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Sepsis-induced acute respiratory distress syndrome (ARDS) is one of the leading causes of death in
critically ill patients, and macrophages play very important roles in the pathogenesis and treatment
of sepsis-induced ARDS. The aim of this study was to screen macrophage-related biomarkers for the
diagnosis and treatment of sepsis-induced ARDS by bioinformatics and machine learning algorithms.
A dataset including gene expression profiles of sepsis-induced ARDS patients and healthy controls
was downloaded from the gene expression omnibus database. The limma package was used to screen
325 differentially expressed genes, and enrichment analysis suggested enrichment mainly inimmune-
related pathways and reactive oxygen metabolism pathways. The level of immune cell infiltration was
analysed using the ssGSEA method, and then 506 macrophage-related genes were screened using
WGCNA; 48 showed differential expression. PPl analysis was also performed. SVM-RFE and random
forest map analysis were used to screen 10 genes. Three key genes, SGK1, DYSF and MSRB1, were
obtained after validation with external datasets. ROC curves suggested that all three genes had good
diagnostic efficacy. The nomogram model consisting of the three genes also had good diagnostic
efficacy. This study provides new targets for the early diagnosis of sepsis-induced ARDS.

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection'.
Despite significant advances in treatment, sepsis affects approximately 19-48.9 million people worldwide each
year and remains one of the leading causes of death in critically ill patients worldwide?. Sepsis causes various
complications, such as lung injury, liver injury, kidney injury, myocardial injury and brain injury®—. Acute res-
piratory distress syndrome (ARDS) is a common complication in patients with sepsis and is characterized by
diffuse alveolar injury; patients present with clinical symptoms such as acute respiratory distress, hypoxemia and
pulmonary oedema®. The mortality rate of sepsis-induced ARDS is 30-40%, which is higher than that of other
types of ARDS”®. Moreover, when patients progress to severe ARDS, the mortality rate increases to more than
40%’. Therefore, the identification of key molecules in sepsis-associated ARDS and the search for markers for
early diagnosis and possible therapeutic targets are important to reduce the mortality rate of sepsis-associated
ARDS.

Pulmonary innate immunity plays a very important role in the pathogenesis of ARDS. Macrophages are an
important component of pulmonary innate immunity. Macrophages can express pattern recognition receptors
and thus recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs)”!°. Macrophages release proinflammatory mediators that induce the infiltration of neutrophils
and other immune cells into the lungs. These immune cells further release inflammatory factors that initiate the
innate immune response, causing damage to alveolar epithelial cells and pulmonary vascular endothelial cells,
increased vascular permeability and the development of pulmonary oedema'"'2. Macrophages usually have two
polarization states: classically activated M1 macrophages or alternatively activated M2 macrophages. The bal-
ance of the M1/M2 phenotypes determines the different states of the organ in inflammation or injury'. In the
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acute exudative phase of ARDS, macrophages are predominantly M1-polarized and can release proinflammatory
factors such as tumour necrosis factor alpha (TNF-a), interleukin 1 (IL-1), and reactive oxygen species (ROS),
which induce a severe inflammatory response. In the late stage of ARDS, macrophages are mainly M2-polarized
macrophages that can suppress the inflammatory response. However, excessive M2 polarization can lead to
pathological fibroplasia and pulmonary fibrosis'*">. Therefore, macrophages have great research value in ARDS.

In recent years, although therapeutic agents for sepsis-induced ARDS have been investigated, effective bio-
logical targets for the treatment of ARDS have still not been identified. Previous reports have demonstrated the
potential impact of genes on the treatment of ARDS'. With the development of bioinformatics, effective diag-
nostic and therapeutic targets for ARDS can be uncovered using bioinformatics techniques'’. Machine learning
is a branch of artificial intelligence that relates the problem of learning from data samples to the general concept
of reasoning. Artificial neural network (ANN), random forest (RF), logistic regression, and support vector
machine (SVM) methods are commonly used machine learning methods's. Among them, the RF method is an
integrated approach that constructs a large number of decision trees for regression and classification tasks. The
SVM method involves a supervised learning model that is very powerful in identifying subtle patterns in complex
datasets'®. Machine learning in conjunction with bioinformatics can transform biomedical big data into valuable
knowledge and has been successfully applied to solve problems related to the fields of biology and medicine with
good performance in terms of accuracy and speed”>*..

In this study, we retrieved and screened the sepsis-induced ARDS dataset from the Gene Expression Omnibus
(GEO) database, screened for differentially expressed genes (DEGs) between sepsis-induced ARDS and normal
groups, screened key genes using functional enrichment analysis, immune cell infiltration analysis, weighted
gene correlation network analysis (WGCNA) and machine learning approaches and validated them in an exter-
nal dataset. We explored the role of macrophage-related genes in the development of sepsis-induced ARDS and
identified their molecular subtypes to expand the range of potential diagnostic biomarkers.

Results

Screening of differentially expressed genesin GSE32707. According to the screening criteria of dif-
ferentially expressed genes, there were 489 differentially expressed genes between the control and sepsis groups,
of which 152 genes were downregulated in sepsis patients and 337 genes were upregulated in sepsis patients
(Fig. 1A). In contrast, there were 493 differentially expressed genes between the control and sepsis-induced
ARDS groups, of which 267 genes were downregulated in ARDS patients and 226 genes were upregulated in
ARDS patients (Fig. 1B) (Supplementary Table S1). The differentially expressed genes between the two groups
were intersected, and a total of 325 common differentially expressed genes were obtained (Fig. 1C).

Enrichment analysis of differentially expressed genes. To understand the main functions of the 325
differentially expressed genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed. The GO analysis suggested that the top five enriched biological processes
(BPs) were leukocyte migration, reactive oxygen species metabolic process, myeloid leukocyte activation, hydro-
gen peroxide catabolic process and leukocyte chemotaxis. The top five enriched cellular components (CCs) were
secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen, specific granule and tertiary granule. The
top 5 enriched molecular functions (MFs) were antioxidant activity, haptoglobin binding, peroxidase activity,
oxidoreductase activity, acting on peroxide as acceptor and oxygen carrier activity (Fig. 1D and Supplementary
Table S2).

KEGG enrichment analysis suggested that the main enriched pathways were neutrophil extracellular trap
formation, osteoclast differentiation, legionellosis, phagosome, leishmaniasis, Staphylococcus aureus infection
and Fc gamma R-mediated phagocytosis (Fig. 1E and Supplementary Table S3). The GO and KEGG analysis
results showed a significant correlation of differentially expressed genes with immune function and reactive
oxygen species metabolism.

Gene set variation analysis (GSVA). To understand the differences in enrichment pathway levels between
control, sepsis and sepsis-induced ARDS samples, GSVA was performed using the “c2.cp.kegg.v7.5.1.symbols.
gmt” gene set as a reference.

The enrichment levels of cytokine-cytokine receptor interaction, cytosolic DNA sensing pathway, the JAK/
STAT signalling pathway, natural killer cell-mediated cytotoxicity, Toll-like receptor signalling pathway, and
primary immunodeficiency were significantly higher in sepsis patients than in controls (P <0.05), whereas the
enrichment levels of glycosylphosphatidylinositol (GPI) anchor biosynthesis, arginine and proline metabolism,
butanoate metabolism, limonene and pinene degradation, histidine metabolism, and lysine degradation were
significantly lower than those in controls (P < 0.05) (Supplementary Fig. S1).

The enrichment levels of cytokine-cytokine receptor interaction, glycerophospholipid metabolism, systemic
lupus erythematosus, adipocytokine signalling pathway, type II diabetes mellitus, and nitrogen metabolism were
significantly higher in the sepsis-induced ARDS group than in the control group (P <0.05). The enrichment
levels of the TGF beta signalling pathway, GPI anchor biosynthesis, spliceosome, tryptophan metabolism, basal
transcription factors, and limonene and pinene degradation terms were significantly lower than those in the
control group (P<0.05). These results indicated that there were significant differences in the enrichment levels
of immune- and metabolism-related pathways between the control, sepsis and sepsis-induced ARDS groups
(Supplementary Fig. S2) (Supplementary Table S4).

Immune cell infiltration analysis. As GO, KEGG and GSVA analyses suggested an immune correla-
tion, immune infiltration analysis was performed to further understand the immune cell levels in the samples.
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Figure 1. GSE32707 differential gene expression screening and enrichment analysis. (A) Volcano plot of
differentially expressed genes between the sepsis group and control group in the GSE32707 dataset. (B)

Volcano plot of differentially expressed genes between the sepsis-induced ARDS group and control group in the
GSE32707 dataset. (C) Venn plot of differentially expressed genes between the sepsis-induced ARDS group and
control group. (Software: R (4.0.2) version, R packet: VennDiagram (1.7.3). URL: https://cran.rstudio.com/web/
packages/VennDiagram/index.html). D. GO enrichment analysis of differentially expressed genes. E. KEGG
enrichment analysis of differentially expressed genes. ((D, E) Software: R (4.0.2) version, R packet: clusterProfiler
(4.6.2). URL: https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html).

Scientific Reports|  (2023) 13:9876 | https://doi.org/10.1038/s41598-023-37162-5 nature portfolio


https://cran.rstudio.com/web/packages/VennDiagram/index.html
https://cran.rstudio.com/web/packages/VennDiagram/index.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html

www.nature.com/scientificreports/

Single-sample gene set enrichment analysis (ssGSEA) suggested that monocytes, neutrophils, macrophages and
MDSCs were all present at high levels in ARDS patients (Fig. 2A and Supplementary Table S5). There was a good
correlation between the levels of each immune cell (P<0.05) (Fig. 2B).

WGCNA. The sepsis and ARDS group samples in GSE32707 were subjected to WGCNA with a set cut-
off height of 100, 5 samples were removed, and the remaining samples were subjected to subsequent analysis
(Fig. 2C). According to the approximate scale-free topology criterion, a soft threshold of 5 was set to define the
adjacency matrix (Fig. 2D,E). A clustering dendrogram (Fig. 2F) was constructed based on the matrix, and a
total of 24 modules were obtained to distinguish different modules with different colours (Fig. 3A). The correla-
tion analysis of each module with macrophages suggested that the magenta, cyan and red modules were signifi-
cantly positively correlated with macrophages (Fig. 3B-D).

Macrophage-related differentially expressed gene extraction, protein—protein interaction
(PPI) analysis and GO and KEGG enrichment analysis. In the magenta, cyan and red modules, the
correlation coefficients between genes and modules and the correlation between genes and macrophage levels
were set to 0.4, resulting in the screening of 199 genes in the magenta module, 66 genes in the cyan module
and 241 genes in the red module, for a total of 506 genes associated with macrophage infiltration level. These
genes were intersected with the 325 differentially expressed genes screened in GSE327907 to obtain a total of 48
macrophage-related differentially expressed genes (Fig. 4A).

To understand the interaction relationship between genes, PPI analysis of macrophage-related differentially
expressed genes was performed using the STRING database. The results suggested that TYROBP was the gene
that interacted most with other genes, followed by ITGB2, CYTH4, DOCK2 and MNDA (Fig. 4B).

GO analysis suggests that the top five enriched BPs were myeloid cell activation involved in the immune
response, leukocyte activation involved in the immune response, positive regulation of cytokine production,
cell activation involved in the immune response, and myeloid leukocyte activation. The top 5 enriched CCs were
secretory granule membrane, ficolin-1-rich granule, ficolin-1-rich granule membrane, secretory granule lumen
and cytoplasmic vesicle lumen. The top 5 enriched MFs were immune receptor activity, peptidase activator
activity, complement receptor activity, inhibitory MHC class I receptor activity and actin binding (Fig. 4C and
Supplementary Table S6).

KEGG enrichment analysis suggests that the main enriched pathways are Legionellosis, Pertussis, Neutrophil
extracellular trap formation, Osteoclast differentiation, Yersinia infection, Shigellosis, Alcoholic liver disease,
Salmonella infection and B-cell receptor signalling pathway (Fig. 4D and Supplementary Table S7).

Random forest plot and support vector machine (SVM) analyses. Random forest plot analysis
and the SVM method were used to identify markers. The support vector machine recursive feature elimination
(SVM-REFE) algorithm was used to screen the marker genes among the 48 genes, and a total of 24 genes were
screened (Fig. 5A,B). The relative importance of the 48 genes was analysed using random forest plots, from
which the top 20 genes in terms of relative importance were selected for subsequent analysis (Fig. 5C,D). Ten
overlapping genes were finally identified between the two algorithms (Fig. 5E).

Differential expression validation in the validation dataset. The differential expression analysis of
the genes obtained after random forest plot and SVM analyses in the GSE154918, GSE28750, and GSE185263
datasets showed that, in GSE154918, the expression of all 10 genes was significantly different (P <0.05) (Fig. 6A).
In the GSE28750 dataset, the expression levels of SGK1, ANPEP, DYSF and MSRBI1 were significantly different
between groups (P<0.05) (Fig. 6B). In the GSE185263 dataset, the expression levels of SGK1, MYD88, DYSF,
PLEKHO2, CYTH4 and MSRB1 were significantly different between groups (P <0.05) (Fig. 6C). Only SGK1,
DYSF and MSRB1 showed differential expression in all three validation sets.

ROC curve analysis of the diagnostic value of marker genes. To further understand the diagnostic
value of marker genes in ARDS, ROC curve analysis was performed using samples from the control and sepsis-
induced ARDS groups in the GSE32707 dataset as study samples. The results suggested that all 10 marker genes
had a good predictive effect in terms of the diagnosis of ARDS, with an area under the curve greater than 0.65;
SGK1 (AUC=0.791) had the best diagnostic effect, followed by LST1 (AUC=0.743), MSRB1 (AUC=0.740) and
DYSF (AUC=0.721) (Fig. 6D-M). All three validated differentially expressed genes showed good diagnostic
value for ARDS.

Construction of the nomogram. Based on the validation results of external datasets and ROC analy-
sis, SGK1, DYSF and MSRB1 were used as the basic genes for subsequent analysis. To further understand the
diagnostic value of SGK1, DYSF and MSRBI in ARDS, nomogram analysis was performed, and a model was
constructed. The calibration curves suggested that the nomogram model curves had high overlap with the ideal
model, indicating that the nomogram model composed of three genes, SGK1, DYSF and MSRB1, showed good
diagnostic prediction for ARDS. Moreover, the area under the curve (AUC) was 0.809, demonstrating that the
prediction effect of the nomogram model was better than that of each of the three genes (SGK1, DYSF and
MSRBI) alone (Fig. 7A,B).

Clustering analysis. To understand the effect of SGK1, DYSF and MSRB1 on sample clustering, cluster
analysis was performed. The results suggested that the samples could be divided into 2 clusters according to the
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Figure 2. Immune infiltration analysis and WGCNA. (A) Graph of ssGSEA immune cell enrichment analysis
in the GSE32707 dataset. (Software: R (4.0.2) version, R packet: GSVA (1.46.0). URL: https://github.com/rcast
elo/GSVA). (B) ssGSEA immune cell level correlation. (Software: R (4.0.2) version, R packet: corrplot (0.92).
URL: https://github.com/taiyun/corrplot). (C) Sample clustering dendrogram to detect outliers in WGCNA. D,
E. Soft threshold selection process; F. Cluster dendrogram of samples using a Pearson correlation coeflicient.
The vertical axis indicates the relative distance between clusters. The smaller the height is, the more likely

the samples are clustered together. The following feature heatmap shows the hierarchical clustering. ((C-F)
Software: R (4.0.2) version, R packet: WGCNA (1.72-1) URL: http://horvath.genetics.ucla.edu/html/Coexpressi
onNetwork/Rpackages/WGCNA/).
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Figure 3. WGCNA-based screening of macrophage-related genes. (A) Heatmap of module features. The
corresponding correlation coefficients and P values for each phenotype are shown. Correlation coefficients are
indicated as follows: red rectangles indicate positive correlations; blue rectangles indicate negative correlations.
(B) The correlation between magenta module membership and macrophage infiltration. (C) The correlation
between cyan module membership and macrophage infiltration. (D) The correlation between red module
membership and macrophage infiltration. (Software: R (4.0.2) version, R packet: WGCNA (1.72-1) URL: http://
horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/ WGCNA/).

expression values of SGK1, DYSF and MSRBI (Fig. 7C,D). PCA showed that the cluster analysis had a good
clustering effect (Fig. 7E). Sankey plots showed good agreement between cluster and disease grouping for cluster
analysis, with Cluster 1 having a high proportion of samples in the control group and Cluster 2 having a high
proportion of samples in the ARDS group (Fig. 7F). Wilcox analysis suggested that SGK1, DYSF and MSRB1
were differentially expressed in Cluster 1 and Cluster 2 (Fig. 7G) (P <0.05), and the trend of difference was con-
sistent with the trend of difference between the control and ARDS groups. These results further demonstrate the
diagnostic value of SGK1, DYSF and MSRBI1 for ARDS.
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Figure 4. Screening of macrophage-related differentially expressed genes and PPI, GO, and KEGG enrichment
analyses. (A) Venn diagram of macrophage-related genes screened in WGCNA with GSE32707 differentially

expressed genes taken as intersection. (Software: R (4.0.2) version, R packet: VennDiagram (1.7.3). URL:
https://cran.rstudio.com/web/packages/VennDiagram/index.html). (B) PPI diagram of macrophage-related

differentially expressed genes. (C) GO enrichment analysis of macrophage-related differentially expressed genes.
(D) KEGG enrichment analysis of macrophage-related differentially expressed gene. ((C, D) Software: R (4.0.2)
version, R packet: clusterProfiler (4.6.2). URL: https://bioconductor.org/packages/release/bioc/html/clusterPro
filer.html).

Transcription factors and miRNA prediction of SGK1, DYSF and MSRB1. Based on the predic-
tion results in the JASPAR, HumanTFDB, and GTRD databases, a total of 173 transcription factors of SGK1
(Fig. 8A), 140 transcription factors of MSRBI (Fig. 8B), and 172 transcription factors of DYSF (Fig. 8C,D) were
obtained. Based on the prediction results in six databases, miRWalk, RNA22, RNAlInter, TargetMiner, TargetS-
can and miRDB, a total of 28 miRNAs for SGK1 were obtained (see Supplementary Fig. S3A online). miRNAs
for DYSF and MSRB1 were not predicted in the TargetMiner database, and the prediction results in the remain-
ing five databases suggested that a total of 12 miRNAs of MSRBI1 (see Supplementary Fig. S3B online) and 21
miRNAs of DYSF (see Supplementary Fig. S3C,D online) were obtained.
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Figure 5. Random forest plot and SVM analysis. (A)-(B). SVM-RFE analysis plot; the horizontal axis
represents the number of feature genes. The best fivefold cross-validation precision and error are 0.842 and
0.158, respectively. (Software: R (4.0.2) version, R packet: 1071 (1.7-13). URL: https://cran.rstudio.com/web/
packages/e1071/index.html). (C) Random forest tree. (D) The precision and Gini coefficient of random forest

plot analysis of macrophage-related differentially expressed genes to determine gene importance. ((C, D)
Software: R (4.0.2) version, R packet: randomForestSRC (3.2.1). URL: https://www.randomforestsrc.org/ https://

ishwaran.org/). (E) SVM-RFE method and random forest plot method to screen genes in the intersection of the

Venn diagram.

Discussion
Sepsis affects more than 30 million people worldwide each year and is one of the leading causes of death in criti-

cally ill patients®?. Sepsis-induced ARDS is a type of acute progressive respiratory failure caused by sepsis, and
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Figure 6. Gene expression validation. (A) Gene expression validation in the GSE154918 dataset. (B) Gene
expression validation in the GSE28750 dataset. (C) Gene expression validation in the GSE185263 dataset.
(Software: R (4.0.2) version, R packet: ggplot2 (3.4.1). URL: https://ggplot2.tidyverse.org/). (D)-(M). ROC
analysis of the value of these genes in diabetes mellitus diagnosis. (Software: R (4.0.2) version, R packet: pPROC
(1.18.0). URL: http://expasy.org/tools/pROC/).

its pathogenesis is mostly focused on the inflammatory response, oxidative stress, and abnormal coagulation®.
As innate immune cells, macrophages play a key role in the inflammatory response. It was found that secretory
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Figure 7. Nomogram and cluster analysis. (A) Nomogram plot. (B) Nomogram model prediction effect plot.
(Software: R (4.0.2) version, R packet: rms (6.5-0). URL: https://hbiostat.org/R/rms/, https://github.com/harre
Ife/rms). (C) Matrix heatmap of key gene clustering analysis. (D) Cluster analysis delta area plot. (E) PCA of
different clusters after cluster analysis. (Software: R (4.0.2) version, R packet: ConsensusClusterPlus [1.62.0].
URL: https://bioconductor.org/packages/ConsensusClusterPlus/;). (F) Cluster analysis subtype grouping and
sample consistency of sample diagnostic grouping Sankey plot. (G) Analysis of the expression differences of key
genes in different clusters.

autophagy of alveolar macrophages (AMs) promotes the inflammatory response and lung injury through secreted
IL-1p**. Impaired phagocytosis of alveolar macrophages in advanced sepsis further increases the severity of
ARDS, and IFN-f treatment reverses the impairment of AM function induced by IL-10 and reduces the severity
and mortality of ARDS in a dose-dependent manner®.

The results of the enrichment analysis in this study suggest significant enrichment of multiple pathways.
Immune cells play a substantial role in the development and treatment of ARDS. Neutrophils play a major role in
the process of leukocyte migration. Neutrophils are the first immune cells to migrate to the site of inflammation
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Figure 8. Transcription factor prediction. (A) Transcription factors of DYSF were predicted by three databases,
as shown in Venn diagram. (B) Transcription factors of MSRB1 were predicted by three databases, as shown in
Venn diagram. (C) Transcription factors of DYSF were predicted by three databases, as shown in Venn diagram.
(Software: R (4.0.2) version, R packet: VennDiagram (1.7.3). URL: https://cran.rstudio.com/web/packages/
VennDiagram/index.html). (D) Interaction of SGK1, MSRB1 and DYSF with predicted transcription factors.

after stimulation by chemokines released from damaged lung tissue, and massive activation of neutrophils leads
to peripheral tissue damage and lung dysfunction®?’. Eliav et al.”® found that the leukocyte migration inhibitor
GT-73 significantly reduced the number of infiltrating leukocytes in LPS-induced ARDS in mice, decreased
the levels of cytokines and was protective against ARDS. The reactive oxygen species-related pathway was also
significantly enriched, and in ARDS, the production of reactive oxygen species (ROS) is detrimental to lung
tissue, and ROS can damage lung endothelial cells and lead to impaired alveolar-capillary barrier function®.
NEF-«B is an important transcription factor that controls the release of proinflammatory mediators, and ROS
can also cause activation of NF-kB, which can exacerbate inflammatory lung injury®. Studies have shown that
suppressing the production of ROS is beneficial in reducing inflammatory lung injury?!.

GSVA suggests significant differences in cytokine/cytokine receptor and Toll-like receptor pathway enrich-
ment levels. In ARDS, multiple receptors of innate immune cells (macrophages, dendritic cells or monocytes),
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such as Toll-like receptors, recognize PAMPs and DAMPs to induce cytokine release syndrome®. It has been
shown that the inflammatory response to LPS-induced ARDS can be attenuated by inhibiting TLR4 expression®.
AM is a major source of cytokines and chemokines that initiate the immune response, and the overproduction of
these proinflammatory cytokines (IL-1p, IL-6, TNF-a, IL-8, etc.) leads to the development of acute lung injury**.
Additionally, AM is a major source of anti-inflammatory cytokines, such as IL-10 and TGF-, which can suppress
the inflammatory response to acute lung injury.

The three key genes screened in this study have been partially studied in lung injury and other diseases. SGK1
is a member of the protein kinase subfamily, a serine/threonine protein kinase with high homology to second
messengers such as protein kinase B. As a hub for multiple signal transduction pathways and cellular phospho-
rylation events, SGK1 plays an important role in cell proliferation, ion channel regulation, signal transduction
and other physiological processes and is thought to have an essential function in inflammation®. Studies have
shown that SGK1 enhances the function of sodium channels to promote clearance of alveolar oedema fluid
in a mouse model of lung injury®***. Michalick et al. found that SGK1 may provide promising new targets
for the prevention or treatment of ventilator-associated lung injury?®. Xi** et al. found that SGK1 exacerbates
the inflammatory response by inducing macrophage activation and promoting the development of hypoxia-
induced pulmonary hypertension in mice. Therefore, SGK1 was suggested as a possible target for the treatment
of pulmonary hypertension. DYSF encodes dysferlin, a protein enriched with seven p-folded structural domains
composed of C2, which mainly functions in calcium-dependent cell membrane regeneration and maintenance.
Although dysferlin is mainly expressed in muscle tissue, expression can also be observed in nonskeletal muscle
tissues and cells, such as blood monocytes and macrophages, which also express dysferlin*’. DYSF was found
to enhance phagocytosis, migration and adhesion of THP1 cells. In atherosclerotic disease, DYSF promoter
methylation promotes its expression and promotes monocyte activation, further participating in the develop-
ment of atherosclerotic cardiovascular disease*'. MSRBI is a member of the selenoprotein family and contains
a selenocysteine residue at its catalytic site that specifically catalyses the free and protein-bound R-methionine
sulfoxide to methionine. Studies have shown that MSRBI is closely associated with diseases or disorders related
to oxidative damage, such as ageing, neurodegenerative diseases and diabetes*?. Lee*” et al. found that MSRBI
controls the immune response by promoting the expression of anti-inflammatory cytokines in macrophages. It
was found** that MSRBI activates the STAT6 pathway in dendritic cells, which induces dendritic cell maturation
and IL-12 production, promoting Th1 differentiation. In addition, MSRBI promotes the differentiation of fol-
licular helper T cells. This study reveals a role for the MSRBI selenoprotein in adaptive immunity and indicates
that targeting MSRB1 may have therapeutic potential in controlling immune responses. All three key genes are of
great interest, as they can influence disease progression by affecting the function of macrophages. In this study, all
three genes, SGK1, DYSF and MSRB1, showed good diagnostic effects. The nomogram model including all three
genes further showed excellent predictive performance with an AUC value of 0.998. In addition, the levels of all
three genes were assessed in an external validation cohort, and their relative expression trends were consistent.

The present study has several limitations. First, the data in this study were all from the GEO database, and
further experimental evidence is needed to analyse the differential gene expression. Second, basic experiments
are needed to investigate the mechanism of gene action in ARDS, and finally, more preclinical studies and pro-
spective clinical trials are needed to validate our findings.

In conclusion, we used bioinformatics methods to screen three key macrophage-related genes, SGK1, DYSF
and MSRB1, which have a good diagnostic effect on sepsis-induced ARDS. The nomogram model composed of
these three genes also showed a good diagnostic effect, providing new targets for the early diagnosis of sepsis-
induced ARDS. However, further experimental and clinical studies are needed to confirm these findings.

Materials and methods

Data acquisition. The GEO database (https://www.ncbi.nlm.nih.gov/geo/) was searched using the search
formula “((Expression profiling by array[Filter]) AND Homo sapiens [Organism]) AND whole blood samples
AND sepsis” Two suitable datasets, GSE32707 and GSE28750, were obtained. The GEO database was searched
using the search formula “((Expression profiling by high throughput sequencing [Filter]) AND Homo sapi-
ens [Organism]) AND sepsis” Two suitable datasets, GSE154918 and GSE185263, were obtained. The data-
set includes clinical information and gene expression information of patients. The GSE32707 dataset, obtained
using the GPL10558 platform, contains gene expression information of 144 samples of whole blood sam-
ples, including patients with sepsis, sepsis complicated by ARDS, control and systemic inflammation groups.
GSE154918, GSE28750, and GSE185263 were used as external validation datasets for key gene expression. The
GSE154918 dataset, obtained using the GPL20301 platform, includes 40 healthy samples and 53 sepsis samples.
The GSE28750 dataset, obtained using the GPL570 platform, includes 20 healthy samples and 20 sepsis samples.
The GSE185263 dataset, obtained using the GPL16791 platform, includes 44 healthy samples and 348 sepsis
samples.

Differentially expressed gene screening. The limma package in R language was used for differential
expression analysis of genes. Gene expression values of all samples were normalized using the limma package®.
The differentially expressed genes in GSE32707 were analysed between the control group and sepsis group and
between the control group and sepsis-induced ARDS group. The screening criteria of differentially expressed
genes were | log,FC |>1 and adjusted P value <0.05. Then, the intersection of two differentially expressed genes
was taken using the Venn diagram.

Enrichment analysis of differentially expressed genes. Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes in the GSE32707 dataset
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were performed using the “clusterProfiler” package in R*. GO analysis consists of three components: BP, CC,
and ME P<0.05 was recognized as a significant term/pathway.

Gene set variation analysis (GSVA). The GSVA method was used to evaluate the enrichment level of
pathways between the GSE32707 dataset control group and sepsis group and the control group and sepsis-
induced ARDS group?. The gene set “c2.cp.kegg.v7.5.1.symbols.gmt” downloaded from the MsigDB online
database was used as a reference. The R package “GSVA” was used to calculate the enrichment levels of pathways
associated with each sample in the GSE32707 dataset, and then the "limma" package was used to analyse the
differences in pathway enrichment levels between the control and sepsis groups and between the control and
sepsis-induced ARDS groups. The screening conditions for significant differences were |t|>2 and P value <0.05.

Immune cell infiltration analysis. Based on the gene expression level of each sample in the GSE32707
dataset, the enrichment level of 28 immune cells in each sample in the dataset was analysed using the ssGSEA
method in R language. The corrplot package was used to analyse the relationship between the individual immune
cell levels.

Weighted gene correlation network analysis (WGCNA). WGCNA was performed on all samples
using the WGCNA package based on the expression levels of the sample genes*. Analysis of gene modules asso-
ciated with macrophage levels in patients with sepsis and sepsis-induced ARDS. Cluster analysis was performed
on all samples, and abnormal samples were excluded. A soft threshold (B) for network construction in the
WGCNA algorithm was selected, the “min Module Size” was set to 100, and the coexpressed genes were assigned
to modules by the dynamic minimal tree cutting algorithm. By analysing the correlation between modules and
phenotypes, gene coexpression modules significantly associated with macrophage levels were identified.

GO and KEGG enrichment analysis of macrophage-related differential genes. The macrophage-
related key module genes in WGCNA were intersected with the obtained GSE32707 differentially expressed
genes to obtain the differentially expressed genes related to the macrophage level. Using the "cluster Profiler"
package in the R language, GO analysis and KEGG analysis were performed on the differentially expressed genes
related to macrophage level to obtain the major enriched pathways.

Construction of PPl networks. The STRING database was used to analyse protein interactions with dif-
ferentially expressed genes associated with the macrophage level, and the minimum interaction score required
for PPI was set at 0.4 (medium confidence level)*. The results were imported into Cytoscape software and visual-
ized using Cytoscape.

Random forest graph analysis and support vector machine analysis. Macrophage-associated dif-
ferentially expressed genes were rescreened using random forest graph analysis®® and SVM analysis® methods to
discriminate the most valuable genes. The best genes were selected from the metadata cohort using the recursive
feature elimination method to avoid overfitting. Therefore, SVM-RFE (support vector machine recursive fea-
ture elimination) was used to discover the set of genes with the greatest discriminatory power. Random forest
plots were also used to analyse the relative importance of individual genes in macrophage-associated differential
genes. The genes in the intersection of the prediction results of the two methods were selected as the target genes.

Differential expression validation in the validation dataset. The GSE154918, GSE28750, and
GSE185263 datasets were used to validate the differential expression of the genes obtained after the random for-
est plot and SVM analysis. The Wilcox method was used to analyse the differential expression of genes in each
dataset.

Receiver operating characteristic (ROC) curve analysis of the diagnostic value of key
genes. The pROC package in R language was used to analyse the diagnostic value of gene expression lev-
els for ARDS after screening by random forest plot and SVM analysis®%. Samples from the control and sepsis-
induced ARDS groups in the GSE32707 dataset were used as study samples, and the pROC package was used to
calculate area under curve (AUC) values to show their diagnostic value. The ROC curve results were visualized
using the ’plot.roc’ function.

Nomogram diagram. The nomogram model was constructed using the rms package. Logistic regression
analysis related to ARDS diagnosis was first performed using genes that had been screened and verified for
expression differences, and then the nomogram model was constructed and visualized based on the results of the
logistic regression analysis. The scoring criteria were developed based on the magnitude of the model regression
coefficients, and by assigning a score to each gene for each value taken, the total score for each patient could be
calculated. Then, the probability of ARDS occurrence for each patient was calculated based on the conversion
function between the score and the probability of outcome occurrence. Finally, the model ROC curve area was
calculated, and the calibration curve was plotted and evaluated (calibration degree, U test).

Clustering analysis. Unsupervised cluster analysis was performed in the samples of the control and ARDS
groups in the GSE32707 dataset based on the genes verified by expression differences using the Consensus Clus-
ter Plus package in the R language®. PCA was used to analyse the effect of cluster analysis, and the network D3
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package was used to perform Sankey map analysis to analyse the consistency of grouping of cluster analysis with
sample grouping. Wilcox test was used to analyse the differences in gene expression between different clustered
groupings.

Transcription factors and miRNA prediction of key genes. The promoter sequences of the core
genes (including the transcription start site up to 2000 bp upstream of it) were obtained from the NCBI database
(https://www.ncbi.nlm.nih.gov/gene/). After that, transcription factor prediction was performed in the JASPAR
database (https://jaspar.genereg.net/), HumanTFDB database (http://bioinfo life.hust.edu.cn/HumanTFDB#!/)
and GTRD database (http://gtrd.biouml.org/#!) based on the obtained promoter sequences. The transcription
factors obtained from the three databases were intersected to obtain transcription factors that existed in all three
databases at the same time and then visualized using Cytoscape software. miRNAs of key genes were predicted
in the miRWalk, RNA22, RNAInter, TargetMiner, TargetScan and miRDB databases, and then the miRNAs in
each database were overlapped to identify the intersecting miRNAs; the Venn diagram was visualized using
Cytoscape software.

Data availability

The datasets analysed during the current research are all available in the GEO database (GSE32707, https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32707; GSE154918, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE154918; GSE28750, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28750;
GSE185263,https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185263) and MsigDB (http://www.gsea-
msigdb.org/gsea/index.jsp).
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