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Clinical relevance of deep learning 
models in predicting the onset 
timing of cancer pain exacerbation
Yeong Hak Bang 1,2,5, Yoon Ho Choi 1,5, Mincheol Park 3, Soo‑Yong Shin 1* & Seok Jin Kim 4*

Cancer pain is a challenging clinical problem that is encountered in the management of cancer pain. 
We aimed to investigate the clinical relevance of deep learning models that predict the onset of 
cancer pain exacerbation in hospitalized patients. We defined cancer pain exacerbation (CPE) as 
the pain with a numerical rating scale (NRS) score of ≥ 4. We investigated the performance of the 
deep learning models using the Matthews correlation coefficient (MCC) with different input lengths 
and time binning. All the pain records were obtained from the electronic medical records of the 
hematology‑oncology wards in a Samsung Medical Center between July 2016 and February 2020. 
The model was externally validated using the holdout method with 20% of the datasets. The most 
common type of cancer was lung cancer (n = 745, 21.7%), and the median CPE per day was 1.01. The 
NRS pain records showed circadian patterns that correlated with NRS pain patterns of the previous 
days. The correlation of the NRS scores showed a positive association with the closeness of the NRS 
pattern of the day with forecast date and size of time binning. The long short‑term memory‑based 
model exhibited a good performance by demonstrating 9 times the best performance and 8 times the 
second‑best performance among 21 different settings. The best performance was achieved with 120 h 
input and 12 h bin lengths (MCC: 0.4927). Our study demonstrated the possibility of predicting CPE 
using deep learning models, thereby suggesting that preemptive cancer pain management using deep 
learning could potentially improve patients’ daily life.

Cancer pain is common in patients, particularly during the advanced stages of the disease, when the prevalence is 
estimated to be more than 40%. This contributes to poor physical and emotional state of the  patients1, 2. Prolonged 
survival, followed by advancement in diagnosis and treatment of cancer, results in an increase in the number 
of patients experiencing persistent  pain3, 4. This trend has also been documented in hematology patients at the 
time of diagnosis, during therapy, and in the last month of their  life5, 6. As per the estimates of GLOBOCAN 
2020, the incidences of cancer is increasing and will be more than 19  million7. Thus, cancer-related pain would 
be a major issue in global healthcare systems.

Acute exacerbation of cancer pain is a challenging clinical problem in managing cancer pain, negatively 
impacting the patient’s daily  life8–11 Some guidelines suggest that the occurrence of three to four cancer pain 
exacerbation (CPE) episodes per day is  acceptable12. However, a less frequent CPE could also affect patients’ daily 
quality of life. In addition, the interval between pain onset time and drug effect time could worsen the patients’ 
quality of life. In particular, hospitalized patients can only avail short-acting opioids upon informing the nurse. 
Thereafter, the nurse must inform the doctor for a decision. The patients would likely be left in severe pain dur-
ing this processing time. From this point of view, accurate prediction of CPE could alleviate the frequency and 
interval of CPE and improve patients’ daily life well-being.

Recently, the time series model based on a deep learning algorithm has gained popularity based on its remark-
able  performance13, 14. Cancer pain may reflect the status of cancer invasiveness, exposure to cancer treatment, 
pharmacodynamics of the opioids, patient’s lifestyle, and the health care system of the hospital, including the 
management of doctors and  nurses1. Therefore, we hypothesized that the exacerbation of cancer pain is repeated 
according to the patient’s previous patterns and could thus, be predictable. In this study, we aimed to investigate 
the clinical relevance of deep learning models that predict the time of breakthrough pain onset in cancer patients.
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Patients and methods
Patients and data collection. This single-center retrospective study aimed to evaluate the efficacy of deep 
learning model in predicting the onset of CPE in cancer patients. This study was conducted in accordance with 
the Declaration of Helsinki and was approved by the institutional review board (IRB) at the Samsung Medical 
center (approval number 2020–09-073). The Samsung Medical Center IRB waived the need for informed con-
sent because of the retrospective nature of this study. All pain records pertaining to 34,304 patients were retro-
spectively collected who were admitted to the department of hematology and oncology of the Samsung Medical 
center in Korea between July 2016 and February 2020. Clinical data were obtained from the medical records 
using de-identified clinical data  warehouse15. Of all the patients, we excluded 2,697 patients who underwent 
surgery during hospitalization and 28,173 patients with less than 20 non-zero numerical rating scale (NRS) score 
records. The selected 3,431 patients included pain log data for 4,870 admissions, split into the 80–20% training/
test (2,745/686 patients with 3,896/974 admissions) set (Fig. 1).

Pre‑processing. Nurse rounding occurs every day at 5:00 h, 13:00 h, and 21:00 h. During nurse rounding, 
nurses usually record the patient’s self-reported pain scores using NRS scales with an ordinal range from 0 (no 
pain) to 10 (severe and unbearable pain)16. The patients could also ask the nurse for management at other times 
in the case of sudden pain, Herein, the nurse records the additional pain scores and notifies the doctors. As there 
was no quantitative consensus on the definition of CPE, we defined CPE as an NRS score of 4, a commonly used 
indication of opioid intervention in cancer pain management guideline[2]. Pre-processing consists of binning 
and transformation steps as mentioned below. Figure 2 explains the entire process.

Figure 1.  The study cohort.

Figure 2.  Data processing, modeling, and evaluation schemes.
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Binning. Originally, the pain scores were recorded according to the time in minutes. However, considering 
the highly sparse signal of the data, we binned the entire NRS record in arbitrary τ-length time-bins. If multiple 
records were within the same bin, the highest NRS score was considered as the record for that period.

Transformation. CPE could be different among patients (inter-patient) and could also be different in the spe-
cific situation of each patient (intra-patient). Intra-patient pain pattern refers to a patient’s unique pain pattern 
depending on the patient’s medical status. Inter-patient pain pattern refers to the pattern of medical practice, 
including rounding time and clinician’s management. All pain records were processed in 24-h increments to 
reflect these characteristics. Zero padding was used to set the start and end of all pain records to 0:00 h. Record-
ings at time points where there were no NRS observations in the episode, the patient was considered pain-free 
and were imputed to zero. Accordingly, pain records for n days with τ-length time-bins were transformed from 
a shape of 1× ((24/τ)× n) vector form to a ( 24/τ)× n matrix form.

Modeling. We explored six deep learning-based time series forecasting architectures for prediction of CPE 
according to the various input length and time-bin size (τ ) of pain records. Time-bin size ( τ) was investigated 
by grid search for the divisors of 24, suited for transformation, excluding 24, considering the clinical application 
( τ ∈ {1, 2, 3, 4, 6, 8, 12} h). The comparison was conducted for recurrent neural network (RNN)17, long short-
term memory (LSTM)18, gated recurrent unit (GRU)19, bidirectional long short-term memory (Bi-LSTM)20, 
hybrid of the convolutional neural network, long short-term memory (CNN-LSTM)21, and  transformer22. 
Each prediction model of CPE was implemented according to its respective basic recipe, and the models were 
constructed with a non-autoregressive prediction structure followed by a dense layer after stacking three basic 
blocks (Fig. 2). To make a fair comparison, the number of hyperparameters between all models was set to mini-
mize their differences (within 3,000 parameters). The model was trained for 300 epochs with a batch size of 100. 
A balanced cross entropy loss was ensured and the system was optimized by stochastic weight  averaging23 with 
an initial learning rate of 1e-4, start averaging of 5, and the average period of 1. Our model was programmed in 
Python 3.7, Tensorflow 2.4.1, and experimented using NVIDIA GeForce RTX 2080.

Evaluation. The prediction of CPE could be regarded as a binary classification of independents (0 s and 
1 s) over the next 24 h (Fig. 2), and the number of trues depends on the time-bin size ( τ) , which shows a class 
imbalance with a dominant. Therefore, we evaluated the performance of the model based on the Matthews cor-
relation coefficient (MCC), a reliable statistical proportion that produced a high score proportional to the size of 
the positive and negative elements in the dataset. This is possible only if the predictions yield good results in all 
four categories of confusion matrix (true positive [TP], false positive [FP], true negative [TN], and false negative 
[FN])24. The range of MCC values is [− 1, 1], where − 1 indicates the opposite of prediction and trues, and + 1 
indicates the correct. In addition to MCC, the performance of the model was also evaluated with area under the 
receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC).

Ethics approval and patient consent statement. The ethical review board of Samsung Medical 
Center approved the study protocol. As per the regulations in Korea, the review board waived the requirement 
for informed consent for this study as it was a retrospective analysis.

Results
Baseline characteristics of patients. The baseline characteristics of 3,431 patients and 4,870 admissions 
are shown in Supplementary Table 1. The median age was 58 years (range, 15–89), and 2,047 (59.7%) were male. 
The most common type of cancer was lung cancer (n = 745, 21.7%), followed by lymphoma (n = 491, 14.3%). The 
median hospitalization duration was 14.96 days (range, 5.46–195.40), and patients with aplastic anemia were 
hospitalized with the longest duration (29.50 days [range, 7.79–93.10]). The median frequency of records of NRS 
and CPE per day was 2.74 (range, 0.17–12.22) and 1.01 (range, 0–1.31), respectively. Patients with head and neck 
cancer present CPE most frequently (1.57 per day [range, 0–7.85]).

Characteristics of pain records. Pain scores were mostly recorded at 8:00–10:00 h, and 16:00–18:00 h, 
which were the regular rounding times at the ward (Fig. 3A). Among the 1-h time binned records (n = 1,311,240), 
78,376 (6.0%) was CPE, while more frequent CPE were noted with larger time binned records, showing 44.5% 
(n = 48,663) of CPE in the 12-h time binned record (n = 109,270) (Supplementary Table 2). Figure 3B described 
the correlation between daily pain records of forecast days and previous days. The Pearson coefficient scores 
increased closer to the forecast period with the increase in time binning. In the setting of an hour time binned 
records, the NRS record in the interval between 96 and 120 h before forecast day showed a coefficient of 0.08. 
The score was improved closer to forecast date, which showed a coefficient of 0.20 in records that were made 
24 h before the forecast date. The Pearson coefficient scores increased with larger time bin records, presenting a 
coefficient of 0.53 in 12-h time binned NRS records of the previous day. The correlation analysis of matched time 
NRS scores between the forecast day and a day prior to the forecast period indicated that the interval between 
11:00 h and 12:00 h (Coefficient: 0.17) and 18:00 to 19:00 h showed relatively high correlations (Coefficient: 0.18) 
compared to others (Fig. 3C).

Comparison of performance. Table 1 presents the MCC values for each deep learning model across the 
various range of input lengths and time-bins. In all settings, there was no significant difference in CPE prediction 
performance according to the structural variation of each model. The average difference between the highest 
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Figure 3.  Characteristics of pain records. (A) Heatmap of the daily pain pattern of all patients. (B) Correlation 
analysis of the NRS scores between the forecast date and prior records. We used the Pearson correlation 
coefficient to evaluate the correlation between pain records according to the days. (C) Correlation analysis of the 
time-matched NRS scores between the forecast date and the previous day.

Table 1.  Performance comparisons for various models according to input and time-bin length. *Base 
model: model that makes predictions with average scores of every hour of prior days. The performance was 
evaluated based on the Matthew correlation coefficient (MCC). Bold scores indicate the best result per set, and 
underlined scores mean the second performance of each experiment setting.

Input length (h) Model

Time-bin length τ

1 2 3 4 6 8 12

24

Transformer 0.1616 0.2319 0.2813 0.3279 0.3735 0.4059 0.4174

CNN + LSTM 0.1595 0.2265 0.2762 0.2988 0.3708 0.3791 0.4178

Bi-LSTM 0.1666 0.2330 0.2807 0.3325 0.3744 0.4062 0.4180

LSTM 0.1721 0.2417 0.2900 0.3365 0.3718 0.4074 0.4179

GRU 0.1696 0.2406 0.2912 0.3351 0.3705 0.4055 0.4171

RNN 0.1669 0.2328 0.2832 0.3320 0.3703 0.4084 0.4167

Base model* 0.1203 0.1851 0.2413 0.2920 0.3457 0.3867 0.4058

72

Transformer 0.1764 0.2598 0.3116 0.3589 0.4100 0.4476 0.4685

CNN + LSTM 0.1872 0.2562 0.3116 0.3617 0.4118 0.4529 0.4485

Bi-LSTM 0.1805 0.2501 0.3016 0.3514 0.4079 0.4523 0.4745

LSTM 0.1889 0.2650 0.3238 0.3722 0.4233 0.4624 0.4712

GRU 0.1938 0.2735 0.3170 0.3710 0.4223 0.4618 0.4796

RNN 0.1829 0.2537 0.3149 0.3636 0.4136 0.4478 0.4717

Base model* 0.1218 0.2019 0.2565 0.3194 0.3756 0.4133 0.4343

120

Transformer 0.1761 0.2623 0.3213 0.3688 0.4315 0.4620 0.4879

CNN + LSTM 0.1929 0.2658 0.3207 0.3717 0.4218 0.4615 0.4900

Bi-LSTM 0.1815 0.2496 0.3068 0.3581 0.4142 0.4680 0.4830

LSTM 0.1861 0.2635 0.3231 0.3771 0.4278 0.4730 0.4927

GRU 0.1963 0.2717 0.3196 0.3791 0.4267 0.4748 0.4923

RNN 0.1788 0.2537 0.3097 0.3734 0.4206 0.4674 0.4924

Base model* 0.1174 0.1938 0.2591 0.3211 0.3770 0.4125 0.4297
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and lowest performance models for each experimental condition was 0.0182, and the standard deviation was 
0.0087. Nevertheless, the LSTM-based model showed a good performance. It displayed the best performance 
on nine occasions, while the second-best performance was recorded eight times among the 21 experiment set-
tings. The model based on GRU, a simplified version of LSTM, also showed good performance. Herein, eight 
best performances and seven second-best performances were recorded. Through this exploratory investigation, 
we selected the LSTM block as the backbone structure of the representative CPE prediction mode. Meanwhile, 
all deep learning-based models were consistently better than the MCC of the base model that makes predictions 
with average scores of same time intervals of previous days in the window period.

To investigate the efficacy of transformation, we investigated the performance of LSTM-based model input 
NRS before transformations (Supplementary Table 3). In the setting of 24 h input and 1 h time bin, the LSTM 
based model using transformed data showed an MCC of 0.1721, which was better than the performance input 
with original NRS records (MCC: 0.1686). The model performance was consistently improved after transfor-
mation in the various input and time-bin lengths. Also, the performance was not significantly improved with 
a larger input length. In particular, the model input of 120 h of NRS records did not show a significantly better 
performance than the model input 72 h of NRS records in various time bin length settings. Instead, the perfor-
mance was greatly improved with larger-sized time binning. In this study, the best performance was an MCC 
of 0.4927 derived from LSTM-based model using 120 h of input length and 12 h time bin set, showing AUROC 
of 0.8080 and AUPRC of 0.7340 (Fig. 4). This model showed best performance in patients with aplastic anemia 
(MCC: 0.663), followed by head and neck cancer (MCC: 0.594) (Supplementary Table 4).

Cases of prediction for onset timing of breakthrough pain. Figure 5-A depicts the case of a 76-year-
old male patient with bladder cancer and retroperitoneal lymph node metastasis who was admitted for support-
ive care. The patient showed good performance (MCC: 0.3452, AUROC: 0.9051, AUPRC: 0.2067) as pert the 
LSTM-based model with an hour time binning and a 5-day input data during hospitalization. He complained 
of back pain and was administered 12.5 mcg/h of fentanyl patch and received 5 mg of morphine (intravenous) 
when they presented breakthrough pain. On the tenth day. patients complained of back pain at 10:00 h and 
22:00 h, and the LSTM-based model predicted the onset time of breakthrough pain between 11:00–13:00 h and 
18:00–23:00 h. This value was consistently close to the actual patients’ complaints after tenth day of hospitaliza-
tion. In addition, the LSTM-based model was tested in patients with hematologic malignancy. Figure 5B shows 
the case of a 53-year-old female patient with aplastic anemia who displayed a relatively accurate prediction 
during hospitalization (MCC: 0.1843, AUROC: 0.2015, and AUPRC: 0.1767). She was admitted for allogeneic 

Figure 4.  AUROC and AUPRC of LSTM-based model with different sizes of time binning and input lengths. τ : 
time bin size.
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peripheral blood stem cell transplant (allo-PBSCT). The patient received conditioning chemotherapy on the first 
hospital day, followed by allo-PBSCT, 7 days later. On 14th hospital day, the patient complained of fibromyalgia 
at 13:00 h and 21:00 h, and the LSTM-based model predicted onset times at 11:00 h and 20:00 h.

Supplementary Figure 1A shows other cases capturing breakthrough pain incorrectly. The patient with renal 
cell carcinoma, bone and pleural metastasis was administered for pleural effusion and back pain management. 
The LSTM-based model incorrectly predicted CPE during hospitalization (MCC: 0.0417, AUROC: 0.5843 and 
AUPRC: 0.1767). He complained of back pain frequently on the fifth and sixth hospital days, the day after the 
second thoracentesis. On the seventh hospital day, the model predicted CPE as a similar pattern to the sixth 
day in the hospital. However, this patient complained of CPE less often after doctors escalated the dose from 
5 mg of long-acting oxycodone to 10 mg of long-acting oxycodone on the sixth hospital day. Supplementary 
Figure 1B depicts a patient with stomach cancer with peritoneal seeding. This patient complained of severe 
abdominal pain and was hospitalized for management of afferent loop syndrome. He underwent percutaneous 
transhepatic biliary drainage (PTBD) and L-tube insertion in the ER. However, the PTBD tube was removed 
accidentally on the fourth hospital day. At first, the pain related to PTBD tube was alleviated. However, the affer-
ent loop syndrome aggravated on the sixth hospital day, and the patient complained of abdominal pain more 
frequently on that day. The LSTM-based model underestimates the frequency of CPE compared to real-world 
pain records. The performance of LSTM-based model during hospitalization was MCC of 0.0467, AUROC of 
0.4691, and AUPRC of 0.1379.

Discussion
In this study, we explored the feasibility of deep learning methods to predict the onset time of CPE in cancer 
patients at the time of hospitalization. The NRS pain records showed circadian patterns and correlated with NRS 
pain patterns of the previous days. In particular, the NRS scores were positively correlated with the closeness 
from the forecast date and the size of time binning. The LSTM-based model showed a good performance by 
achieving the best performance in the experiments with 24 h input length and 1-h time bin (MCC: 0.1721). The 
performance was improved in the experiments with more extended input data and larger binning size, which 
showed the best performance in the 120 h input length and 12 h bin lengths (MCC: 0.4927). Considering this 
model performance was significantly better than the base model performance (Table 1), our study showed that 
the NRS pain could be predictable using deep learning-based models.

Figure 5.  Representative cases for predicting the onset time of cancer pain exacerbation using serial pain 
records derived from the patients. (A) The case of a patient with bladder cancer who complained of back pain. 
Blue dots and lines indicated NRS pain scores during the window period, and yellow dots and lines were the 
prediction results about the presence of CPE, derived from LSTM-based models with a 5-day input length and 
1-h time binned data setting. The green dots and lines indicated the real-world records about the existence of 
CPE according to the times. Yellow dots and lines in the black-colored box showed the probabilities of CPE on 
the forecast day. (B) The case of a patient with aplastic anemia who underwent allo-PBSCT.
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The NRS pain records showed circadian pain patterns, mostly recorded during 8:00–10:00  h and 
16:00–18:00 h, near the rounding time (Fig. 3A). All recorded pain episodes were pre-processed in 24-h incre-
ments to make the data reflect this circadian pattern. Zero padding was performed to set the start and end of all 
CPE episodes to 0:00 h. After the pre-processing, the performance was significantly improved (Supplementary 
Table 3). Meanwhile, the input record that was obtained one day before the prediction had the highest correla-
tion and similarity with the forecast period when compared to the records on other days (Fig. 3B). This pain 
pattern may be affected by pain management in the hospital, including elevation of dose or frequency of opioids 
and other interventions. This data characteristic could be the reason why unidirectional RNN model, including 
LSTM and GRU, showed competitive performance compared to others, although the unidirectional RNN model 
is well known to be vulnerable in the case of long-term dependence. Meanwhile, as described in Supplementary 
Figure 1B, pain patterns could be related to various factors, including acute events and treatment patterns. As 
current models could not predict pain patterns reflecting this acute change, time series data reflecting these 
factors could make the model perform better.

Pérez-Hernández et al. investigated breakthrough pain characteristics and patterns using the Alberta break-
through pain assessment  tool25. This study showed that 42.6% of patients could correctly predict the occurrence 
of breakthrough pain. Another 20.5% of patients could accurately estimate breakthrough pain on certain occa-
sions. This is mostly because CPE is associated with pose or movement of patients. In an earlier study, as per 
the answers of 81.5% of the patients, the duration of onset time to the peak intensity of breakthrough pain was 
less than 30 min. Considering interval breakthrough pain is twice as much as onset to peak time, we first tried 
to make a predictive model inputting the serial pain log data divided by an hour. However, as we used the zero-
input method for missing values, the data had high sparsity after the 1-h binning (CPE: 6.0% of the total dataset). 
Therefore, we performed ablation studies with larger intervals binning up to 12 h, which was the least clinically 
available, and the sparsity of CPE was improved (CPE: 44.5% of the total dataset) (Supplementary Table 2). 
Meanwhile, the length of the input record also affected the model performance. However, the extent was less 
significant compared to the change of time binning length. It is necessary to reflect on these data characteristics 
and optimize them according to the clinical setting.

Our study has certain limitations. The most prominent limitation is its single center-based design, which 
might limit the generalizability of our data. In addition, we used NRS records divided by hours and simply defined 
the breakthrough pain as the time interval with the records with an NRS above 4. By following this protocol, we 
have excluded many other characteristics of cancer pain, that might limit the interpretation. Additionally, our 
study investigated univariable models with simple structures as our goal was to explore the feasibility of pain 
patterns. Nevertheless, our models showed adequate performance even though there were few input data types. 
Subsequent validation studies, including detailed data and sophisticated model structure, would make the model 
perform better and more applicable.

In conclusion, our study showed that cancer pain could be predictive using deep learning models. Though 
our exploratory study has limitations, further research could improve the model performance, and verification 
study could make our model applicable in real-world practice.

Data availability
The data that support the findings of this study are available from the institutional review board of Samsung 
Medical Center, while restrictions apply to the availability of these data that were used under license for the cur-
rent study and so are not publicly available. However, data are available from the corresponding author upon 
reasonable request and with the permission of the institutional review board of Samsung Medical Center.

Code availability
Scripts for pre-processing, training, and evaluation in this work were written in Python. They are available with 
accompanying documentation at https:// github. com/ YOONHO- CHOI/ BTcP- predi ction.
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