatic detection and segmentation of the ECG beat with R-peak 
(the critical event when detecting a single beat) is one of the essential steps in many ECG-based algorithms, 
including cardiac diagnosing8,9, heart rate variability analysis, and ECG-based authentication10,11. The importance 
of heartbeat segmentation becomes more pronounced in ECG analysis, where the classification phase strictly 
relies on the separated heartbeat5. Misdetections occur in the segmentation phase can propagate the error to the 
subsequent stages causing malfunction in the classification algorithms. Generally, these algorithms are designed 
based on digital filters12–16, signal processing techniques17, linear prediction, wavelet transforms18–23, derivatives, 
mathematical morphology24,25, geometrical matching, neural networks and hybrid approaches26,27. This article 
proposes two ECG beat segmentation methods using a CNN model and an adaptive windowing technique which 
can potentially employed as a preprocessing tool in beat-wise ECG analysing algorithms.

Methods
In this section, the methodology for training the CNN to distinguish ECG heartbeats and the concept of the 
adaptive windowing algorithm are presented. Table 1 shows the symbols and definitions used in this article.
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Implementation of the CNN.  Dataset, pre‑processing, and augmentation.  The main steps followed for 
implementing the proposed adaptive windowing algorithm are shown in Fig. 1. Mainly it consists of two phases, 
(A). Implementation and validation of the CNN model based on k-fold cross-validation (B). Implementation 
and validation of the adaptive windowing (see Fig. 2). ECG data from the MIT-BIH arrhythmia database28,29 was 
employed to assess the proposed technique. The MIT-BIH arrhythmia database comprises diverse beat types 
derived from 48 recordings of 47 subjects, with each record containing a 30-min long ECG segment sampled at 
360 Hz and band-pass filtered at 0.1–100 Hz. The dataset includes an annotation file for each record, specifying 

Table 1.   Symbols and definitions used in this article.

Symbol Definition

Variables

fs Sampling rate

j j th heartbeat

i i th alternative ECG segment index (heartbeat and ¬heartbeat)

t, m, n Discrete-time variables (Time sampling)

u(t) Discrete-time ECG signal comprises a successive heartbeat triplet (discrete-time variable t)

vi,j(m) ith Variation of ECG segment extracted from jth Main heartbeat in u(t)

Li,j Length of vi,j(m)

wi,j(n) Aligned version of vi,j(m)

ωj Updated window length after j th detecting j th heartbeat

sj Window stepping length (step size)

cpj jth Critical point (horizontal index)

˜cpj Temporary critical point before confirming the cpj (horizontal index)

cj The length between cpj and cpj−1

Cj Mean critical point interval

wst Window starting position

cpminj
Estimated value of minimum cpj (detects unusual CPs located too close)

cpmaxj
Estimated value of maximum cpj (detects unusual cjs)

blj Left margin of the j th segmented beat (method I, immediate detection)

brj Right margin of the j th segmented beat (method I, immediate detection)

˜blj
Left margin of the (j − 1)th segmented beat (method II detection)

b̃rj Right margin of the (j − 1)th segmented beat (method II)

Constants

ηw Regulates the windowing length

ηs Regulates the step size

ηof Regulates the offset length from the cp

ηsof Regulates the length of small steps

ηcmin Regulates estimated expected value of minimum cpj
ηcmax Regulates estimated expected value of maximum cpj
ηδ Regulates the length of segmented ECG (safety margin)

ηar Aligning ratio

pb Set probability for detecting heartbeat

M Fixed length of the input

K Number of heartbeats used for moving average

Others

sδ Use small step if true

b+ True if heartbeat is detected

ζECG Raw ECG signal ζECG ≥ ω0

ζtemp Part of raw ECG signal extracted 0 < ζtemp ≤ M

�cnn CNN model

f a() Function which aligns an ECG segment

f p() Function calculates the probability of being a heartbeat

f w() Function calculates all the adaptive window parameters

P(B) Probability of being a heartbeat event (B)

δ Offset values calculated when P(b) ≥ pb but No heartbeat detection
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each R peak position and the heartbeat label. Each record contains an upper and lower lead signal acquired by 
placing the electrodes on the chest.

Adding random perturbation based on a meaningful augmentation strategy can increase the diversity of the 
dataset (variance). Data augmentation is employed not only as a potential method for improving performances 
in the speech and vision domains30,31 but also in ECG classification32–34.

Before starting the CNN training, data augmentation was carried out as explained in Figs. 3, 4, and 5. The 
term QRS-like is used in the rest of the article to denote a typical or atypical cardiac cycle event, as QRS pat-
terns may be distorted or not perfectly presented in abnormal ECG beats. Generally, CNN requires a specific 
fixed input size, considering the worst-case scenario, we set the input segment size as 512 samples ( ≈ 1.4 s for 
signals sampled at 360 Hz).

To produce positive and negative samples, we exploited three critical points and other points as described in 
Fig. 3. Here, a positive sample means an ECG beat where elementary cardiac cycle attributes are seated vaguely 
in the centre [a segment (≤ 1.4 s) comprised of rudimentary QRS characteristics where a normal or an abnormal 
cardiac beat event is presented]. Slightly shifted versions of the main QRS-like pattern were extracted to produce 
such alternative ECG-beat segments. The amounts of the shift to the right and left are 4, 8, and 12% of the rela-
tive length s, respectively (where s is the length of the main QRS-like ECG segment as shown in Fig. 3). These 
shifted versions are adequately off-centred versions of the main QRS-like pattern and adequately off from being 
positioned too close to the rightmost or leftmost corners. Additionally, five end-trimmed versions around the 
main critical point were also created to ensure that the CNN can identify distorted versions of the main QRS-
like pattern. 12 positive versions (11 augmented versions) of QRS-like patterns were created, including the main 
QRS morphology which is illustrated in Fig. 4. Having a robust CNN which can detect off-centred and shifted 
versions makes it easier to locate the ECG beat even if the window is not perfectly aligned with the main points.

Figure 1.   The method flow for the implementation of the proposed approach.

Figure 2.   The overview of the proposed windowing approach.
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A negative sample means an ECG segment where attributes of a complete cardiac cycle are not entirely pre-
sented or partially accommodated (segments (≤ 1.4 s) which do not represent a normal or an abnormal cardiac 
beat event completely). Generating 12 negative samples using an ECG segment is shown in Fig. 5. Here, incom-
plete parts of QRS-like shapes, extremely left or right-shifted versions, and segments containing two critical 
points were extracted using consecutive critical points.

Any alternative positive or negative segment (separated according to Figs. 4 and 5) can be represented as 
signal vi,j(m) after separating ECG segment uj(t) (see Fig. 6a) with the main heartbeat (Hj) using the adjacent 
critical points (cpj−1, cpj , cpj+1) . Here vi,j(m) is the ith alternative example from jth heartbeat with sample points 
designated as m as illustrated in Fig. 6a. The length of each segment is shown as Li,j . As the Li,j can vary from 
segment to segment, all vi,j(m) are homogenised to have M(= 512) samples and aligned to form wi,j(n) as shown 
in Fig. 6b and in Eq. (1) to represent VBs and NVBs.

Figure 3.   An ECG segment contains a triplet of critical points, cpl  left critical point, cpr  right critical point, 
cpm  main critical point, bl  left margin of the main beat, br  right margin of the main beat, tl - left trimming 
point (cpl  offset), tr right trimming point (cpr + offset), s  length of the main ECG beat (s = 0.5d1+ 0.6d2)).

Figure 4.   Creating 12 alternative positive ECG beat segments based on the main ECG beat in the middle of a 
triplet of ECG beats shown in Fig. 3, all the shifts and scale down are calculated reference to length s.
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where, xi,j , {n, L,M ∈ Z, n ≥ 0,M ≥ Li,j > 0}

After the centring alignment strategy was carried out, all wi,j were min-max normalised to the range [0, 1] 
to form vector xi,j with length M(= 512) as depicted in Eq. (2). As the original sampling rate fs is 360  Hz, the 
maximum length of the ECG segment is ≈1422 ms ( 512

360
) . The set of feature vectors in the dataset χ can be denoted 

as in Eq. (4)

where, (i, j ∈ Z, I ≥ i > 1, J > j ≥ 0, I = 24) , J− total heartbeats, j = 0 is undefined in the training phase, I− 
total alternatives per beat.

In this study, an input segment xi,j (see Eq. (3)) from the training dataset χ can be denoted by xi,j ∈ RM∗1 with 
its label yi,j ∈ Y , and Y = {VB,NVB} . Then, the proposed CNN model can be defined by a function f̂ : xi,j → yi,j , 
which is later used to derive the function f p(�cnn, ζtemp).

CNN training and evaluation.  The CNN model architecture comprises five convolutional layers followed by 
rectified linear unit (ReLU) activation and max pooling layers. Finally, a fully-connected layer is followed by a 
dropout layer and a SoftMax layer for binary classification.

The proposed CNN was implemented in MATLAB 2021a using record-wise 10-fold cross-validation. Before 
implementing the 10-fold configuration, several architectures were tested to ensure satisfactory performance. 
In each fold, the network was trained for 15 epochs resulting in 10 models (one epoch covers approximately 2.3 
million equally distributed positive and negative training samples as well as 0.26 million test samples).

Implementation of adaptive windowing algorithm.  Motivation.  Figure 2 shows the elementary op-
eration of the proposed windowing algorithm. A window runs along the ECG signal to extract an arbitrary ECG 
segment consecutively. Then the ECG segment is passed through the trained CNN to calculate the probability 
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(2)xi,j(n) =
wi,j(n)−min(wi,j)

max(wi,j)−min(wi,j)

(3)xi,j =[xi,j(0), xi,j(1), xi,j(2), . . . , xi,j(M − 1)]T

(4)χ = {x1,1, x2,1, x3,1, . . . , xi,j , . . . , xI ,J }

Figure 5.   Creating 12 negative ECG beat segments based on adjacent critical points of a triplet of ECG beats 
shown in Fig. 3.
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P(B), where B is the event containing a full heartbeat-related pattern in an ECG segment (length ≤ 1.4 s). If the 
CNN predict the relevant ECG segment is a Non-valid heartbeat segment, the window is moved forward a step 
and repeats the same processes until a valid heartbeat ECG segment is met. However, this approach arouses 
some challenges, as depicted below.

•	 multiple detections (False Positives) of the same beat can be expected if the step size is too small.
•	 a larger number of misdetections can be expected if the step size is too long
•	 none or significantly fewer detections (False Negatives) can be expected if the window size is too long or too 

short

Therefore, using a fixed window with a fixed step size may cause numerous misdetections, over-detections and 
malperformance. In addition, after detecting a Valid Heartbeat segment, the boundaries should be defined so that,

•	 the most appropriate features are preserved
•	 the main morphology is aligned to the centre (because the CNN detects valid heartbeat segments which are 

inexplicitly seated around the centre of the segment)
•	 minimised or zeroed morphological parts integrated into the segmented part from neighbouring heartbeats

All things considered, the facts suggest that the window size, step size and boundary should be meticulously 
calculated by exploiting the local characteristics and behaviour of the interested region of the signal.

Figure 6.   Homogenising the length of clipped ECG to a fixed length (512 samples), centralising the main 
ECG event and scale to [0,1] range. (a) Examples of the positive and negative sample (b) Examples of positive 
and negative samples after aligning (c). Example of the process applied to positive and negative samples from a 
record.
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Adaptive windowing algorithm, setting boundaries, and beat segmentation.  After the j th heartbeat detection, 
the length of the window, and the step size, are denoted as ωj and sj respectively (see Fig. 8a). Initial parameters 
such as starting window length ω0 , step size s0 etc. are calculated in a separate process (demonstrated later in 
this article) before executing the segmentation process. Assume that the (j − 1)th beat is detected, and then the 
window is moved forward with sj−1 step. Then an ECG segment ζtmp with a length of ωj−1 is separated, preproc-

Figure 7.   Determination of critical points and window relocation after segmentation.

Figure 8.   Detailed overview of the adaptive windowing process.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11039  | https://doi.org/10.1038/s41598-023-37773-y

www.nature.com/scientificreports/

essed, aligned and passed through the CNN to calculate the probability P(B) (B is the event ζtmp being a valid 
heartbeat). If P(B) > pb , where pb(= 0.9) is a predefined confidence level, then it can be safely inferred that most 
of ζtmp fully or partially contain a QRS-like segment. However, it is obvious that the main morphology may not 
align with the centre of ζtmp because the window does not cover the entire event. Therefore, a cp is calculated to 
approximate the point where the main event is centred around. The boundaries can then be calculated based on 
it. As shown in Fig. 7, the cp of the ζtmp is computed based on the central tendency (here, we chose the median as 
the central tendency measure) of the segment and the local maximum and the minimum. If the central tendency 
is closer to the local maximum, the cp is considered as the maximum and if it is closer to the local minimum then 
the cp is selected as the local minimum. In the rest of the article, we refer to the horizontal component (sample 
index) of the cp as cp.

If P(B) ≤ pb , the window is forwarded without updating window parameters. When P(B) > pb and cpj is not 
too close to the previous cpj−1 , the new window size ωj and step sj is calculated as a ratio of mean cp interval C̄j 
resulting (ηw · C̄j and ηs · C̄j) respectively, where ηw(= 0.9) and ηs(= 3·ηw

11
) are predefined constants. Equation 

(8) shows how C̄j is calculated.
Subsequently, left and right boundaries are calculated. Here we propose two cases to calculate the bounda-

ries (method I and II). In method I, the boundaries of the jth beat are calculated with reference to the cpj , and 
predefined constants, centre align ratio ηar(= 5

11
) , safe margin constant ηδ(= 9

10
) and Cj  resulting the segmen-

tation length being ηδ · C̄j . Here, the current critical event is aligned so that the cp lies in a 5 : 6 ratio within the 
segmented ECG beat. In method II, the boundaries of (j − 1)th are calculated based on the locations of adjacent 
(left cpj−2 , right cpj ) and predefined arbitrary constants ηl(e.g ., 0.5) and ηr(e.g ., 0.5) . Once the segmentation is 
executed, the new window ωj starts from a point beyond the current critical point to save iterations and avoid 
multiple detections. The length of the offset is calculated proportionally to window ωj length using a constant 
ηof (= 0.1).

Avoiding false detections caused in exceptional scenarios.  If the ECG signal is too noisy or anomalous, multiple 
detections can be expected in the neighbourhood of current cp for Non-heartbeat segments which morpho-
logically appear as QRS-like segments (e.g., wider QRS or T wave, deformed T wave etc.). As the window size 
directly depends on the moving average of the cp interval Cj and updated at each jth detection, the adaptive 
window parameters can be erroneous (may cause the window to be very small) causing many iterations to auto-
correct. Figure 8a,b show a double-checking procedure introduced to tackle the trade-off between maintaining 
the adaptability of the window parameters and avoiding false detection near the main cp.

If the newly detected c̃pj is too close to the cpj , the same window is run starting from a slightly different point 
beyond the faulty c̃pj with tiny steps until it detects the next cp. The faulty c̃pj does not take into account when 
calculating the mean cp interval. The faulty c̃pj is detected based on adaptively changing thresholds cpminj

 and 
cpmaxj

 where cpminj
= ηcmin · Cj , (ηcmin = 0.45) and cpmaxj

= ηcmax · Cj , (ηcmax = 1.45) . If a c̃pj is detected within 
45% of Cj−1 or beyond 145% of Cj−1 , it infers that the c̃pj is too close or too far to the cpj−1 . Therefore, all c̃pj that 
do not satisfy these constraints are omitted when calculating the new mean cp interval Cj . On the other hand, if 
the current cp is too far away from the last detected cpj−1 , it also causes the window to be too large resulting in 
no detections or faulty detection. Therefore, an adaptively changing threshold is calculated 
cpmaxj

= ηcmax · C̄j(ηcmax = 1.4 means that if there is a cp within 145% of mean cp interval Cj−1 , then c̃pj is 
omitted when calculating the new mean cp interval C̄j) . As a result, abruptly emerging false QRS-Like events 
within reach of the main cp or too far away from the cp have no major influence on miscalculating the window 
parameters. However, the cps found too far are segmented using current window parameters.

Equation (5) shows how the window parameters are updated in occurrences of valid beat detection and how 
the boundaries are calculated for method I. Equation (6) shows how the boundaries are calculated for (j − 1)th 
beat after the detection of j th beat (method II). Similarly Eq. (7) shows how the parameters get updated when 
a valid beat is not detected. Algorithm 1 (see Fig. 9) shows the pseudo-code for computing the initial window 
parameters before starting the segmentation, as the window is not yet adapted. Here we run the algorithm for 
the first 16 beats without performing segmentation. The initial window size ω0 is set as 1

2
· fs (0.5 s) where fs is 

the sampling rate. Then the window size is updated in each detection. If the window is not correctly adapted 
after the 16th beat, the initial window size ω0 is increased by multiples of e0.01 . Algorithm 2 (see Fig. 9) shows 
the pseudo-code of how the window parameters are updated during each iteration.
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Figure 9.   Pseudo-codes for the proposed algorithms.
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where, cr is the interval between cr and cr−1 , κ = K(= 16) , j = k in initialising phase (when κ ≤ K)
For quantitative analysis, the proposed method is evaluated using the MIT-BIH arrhythmia database, the 

European ST-T database, and Fantasia database. The CNN model was trained, tested and tuned since the MIT-
BIH arrhythmia database contains numerous anomalous QRS complexes, irregular rhythmic patterns, significant 
baseline drifts, and rapid changes. The performance is evaluated in several steps as follows. 

1.	 Performance evaluation for trained CNN based on 10-fold configuration for MIT-BIH arrhythmia database
2.	 Performance evaluation for adaptive windowing algorithm on MIT-BIH arrhythmia database 

(a)	 Evaluation of the accuracy of locating critical points
(b)	 Conformity of the boundaries of each beat based on manual inspection

3.	 Performance analysis of detecting critical points on the European ST-T database and Fantasia database 
(unseen data for the CNN)

It is practically impossible to formulate a coherent criterion to assess the accuracy of the boundaries. So, the 
segmented ECG beats were manually inspected to ensure that the boundaries were satisfactorily defined in 
accordance to a checklist (qualitative analysis) as follows. qualifying criterion

1.	 the critical point (main ECG event) is sufficiently aligned to the centre of the segmented ECG beats
2.	 the left and right margins are lied on the isoelectric line without overlapping the nearby ECG beats when 

applicable
3.	 slightly overlapped or trivially truncated versions of ECG beats were passed as correct when, 

(a)	 the margin of a beat is not straightforward or ambiguous
(b)	 the isoelectric line is not presented clearly due to the irregular nature of abnormal patterns, missing 

QRS patterns or possible intermingling between adjacent cardiac cycles

disqualifying criterion

1.	 when multiple critical points are observed in a segmented portion
2.	 when there is substantial overlap, and the boundaries are unambiguous
3.	 When a clear QRS-Like morphology is not observed in a segmented portion
4.	 when QRS-Like morphology is substantially aligned towards left or right corners

The European ST-T database and Fantasia database were used as a validation dataset, to verify the algorithm’s 
ability to locate critical points accurately. However, a subjective inspection was not performed as the dataset is 
too large.

Results
Performance of the CNN model.  The average accuracy for the whole dataset is determined based on the 
average accuracy of the test dataset of each fold. The average accuracy of the CNN is determined to be 99.11%. 
The fold wise accuracies showed almost consistent test accuracy for each fold, proving that the CNN is robust. 
According to Table 2, CNN has accurately classified 1,299,606 valid ECG beats and 1,307,380 Non-valid ECG 
beats. Here, we evaluated all alternative ECG segments when calculating the matrices, as they are not subject 
to any alterations other than shifting and trimming. However, there is no overlap between the training and test 
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datasets as the folds are configured record-wise. The sensitivity, accuracy, specificity , and the F1 score for the 
proposed model were calculated as 99.03%, 99.08%, 99.12%, and 99.08%, respectively.

Performance of the ECG segmentation.  In evaluating the segmentation, some parts of record 207 were 
discarded as we decided that the critical points were too ambiguous. Similarly, seven records (e0112, e0129, 
e0133, e0304, e0305, e0415, e0604) were not considered, as some annotations seem inconsistent. Whole seg-
mentation algorithm was also evaluated based on the criteria explained in this article. Table 3 shows the number 
of True Positives and False Positives, the precision and the accuracy for each record. As this algorithm focuses 
on segmenting the ECG beat, we used the term critical point, to separate the main ECG event accurately. There-
fore, some detected critical points, match the given annotated locations within a range. However, the majority 
of annotated locations exactly match the detected location. Even though this study does not focus on finding 
precise R-peaks, we decided to compare the peak locations with our critical points as tabulated in Table 3 for the 
sake of relating our research to similar studies. In Table 3, we illustrated the performance of locating the critical 
points and the segmentation performance.

The average agreement of detecting a critical point and an annotated location is 96.93, 98.41 and 98.94% 
within ±25,±50 , and ±75 (ms) margins, respectively. The study in16 also used this kind of margin criteria to 
evaluate the performance. 108,633 beats out of 109,473 have been correctly identified and appropriately seg-
mented in this study. The average of correctly identified and segmented beats is 99.25%, and the precision for 
correctly segmented beats is 99.62%. Figure 10 shows an assortment of examples which proves the robustness 
of the proposed algorithm against various scenarios of ECG signals. In each sub-figure, in Fig. 10, the top figure 
shows the detected ECG beat and the boundaries calculated based on method I and method II, and the bot-
tom two figures show the segmented ECG beats (last two beats). Two green vertical lines show the size of the 
next window and its position. For demonstration purposes, we indicated the annotated points with a blue dot 
provided by the original database. Figure 12 shows an instance of heartbeat segmentation from the European 
ST-T database. Here, red vertical lines indicate the given annotation location, and green vertical lines indicate 
the window size and position. The proposed algorithm perfectly detects and segments the ECG beats even when 
the signals are heavily affected by practical issues such as noise, baseline wander, abnormally larger or smaller 
S-T waves, morphological disparities, abnormally larger or smaller RR intervals, abnormally suppressed QRS 
patterns or irregular wave patterns which are illustrated in Figs. 10 and 12. Figure 11 shows how the windowing 
parameters such as window size, step size, windowing start offset, and expected maximum/ minimum cp interval, 
adaptively follow the fluctuations of mean critical point interval in different ratios.

Discussion
In this work, we proposed two ECG beat segmentation methods using a CNN model and an adaptive window-
ing algorithm that can serve as a preprocessing tool in beat-wise ECG analysing algorithms. This research was 
performed to improve the precision of ECG segmentation so that abnormal ECG beats also can be segmented. 
Specifically, we used a CNN model to detect critical points where the main ECG morphology is formed around 
to recognise an occurrence of a heartbeat cycle, unlike other methods, which employ signal quality, filters, or 
other signal processing techniques such as peak detection etc. Therefore a complete or incomplete heart cycle, 
including abnormal patterns such as arrhythmic events, could be identified more accurately. The performance 
matrix in Table 2 shows that the specificity, sensitivity, precision and F1-Score are close to 100%, meaning that 
the CNN model is very confident in classifying heartbeat and Non-heartbeat segments. As many similar studies 
focus on detecting accurate R peaks/ QRS detection and the proposed method focuses on adaptive segmenta-
tion via detecting critical points, this work differs from those in some aspects. So we compare our work with the 
study33 in Table 5 as both studies used the same database, and some techniques are comparable to each other.

In contrast to the CNN model proposed in33, our model achieved an F1-score of 99.8% whilst their model is 
96% for the MIT-BIH dataset. The precision shows a slightly lower value of 99.13% to their 100%. However, it 
should be noted that our model can distinguish both normal and abnormal heartbeat compared to the study in33, 
where the model is trained only with healthy individuals (only 23 records). Furthermore, in33 the training data is 
prepared using fixed lengths from the annotated points, unlike ours where all the lengths are calculated locally 
with reference to the adjacent critical points. This makes our CNN to be more sensitive to wider or narrower 
variations of QRS morphology. Additionally, the proposed model demonstrates better performance in terms of 
sensitivity, precision, and F1-Score in comparison to the Pan-Tompkins algorithm in locating critical points.

In calculating the boundaries of the heartbeat, we used an instantaneous critical point interval which can be 
closely related to the RR interval. Results presented in Tables 3 and 4 show that our idea of using an adaptive win-
dow calculated based on mean cp interval to identify QRS-like patterns and determine boundaries is a success.

Figure 10b–d,f demonstrate that the proposed algorithm can successfully detect and segment regular and 
irregular heartbeats even if the signal comprises abrupt changes, baseline wander, or a considerable level of noise, 
resulting in a high number of true positive and true negative detection level whilst having very low false negative 
and false positive. Figure 10a,e,g,h also show the observation in detecting and segmenting atypical heartbeats 
such as premature ventricular contraction etc. The algorithm showed appealing average accuracy of 98.3% and 
a precision of 97.4% for the unseen dataset as illustrated in Fig. 12 and Table 4.

The reported results for both datasets suggest a high possibility of using this algorithm in ECG analysing 
as a preprocessing tool, given the notion that correct segmentation is critical for medical equipment and the 
arrhythmia classification algorithms.

Even though some studies35,36 performed for R peak detection and detailed ECG delineation can not be 
directly related to our work, we review some potentials specific to this study for comparison and discussion. 
High pass or low pass filtering techniques were not exploited in our work to denoise the signal in contrast to the 
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Figure 10.   Segmentation of heartbeats from (a) a good quality signal comprised with normal heartbeats 
(record 113) (b) a noisy signal comprised of right bundle branch block beats (record 108) (c) a signal which 
has a baseline wander comprised with normal heartbeats (record 116) (d) a noisy signal comprised with 
normal heartbeats (record 104) (e) a signal comprised with premature ventricular contraction and fusion of the 
ventricular and normal beat (record 208) (f) a signal comprised with premature ventricular contraction (record 
200) (g) a signal comprised with right bundle branch block beats and premature ventricular contraction (record 
207) (h) a signal comprised with abnormal heartbeats (record 208).
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work in37, which was performed to detect T-Wave. Unlike in37, the proposed algorithm can be directly applied 
to the raw signal. On the other hand, our algorithm adapts its parameters depending on the cp interval in each 
detection, allowing to use of this algorithm for a wide variety of ECG waves which shows different characteristics.

Getting a high positive prediction rate is important to avoid false detections in many ECG applications. As a 
result of using adaptive window size and step size, we could use the sliding window more efficiently to reduce the 
number of iterations per detection (it can be fewer steps, 1–3 depending on the nature of the ECG). In this study, 
we did not use any hard thresholds allowing the algorithm to be adapted to the interested region of the signal. 
The window parameters and other local points are always recalculated and updated in each detection allowing 
the algorithm to detect the next heartbeat smoothly. As we tested the algorithm with two datasets, we found that 
the algorithm shows outstanding performance for unseen data, proving that this algorithm can be used robustly 
in detecting and segmenting ECG signals. In addition, the segmentation performance is monitored manually, 
beat by beat, to ensure that the boundaries are reasonable. It is important to mention that the high sensitivity 
and positive prediction rate reported in the CNN model proposed in this study have a balanced trade-off that 
supports the notion that this algorithm can be used reliably and accurately as an ECG segmentation tool.

Limitations and future works
The proposed approach intends to distinguish ECG beats from an ECG signal, including normal and pathological 
beats. However, the CNN model is trained based on one dataset; therefore, some pathological patterns might 
be new to the model, which may lead it to perform differently than intended. Possible failures of the windowing 
algorithm can be expected when extraordinarily high or low RR intervals are met as the CNNs maximum input 
is limited to 1.4 s. However, this problem rarely arises as the RR interval usually is lower than 1.4 s. There is a 
space to fine-tune the constants based on practical observations, domain-based knowledge and specific case 

Figure 11.   Adapting window parameters in each detection (a) record 208 (b) record 212 (c) record 207 (d) 
record 200.

Table 2.   Performance matrix for the proposed CNN. Numbers of correct predictions are given in bold.

Predicted labels

No. of invalid beats No. of valid beats

True Labels
No. of invalid beats 1299606 11474

No. of valid beats 12850 1307380

Sensitivity (Se, %) 99.03

Precision (P+, %) 99.13

Specificity (Se, %) 99.12

F1 Score (F1, %) 99.08

Accuracy (%) 99.08
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Table 4.   Performance of the critical point detection algorithm on MIT-European ST-T database ( ±25 ms 
margin basis).

Record Annotated CPs Detected CPs TP FP P
+ ACC.% Record Annotated CPs Detected CPs TP FP P

+ ACC.%

e0103 7311 7275 7266 9 99.9 99.4 e0212 10835 10826 10807 19 99.8 99.7

e0104 7747 7694 7685 9 99.9 99.2 e0213 11079 11086 11057 29 99.7 99.8

e0105 6683 6611 6148 463 93.0 92.0 e0302 10355 10301 10276 25 99.8 99.2

e0106 7197 7056 6983 73 99.0 97.0 e0303 8880 8873 8865 8 99.9 99.8

e0107 7077 7000 6983 17 99.8 98.7 e0306 7927 7858 7776 82 99.0 98.1

e0108 6687 6589 6192 397 94.0 92.6 e0403 9321 9296 9293 3 100.0 99.7

e0110 7000 6966 6807 159 97.7 97.2 e0404 6987 6940 6937 3 100.0 99.3

e0111 7565 7433 7323 110 98.5 96.8 e0405 11163 11092 11090 2 100.0 99.3

e0113 9057 8947 8930 17 99.8 98.6 e0406 8963 8762 8734 28 99.7 97.4

e0114 5629 5569 5569 5540 50.1 98.9 e0408 9043 9036 9032 4 100.0 99.9

e0115 11319 13260 11311 1949 85.3 99.9 e0409 12889 12887 12880 7 99.9 99.9

e0116 4517 4502 4447 55 98.8 98.5 e0410 7542 7523 7520 3 100.0 99.7

e0118 7121 7080 7080 0 100.0 99.4 e0411 9955 9927 9897 30 99.7 99.4

e0119 7764 7727 7656 71 99.1 98.6 e0413 8164 8146 8056 90 98.9 98.7

e0121 10658 10623 10618 5 100.0 99.6 e0417 9262 9252 9249 3 100.0 99.9

e0122 11387 11363 11362 1 100.0 99.8 e0418 11727 13591 11705 1886 86.1 99.8

e0123 9190 9174 9174 0 100.0 99.8 e0501 7776 7751 7737 14 99.8 99.5

e0124 9249 9213 9213 0 100.0 99.6 e0509 8091 8089 8085 4 100.0 99.9

e0125 9093 9069 9055 14 99.8 99.6 e0515 10748 12146 10651 1495 87.7 99.1

e0126 8300 16121 8266 7855 51.3 99.6 e0601 8789 8767 8762 5 99.9 99.7

e0127 9427 9391 9389 2 100.0 99.6 e0602 11152 11112 11045 67 99.4 99.0

e0136 7083 6929 6868 61 99.1 97.0 e0603 7990 7847 7472 375 95.2 93.5

e0139 10646 10386 10233 153 98.5 96.1 e0605 11389 11337 11311 26 99.8 99.3

e0147 6398 6362 6356 6 99.9 99.3 e0606 9650 9624 9609 15 99.8 99.6

e0148 6708 6614 6547 67 99.0 97.6 e0607 10284 10270 10256 14 99.9 99.7

e0151 7574 7548 7545 3 100.0 99.6 e0609 9333 9321 9319 2 100.0 99.8

e0154 6788 6288 5880 408 93.5 86.6 e0610 8019 7999 7998 1 100.0 99.7

e0155 8137 7829 7217 612 92.2 88.7 e0611 5812 5817 5812 5 99.9 100.0

e0159 9199 7862 7676 186 97.6 83.4 e0612 6902 6879 6876 3 100.0 99.6

e0161 8872 8857 8856 1 100.0 99.8 e0613 7803 7725 7724 1 100.0 99.0

e0162 10634 10613 10591 22 99.8 99.6 e0614 11143 11107 10981 126 98.9 98.5

e0163 7622 7594 7547 47 99.4 99.0 e0615 7202 7193 7191 2 100.0 99.8

e0166 6434 6399 6398 1 100.0 99.4 e0704 9744 10298 9356 942 90.9 96.0

e0170 8833 8823 8819 4 100.0 99.8 e0801 9403 9392 9385 7 99.9 99.8

e0202 9892 9857 9831 26 99.7 99.4 e0808 11108 11067 10949 118 98.9 98.6

e0203 10177 10166 10162 4 100.0 99.9 e0817 7563 7170 6823 347 95.2 90.2

e0204 11484 11464 11418 46 99.6 99.4 e0818 10141 10130 10129 1 100.0 99.9

e0205 11827 11101 11060 41 99.6 93.5 e1301 8761 8727 8594 133 98.5 98.1

e0206 10949 10903 10872 31 99.7 99.3 e1302 8374 8337 8333 4 100.0 99.5

e0207 7218 7188 7169 19 99.7 99.3 e1304 7888 7850 7697 153 98.1 97.6

e0208 8704 8696 8690 6 99.9 99.8 Total Average

e0210 8745 8727 8717 10 99.9 99.7 738054 745143 726095 24588 97.4 98.3

e0211 14995 14923 14917 6 100 99.5
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Figure 12.   Segmentation examples (European ST-T database record e0139).

Table 5.   Results comparison of the proposed approach with other databases, and P. Silva et al. work in33. *The 
performance is calculated only for healthy subjects. **The performance is calculated for all subjects including 
healthy and unhealthy

Database

QRS detection performance

Pan-Tompkins P.silva et el.* Proposed Method**

P+ F1-score P+ F1-score P+ Acc.%

CY-BHI 90.28 0.93 96.77 0.96 - –

MIT-BIH 97.84 0.97 100 0.96 99.13 99.08

ST-T – – – – 97.74 98.30

Fantasia – – – – 99.37 99.37

studies. Safety mechanisms such as time outs, and checking signal noise levels also can be employed in serious 
practical cases to ensure the adaptive parameters always lie within the realistic values.

In the future, we plan to train the network with more data collected locally and use other public datasets to 
increase performance and robustness. Further, the windowing algorithm can be modified in multiple ways to 
overcome the limitations of this work mentioned in the limitation section. For example, the same CNN model 
can be employed repeatedly to confirm that the boundaries are reasonable. If the validation fails, a boundary 
re-adjusting procedure can be implemented based on the prediction score. Multiple segmentation of the same 
beat is also an option in heavily complicated cases such as incomplete arrhythmic episodes. In future, we aim to 
extend this algorithm as a vote-based detection system with multiple classification methods to be used in various 
ECG analysing applications such as38 patented by the same authors.

Data availability
The data used to support the findings of this study are available freely at https://​physi​onet.​org/​conte​nt/​mitdb/1.​
0.0/ ,  https://​physi​onet.​org/​conte​nt/​edb/1.​0.0/, and https://​physi​onet.​org/​conte​nt/​fanta​sia/1.​0.0/.
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