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Electrostatic complementarity 
at the interface drives transient 
protein‑protein interactions
Greta Grassmann 1,2, Lorenzo Di Rienzo 2, Giorgio Gosti 2,3, Marco Leonetti 2,3, 
Giancarlo Ruocco 2,4, Mattia Miotto 2,5* & Edoardo Milanetti 2,4,5*

Understanding the mechanisms driving bio‑molecules binding and determining the resulting 
complexes’ stability is fundamental for the prediction of binding regions, which is the starting point 
for drug‑ability and design. Characteristics like the preferentially hydrophobic composition of the 
binding interfaces, the role of van der Waals interactions, and the consequent shape complementarity 
between the interacting molecular surfaces are well established. However, no consensus has yet 
been reached on the role of electrostatic. Here, we perform extensive analyses on a large dataset of 
protein complexes for which both experimental binding affinity and pH data were available. Probing 
the amino acid composition, the disposition of the charges, and the electrostatic potential they 
generated on the protein molecular surfaces, we found that (i) although different classes of dimers do 
not present marked differences in the amino acid composition and charges disposition in the binding 
region, (ii) homodimers with identical binding region show higher electrostatic compatibility with 
respect to both homodimers with non‑identical binding region and heterodimers. Interestingly, (iii) 
shape and electrostatic complementarity, for patches defined on short‑range interactions, behave 
oppositely when one stratifies the complexes by their binding affinity: complexes with higher binding 
affinity present high values of shape complementarity (the role of the Lennard‑Jones potential 
predominates) while electrostatic tends to be randomly distributed. Conversely, complexes with 
low values of binding affinity exploit Coulombic complementarity to acquire specificity, suggesting 
that electrostatic complementarity may play a greater role in transient (or less stable) complexes. 
In light of these results, (iv) we provide a novel, fast, and efficient method, based on the 2D Zernike 
polynomial formalism, to measure electrostatic complementarity without the need of knowing the 
complex structure. Expanding the electrostatic potential on a basis of 2D orthogonal polynomials, we 
can discriminate between transient and permanent protein complexes with an AUC of the ROC of ∼ 
0.8. Ultimately, our work helps shedding light on the non‑trivial relationship between the hydrophobic 
and electrostatic contributions in the binding interfaces, thus favoring the development of new 
predictive methods for binding affinity characterization.

Interactions among proteins constitute the molecular basis of most processes in living organisms, and their 
deregulation or disruption often leads to  disease1–3. Among other things, such interactions may differ in the 
number (dimers, tetrameters, etc) and kind of involved proteins (homo or hetero complexes), the stability of the 
binding (transient/permanent bindings), and the type of the binding process, i.e. lock and key, induced fit and 
conformational selection. While it has been estimated that over 80% of proteins operate in molecular  complexes4, 
detailed comprehension of the mechanism behind the protein binding process and the stability of the resulting 
protein complexes is still incomplete. At a qualitative level, binding involves a recognition phase where distant 
molecules have to recognize themselves in the crowded cellular environment, followed by a docking process 
where the two molecules reorient/adapt to binding in specific regions. Despite this, complex formation is often 
highly specific: a binding partner could be recognized by only one of the members in a protein family even if they 
all have the same  folds5. This compatibility is determined by an interplay between various contributions on the 
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molecular surface and can either (i) be present from the beginning, when the two proteins are far apart (lock and 
key model), or (ii) be assumed by the proteins while exploring their conformational landscape (conformational 
selection model) or be gained while interacting with the partner (induced fit model)6–8. Once the proteins are 
bound, their binding regions are known to display a combination of geometrical and chemical complementari-
ties, which ultimately reflect on the binding  stability9–14.

At the level of amino acid composition, it is widely known that the composition of binding regions differs 
with respect to the rest of the solvent-exposed region: while the latter is preferentially populated by hydrophilic 
residues, binding regions have a higher number of hydrophobic residues, like Val and Leu, that tend to establish 
stronger van der Waals  interactions10,15. From a geometrical point of view, the optimization of short-ranged 
interactions between atoms at the interface leads to a local shape complementarity of the proteins’ molecular 
surfaces. Indeed, the side chain rearrangements minimize the van der Waals interaction, thus determining shape 
complementarity at the interfaces, which is typically evaluated by geometrical  approaches16–21.

Conversely, there is still no full consensus on the role played by electrostatic interactions, including hydrogen 
bonding, ionic/Coulombic, cation− π , π − π , lone-pair sigma hole, and orthogonal multipolar  interactions5,22–24. 
In fact, acting at longer distances, it is unanimously understood that electrostatic compatibility plays a role at the 
beginning of the recognition process when partners are far away from each  other25; indeed, proteins move in a 
very crowded environment and since electrostatic interactions are the most long-ranged ones, they can produce 
a drift in the Brownian motion of the two binding proteins. However, while this could be true for heterodimers 
(that may possess opposite charges), homodimers have the same net charge, thus attractive interactions can only 
take place between parts of the proteins (at the most)26.

Therefore, many studies are focusing on assessing the electrostatic match of protein complexes, to better 
understand why and how binding  happens9,26–31. In particular, McCoy et al.32 found that binding sites are charac-
terized by significant electrostatic complementarity, if defined as the correlation of surface electrostatic potential 
at binding sites on a small number of protein complexes. Another study discussed the importance of electro-
static interactions in the binding  adaptation33. Shashikala and  coworkers25 investigated the role of electrostatic 
interactions in diseases, finding that disease-causing mutations frequently alter wild-type electrostatic interac-
tions. Moreover, electrostatic turned out to be a key feature even for machine learning methods that look at the 
identification of protein-protein binding  sites18. Similarly, electrostatic and shape complementarity turned out 
to be sufficient to predict the DNA-binding sites on proteins with 80%  accuracy29.

Since electrostatic interactions can act both at short and long  distances34, the interaction region that should 
be considered is of non-trivial definition. In fact, smaller regions are able to capture the binding properties due 
to van der Waals forces, which lead to a shape complementarity between the two interacting molecular surfaces. 
On the other hand, larger regions lose shape complementarity but involve more charged residues, which are 
typically excluded from the binding regions but are widely present in the other exposed regions, playing a crucial 
role in the thermal stability of the protein  structure35. It is in fact known that electrostatic interactions between 
9 and 12 Å are of crucial importance to distinguish obligate from non-obligate  complexes36, thus playing a key 
role in the characterization of the binding. For a quantitative description of the Lennard-Jones potential at the 
interfaces of protein complexes, we have recently shown that shape complementarity is maximized for interacting 
patches less than 9 Å16, highlighting thus the effect of van der Waals interactions at the binding  interface10. For 
a patch on the interface of this size, where the involvement of long-range electrostatic interactions is reduced, 
the quantification of the contribution of electrostatic complementarity remains unclear.

Here, we characterize the role of electrostatic interaction in protein binding and quantitatively measure 
the electrostatic complementarity at the interface of the molecular complexes, defining the binding interfaces 
in a 9 Å radius sphere. With this aim, we collect a dataset of protein complexes (see Methods for details) and 
characterize the complexes in terms of interface type, amino acid composition, and charge properties. To study 
the relationship between binding affinity and electrostatic complementarity we consider a second dataset, the 
‘Affinity’ dataset (see Methods for details). Next, we analyze the contribution to the binding of electrostatic, 
by comparing the potential values of mirroring points on binding regions. We show that taking into account 
properly rescaled values of the electrostatic potential, we obtain a negative correlation between the complexes 
binding affinity and electrostatic complementarity. Following these results, we propose a new method able to 
quickly distinguish between interacting and non-interacting patches by describing their electrostatic potential 
projections with vectors and looking at the difference between these descriptors. This computational approach 
has been developed starting from the 2D Zernike method, that we proposed to quickly evaluate the shape 
complementarity at  interfaces16,37–41; for what concerns shape complementarity, our method has already been 
demonstrated to be able to efficiently identify interacting regions by measuring the shape complementarity in 
terms of the Euclidean distance between the Zernike invariant descriptors associated with the projections of the 
molecular surfaces patches (see Methods for more details).

Here, the Zernike invariant vectors describe the electrostatic potential by considering in the same function 
both positive and negative values. As a final step, we show that the Zernike descriptions of the electrostatic allow 
for fast and superposition-free discrimination between transient and permanent interactions.

Results
Charges distribution and compatibility. To characterize the role of electrostatic complementarity in 
protein binding, we collected a balanced dataset of human protein complexes for which structural data were 
available (‘Human’ dataset). The dataset is composed of 164 homodimers, which can be divided into 44 dimers 
with an Identical Binding Region (IBR-hom), 66 Shifted Binding Region (SBR-hom), and 54 non-Identical Bind-
ing Region (nIBR-hom), depending on the similarity of the interacting patches; finally, the dataset includes 35 
heterodimers (nIBR-het). In addition to this dimer classification, the same complexes can also be structurally 
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classified looking at the prevailing secondary structure of the proteins: the same dataset includes 133 complexes 
where both binding partners have a prevalence of helices residues (HH), 57 where both proteins have mostly 
strands residues (SS) and 9 complexes where one of the partner has more strand residues while the other one 
has more helices (SH). See Figs. 1a, S2a and Methods section for more details. To begin with, we investigated the 
charge distribution of the proteins in the ‘Human’ dataset and their amino acid composition with respect to their 
dimer classification. In Fig. 1b, the percentage of complexes that have a total sum of the charges (considering 
either all the residues of each protein or only the interacting ones) with opposite signs is displayed. According 
to this analysis, heterodimers are the only class whose interacting patches ( ∼ 4 %) have a discordant sum of the 
charges among binding partners. Looking more specifically at the charge of interacting residues, as shown in 
Figure S1a of the Supplementary, we observe that only ∼ 1.5 % of the negative interacting residues are close to 
other negative residues on the other protein in the complex. Positive residues instead can be found in proximity 
more frequently, between 1.6% and 3.2% of the time, depending on the complex category and on radius defining 
the surrounding of a residue. This condition is particularly common for nIBR homodimers. Oppositely charged 
residues can be rarely found (0.15-0.25% of the time) among the interacting patches of SBR homodimers as well. 
On the other hand, heterodimers and IBR homodimers have a higher percentage, up to 3.6% and 3.2% respec-
tively, of opposite charges facing each other in binding regions. Figure S1b in the Supplementary characterizes 
the residues surrounding non-charged amino acids as well. It can be seen that, in general, all complexes tend to 
have non-charged residue facing each other, confirming the predominantly hydrophobic nature of the interact-
ing regions of the protein-protein  complexes42.

Figure 1c shows a general overview of the amino acid abundances, computed considering (i) all the residues in 
a protein, (ii) only the solvent-exposed ones, and (iii) only the ones included in the binding regions (see Methods 
for details about the definition of solvent-exposed residues and binding regions). The analysis of the amino acid 
composition confirms the (well-known)  result10 that hydrophobic amino acids, such as Ile or Met, are uncom-
mon in the solvent-exposed surface of proteins. However, when one of them is present in the exposed regions, 
it is more likely to find it in a binding site rather than on the rest of the surface. On the contrary, charged amino 
acids, such as Lys or Glu, are more present on the surface, but the fraction taking part in the binding is relatively 
small. Figure 1c also shows that IBR homodimers tend to have less charged amino acid on the interacting regions, 
compared to heterodimers and nIBR homodimers.

Finally, we performed the same analyses for the three classes in which the dataset is divided when considering 
the secondary structures. The results are shown in Figure S2. In particular, Figure S2b shows that the heterodi-
mers whose interacting patches have a discordant sum of the charges are classified as SS or HH. However, as 
shown in Figure S2c, when considering neighboring charges, SH complexes tend to have more negative interact-
ing residues close to positive residues on other protein’s surface, even reaching  3.3% for a small patch radius. 
For all three classes the hydrophobic nature and the amino acid composition of the binding sites are confirmed 
by Figure S2d and S2e.

Figure 1.  Amino acid composition, charge properties, and classification of the dataset. (a) The complexes in 
the dataset are divided into heterodimers and IBR, SBR and nIBR homodimers. The colored boxes report an 
example for each category. The same colors are used to indicate in the pie chart each class abundance in the 
dataset. (b) For each protein, the sum of the charges of all its residues and only the interacting residues on the 
surface is computed. For each complex, these total and interacting charges from the two interacting partners are 
multiplied. The bar plot shows, for the whole dataset and each class, the percentage of complexes whose total (in 
orange) and interacting (in blue) products are negative. (c) The relative abundances of each of the twenty natural 
amino acids considering all the residues (orange), only the interacting ones (in green), and only the solvent-
exposed residues (brown) are shown. The results are divided into the four classes.
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The specificity of electrostatic complementarity depends on both complex kinds and environ‑
mental factors. Next, we moved to analyze the spatial disposition of the electrostatic interactions. To do 
so, we evaluated the electrostatic potential generated by the protein charges on the molecular  surface43. Being a 
high-level representation of the external protein structure, such representation allows for an efficient evaluation 
of both the geometrical and chemical complementarities. In fact, the amino acids composition analysis provides 
information only about the chemical and physical properties of the residues belonging to the two binding sites, 
while the resolution of the Poisson-Boltzmann equation provides information on the electrostatic potential dis-
tribution at the interfaces, due to all the atoms of the protein, even those not in close proximity with the binding 
site.

To analyze the contribution of electrostatic to the binding between two proteins, we define a quantitative 
measure of electrostatic complementarity able to differentiate between interacting and non-interacting regions. 
We start by analyzing the ’Human’ dataset and comparing the electrostatic potential values of the binding regions 
with those of non-interacting regions. To measure the complementarity, we describe each patch with a Simpli-
fied Electrostatic Matrix (SEM). The latter is computed starting from the Electrostatic Matrix (EM), obtained 
by projecting the considered region of the electrostatic potential surface on the x-y plane, which is defined as 
the best fit of the surface points belonging to the specific patch. The matrix is then built on the plane and each 
pixel is associated with the average value of the electrostatic potential of the points projected into that pixel (see 
Fig. 2a and Methods section for more details). To obtain the SEM, we assign +1 and -1 to all the positive and 
negative pixels respectively. Figure 2a shows on the right the SEMs of two interacting patches, and in the center 
the corresponding EMs. To evaluate the electrostatic complementarity between two patches, we compare each 
pixel of the SEM describing the first patch with the pixel at the same position on the SEM describing the second 

Figure 2.  Electrostatic complementarity contribution in protein-protein complexes (a) On the left, the 3D 
representation of two proteins forming a complex and their electrostatic potential surfaces. In the center, the 
EMs of two interacting patches. Each pixel of the matrices is colored according to the electrostatic potential 
value of the surface points projected in that region. On the right, the SEMs of the same two patches: red and 
blue pixels correspond respectively to positive and negative values of the electrostatic potential. (b) Distributions 
of the F values computed for interacting (orange) and random (grey) patches taken from the ’Human’ dataset. 
In the insert the corresponding ROC curve. (c) Distributions of the F values of the interacting patches in 
complexes from the nIBR-het (red) and SBR-hom (yellow) classes. In the insert the corresponding ROC curves. 
(d) The distributions of the F values computed for interacting patches in a) are classified in pH ranges: low in 
light purple, physiological in green, and high in light green. In the insert the corresponding ROC curves. (e) 
Fraction of concordant regions as a function of the pH and computed correlation (in the legend). From left to 
right the considered complexes are the whole ’Human’ dataset, the nIBR-het, the IBR-hom, the SBR-hom, and 
the nIBR-hom.
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one. In this way, we can check if surface points that face each other on the binding partners have electrostatic 
potentials with opposite signs. Operatively, we defined F as the fraction of pixel pairs in which the two pixels 
have the same sign: patches with a high electrostatic complementarity, i.e. a high number of opposite neighbor 
points with discordant electrostatic potentials, should have a low value of F. The measured complementarity is 
compared with that one would obtain by chance, randomly selecting surface points and building around each 
one a patch on the surface of the partner protein.

Figure 2b shows the distribution of F scores for the whole ‘Human’ dataset. In particular, one can see that 
random patches (i.e. decoys) have a gaussian-like distribution with a mode of 0̃.49 , as we expect that for two 
random patches the probability that a spatial corresponding region has an opposite sign is 0.5. The distribution 
of all complexes instead is shifted toward values lower than 0.5. In particular, it has a mode of 0.38, indicating 
that protein binding regions have a degree of electrostatic complementarity higher than what one would expect 
by chance. Indeed, this can be quantified by computing the ROC curve (see inset Fig. 2b) and evaluating the 
Area Under the Curve (AUC), which is 0.55 in this case.

Looking at the shape of the distribution, one can see that it appears to be composed of different populations 
of proteins; in fact, it presents bi/tri modalities. We thus proceeded to separate the dataset according to the 
complex classes.

Doing so, we found different behaviors for the various classes. To quantify the differences between the dis-
tributions, we evaluated (see Fig. 2c and Figure S3 in the Supplementary) the ROC curves of each distribution 
with respect to the decoy’s one and computed the corresponding AUC. The classes with the lowest AUC of the 
ROC curve are SBR and nIBR homodimers (at 0.51 and 0.53 respectively), for which the classification perfor-
mance can not be distinguished from that of random decoys. A slightly better classification is obtained for the 
IBR homodimers, with an AUC of the ROC curve of 0.56. On the other hand, heterodimers present an AUC of 
the ROC curve of 0.64.

Interestingly, a trend is observed also stratifying the dataset according to the pH of each complex. Figure 2d 
shows the distributions and relative ROC curves for three ranges of pH values, i.e. high (pH> 7.5 ), low (pH< 5.5 ), 
and physiological ( 5.5 <pH< 7.5 ). Complexes in the latter range have a high degree of electrostatic complemen-
tarity, having an AUC of the ROC curve of 0.58, whereas the F score of interacting patches in the low pH range 
is shifted to higher values (resulting in an AUC of the ROC curve of 0.33), meaning that in this case, the binding 
regions have a higher fraction of concordant points facing each other.

Moreover, in Fig. 2e, we show the fraction of concordant regions as a function of the experimental pH value 
for every complex of the ‘Human’ dataset and each subclass. It is interesting to note that while the whole Human 
dataset does not show a strong correlation with the pH (-0.29), the correlation values vastly differ among the 
subclasses. The F values computed for SBR and nIBR homodimers have a correlation of -0.11 and -0.29 respec-
tively. On the other hand, IBR homodimers and heterodimers anti-correlate with the pH value, correlating -0.4 
and -0.6. Nevertheless, Table 1 shows that independently from the class, the interacting patches of complexes in 
the low range have an AUC lower than 0.5, meaning that for low pH the electrostatic potential in points facing 
each other on interacting patches has the same sign. Table 1 reports as well how the performances of the F score 
for increasing radius R of the patch: after R = 12Å  its characterization of interacting patches does not improve 
or even worsen. Even if larger regions include more charged residues by extending out of the hydrophobic bind-
ing sites, the complementarity of the charges is lost when the surfaces of the complex are not interacting. This 
analysis confirms our choice of a 9 Å radius to define the interacting patches.

Low‑affinity interactions use electrostatic complementarity to achieve specificity. Since both 
the stratification by classes and pH did not fully account for the observed shape of the distribution, we look for 
binding affinity data. To do so, we collected a dataset of complexes with known structure and experimental dis-
sociation constant, Kd . In particular, we took the dataset proposed by Desantis et al., which we refer to as the 
‘Affinity’ dataset (see Methods for details), which is exclusively composed of 123 heterodimers.

Figure 3a shows the F score distribution of interacting and random patches for the whole ‘Affinity’ dataset. 
The latter have a gaussian-like distribution with a mode of 0.49, as for the random patches of the ’Human’ dataset. 
The former instead is shifted to lower values, having a mode of 0.31 and an AUC of the ROC curve of 0.69 (as 
shown in the insert of Fig. 3a).

Stratifying the dataset in three groups according to the complex binding affinities [ Ba = log10(Kd) ], we 
obtain the results shown in Fig.  3b,c. The three distributions, corresponding to high ( Ba < −9.0 ), medium 
( −9.0 < Ba < −6.0 ) and low ( Ba > −6.0 ) binding affinity are well separated and shifted on different ranges of 
F scores. Low-affinity complexes are moved to lower values of F, resulting in an AUC of the ROC curve of 0.81, 
while the ones with high binding affinity can not be distinguished from random decoys, having an AUC of the 

Table 1.  AUC of the ROC curves of the F score for varying patch radius and pH. The AUC of the ROC curves 
are computed using the random distribution and the distributions of the ’Human’ dataset interacting patches, 
divided according to the pH. Increasing values of the radius R defining the patches are tested.

F R = 6 R = 9 R = 12 R = 15

pH < 5.5 0.32 0.33 0.33 0.35

5.5 < pH < 7.5 0.54 0.59 0.61 0.62

pH > 7.5 0.52 0.58 0.62 0.60
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ROC curve of 0.55. The medium binding affinity complexes cover an intermediate range of F values and have an 
AUC of 0.67. Interestingly, if we look at the F value of each complex as a function of its binding affinity, we get a 
negative correlation ( -0.38) with the binding affinity, as shown in Fig. 3d. Table 2 shows how the performance 
of the F score changes for increasing radius R of the patch: as already discussed for Table I, after R = 12 Å its 
characterization of interacting patches does not improve.

Projecting the molecular surface on an orthogonal basis allows to compactly describe the 
electrostatic contribution to the interface of complexes. Leveraging on the results of the previous 
sections, we looked for a compact method to simultaneously measure both electrostatic and shape complemen-
tarity between protein patches.

To describe and compare the electrostatic surfaces more efficiently, we apply the 2D Zernike polynomials, 
which constitute a complete basis in which any function of two variables defined in a unitary disk can be decom-
posed. The Zernike expansion associates each portion of a surface to an ordered set of numerical descriptors, 
invariant under rotation, allowing an easy and fast metric comparison between different protein regions for 
complementarity evaluation (see Methods for details). The rotational invariance is a fundamental property in 
the blind search for interacting patches. The complementarity of the binding regions can then be evaluated in 

Table 2.  AUC of the ROC curves of F for varying patch radius and binding affinity. The AUC of the ROC 
curves are computed using the binding and random regions Fs distributions. The binding region distributions 
are divided into three groups, according to the binding affinity Ba of their complex. Increasing values of the 
radius R defining the patches are tested. The complexes are part of the ’Affinity’ dataset.

F R = 6 R = 9 R = 12 R = 15

Ba < −9.0 0.54 0.55 0.51 0.54

−6.0 < Ba < −9.0 0.67 0.67 0.65 0.65

Ba > −6.0 0.77 0.81 0.86 0.86

Figure 3.  Electrostatic complementarity contribution in the binding stability of complexes. (a) Distributions 
of the F values computed for interacting (violet) and random (grey) patches taken from the ’Affinity’ dataset. 
In the insert the corresponding ROC curve. (b) The distribution of the F values of the interacting patches in a) 
is divided according to the binding affinity of the complex: high affinity in red, medium in yellow, and low in 
green. In grey is the distribution of the random decoys. (c) ROC curves and corresponding AUC (in the legend) 
of the distributions of the interacting patches in b), computed against the random distribution. (d) Fraction of 
concordant regions as a function of the binding affinity and computed correlation (in the legend). Each point is 
colored according to the pH value, as indicated by the color bar.
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terms of the euclidean distance between their corresponding Zernike vectors. In particular, we measure how 
much the distance between the Zernike descriptors of a pair of interacting sites is smaller than the distances 
between random patches.

Figure 4 (panels from a to d) shows a schematic representation of the computational protocol for comparing, 
in terms of shape and electrostatic, interacting proteins. For each protein, the molecular surface and the electro-
static potential surface are built. The former corresponds to the solvent-accessible surface, the latter is obtained by 
assigning to each point of the molecular surface the value of the electrostatic potential computed in that region 
as obtained by solving the Poisson-Boltzmann  equation44. On each surface, a patch is iteratively selected, and 
the corresponding regions of both the molecular and electrostatic surfaces are separately projected onto a plane. 
An example of both projections for two interacting patches is shown in Fig. 4e. More details can be found in the 
Methods. We assess the shape and electrostatic complementarity between the patches by expanding in terms of 
Zernike polynomials the 2D projections of the molecular and electrostatic potential surfaces respectively. The 
distance between the Zernike vectors of interacting patches is smaller than the one between the vectors of two 
random patches, as shown in Fig. 4f. As shown in Fig. 4g,h and in Figure S4a,b in the Supplementary our results 
are in line with what has been observed  in16: interacting patches are efficiently distinguished from random decoys, 
with an AUC of the ROC curve close to ∼0.8. The class whose interacting sites can be better identified includes 
IBR homodimers (with a success rate of 0.96), whereas the lowest efficiency is obtained for nIBR homodimers 
(AUC at 0.72). Next, we extended the Zernike method for the study of electrostatic complementarity. Since 
Zernike coefficients can represent only real-valued functions over the unit disk we define the Confined Electro-
static Matrix (CEM). CEMs are obtained by capping the EMs pixels above +30 and below −3045. This allows us 
to obtain Zernike-expandable functions. We then define electrostatic complementarity as the distance between 
the Zernike vectors associated with the CEMs. Figure 4i-j and Figure S4c,d in the Supplementary show that this 
definition of complementarity reaches an efficiency in distinguishing interacting and random patches comparable 
with the one obtained with F values, with an AUC of the ROC close to 0.60. IBR and nIBR homodimers cor-
respond to the best (0.68) and worst (0.55) performances. As previously assessed, complexes with low pH have 
a low electrostatic complementarity and can not be easily distinguished from random decoys, reaching an AUC 
of 0.55, as shown in Table 3. Interestingly, the opposite behavior can be observed for the shape complementarity, 
which is higher when the pH is low.

Finally, to evaluate the impact of the structural characteristics on electrostatic complementarity, we strati-
fied our results -both concerning the F value and the Zernike distance- according to the prevailing secondary 
structures of the complex.

As shown in Fig. 5a, the F value distribution does not significantly vary between the three structural classes. 
Moreover, when the complexes are divided in SS, HH and SH the classification performance of the F value can not 
be distinguished from that of random decoys, reaching a value of the ROC AUC of 0.54, 0.56 and 0.5 respectively.

When looking instead at the fraction of concordant regions as a function of the experimental pH value for 
each of the three structural classes of the ‘Human’ dataset, more interesting observations can be done. Figure 5b 
confirms that complexes with a higher pH value tend to have a higher degree of electrostatic complementarity. 
This is particularly true for SH complexes, which have a correlation of -0.88 (p-value at 0.002). The F values of SS 
and SH complexes are more randomly distributed (correlation at -0.25 and -0.27 respectively), nevertheless this 
division results in an overall better correlation of the single classes with the pH, compared to what is obtained 
when considering the dimer class.

Next, we stratified the Zernike distances between the molecular surface patches according to this division. As 
shown in Figs. 5c and d, when considering shape complementarity SS complexes are the most easy to distinguish 
from random decoys (ROC AUC of 0.79). Note that face-to-face interactions between β-strands are usually 
characterized by a high shape  complementarity46. SH complexes reach a ROC AUC of 0.76, instead.

The opposite trend can be observed for the electrostatic complementarity studied with the Zernike method: 
in this case, as depicted in Fig. 5e and f, SH complexes are the most distinguishable from random decoys (ROC 
AUC at 0.68), whereas SS complexes are the most difficult to classify (ROC AUC at 0.6).

Transient from permanent interactions can be distinguished solely based on the electrostatic 
complementarity. At last, we apply our method to the ’Affinity’ dataset to test the ability of our descriptor 
to distinguish between permanent and transient interactions, as this property has important effects on biological 
 functions47. In particular, defining permanent (respectively transient) interactions based on the binding  affinity48 
being lower (resp. higher) than Ba = −6 , we obtained the distributions shown in Fig. 6a. Interestingly, transient 
interactions display higher than random electrostatic complementarity values (green distribution), while per-
manent interactions (red distribution) have Zernike distances slightly higher than that one would expect by 
chance. This can be quantified again by looking at the ROC curves in Fig. 6b and evaluating the AUC values. 
Indeed, transient interactions display an AUC of 0.69 with respect to the decoy distribution, while permanent 
interactions have an AUC of 0.43. Permanent interactions can be distinguished from transient ones with an AUC 
of the ROC of 0.78. Notably, knowing the pH of the considered complexes allows for an even better classification 
as one can see from Fig. 6c, d.

Finally, we tested the capability of the Zernike method to quantify the effect of point mutations at the interface 
on the binding affinity of the complex. Results, discussed in the SI, indicate that the electrostatic complementarity 
evaluated on five mutants with known mutations at the binding sites and experimentally determined dissociation 
constant is higher the lower is the stability of the complex.
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Figure 4.  Schematic representation of the computational protocol and Zernike evaluation of complementarity. 
(a) Molecular representations of the surfaces of two proteins forming a complex. (b) Molecular representation 
of the surface of one of the proteins depicted in a). A sphere is used to select a possible patch on the surface: 
the dark shadow highlights the selected points. (c) Electrostatic potential surface, where each point is colored 
according to its electrostatic potential value. In the zoom, the region of the electrostatic potential surface 
corresponding to the patch selected in b).(d) 2D projections of the patch. In the blue scale the shape projection, 
for which the colors in the plane are determined by the distance of the surface points from a predefined origin 
(see Methods for details). In the blue-red scale the electrostatic projection, where the colors are determined 
by the electrostatic potential values of the above points. (e) Comparison between the shape and electrostatic 
projections of two binding regions. (f) In grey the distributions of the Zernike shape (top) and electrostatic 
(bottom) distances between random patches. The blue and red lines correspond to the distances between 
the Zernike vectors describing the two patches on top and bottom respectively in e). (g) Distributions of the 
distances between the Zernike vectors describing the molecular surface of IBR-hom and nIBR-hom interacting 
(blue and green respectively) and random (grey) patches in the ’Human’ dataset. (h) ROC curves of the 
distributions in g) and corresponding AUC (in the legend) computed against the random distribution. (i) For 
each patch the distance between the Zernike vectors describing the electrostatic potential surface in that region 
is computed. Then the same analysis and classification as in g) is performed. (j) ROC curves of the distributions 
in i) and corresponding AUC (in the legend) computed against the random distribution.
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Discussion
The full mapping of the organisms’ interactomes is fundamental for understanding molecular interactions and 
their many physiological and pathological implications. The well-tested toolbox of experimental techniques we 
dispose of, such as X-ray  crystallography49,  NMR50,51 and cryo-EM52,53, is allowing for the detection of protein-
protein binding and the determination of the complexes atomistic structure. However, all these techniques are 
expensive and time-consuming54 so that up to now only small fractions of the organisms’ interactomes have 
been experimentally determined at the structural  level55–57. In this respect, computational methods represent a 
powerful tool to unveil the uncharted landscape of protein  complexes58 by predicting protein-protein associa-
tions in normal conditions and under mutations/modifications59–62, which further complicate the compilation 
of the interactomes by increasing the number of matches to probe.

To predict the protein complex, the identification of putative binding interfaces plays a key role and most 
of the proposed strategies identify the interfaces as those showing some geometrical/chemical complementary 
between the molecular partners. In particular, the side chain rearrangements minimize the van der Waals inter-
action thus determining shape complementarity at the interfaces, which is typically evaluated by geometrical 
approaches requiring structural alignment between the two interacting molecules.

Notably, the geometric complementarity of the final complexes does not depend on the dynamical specifics 
of the binding process. In fact, partners can undergo very few changes upon binding (i.e they follow a “lock-
and-key” model) or the interactions between two approaching structures can induce conformational changes 
(“induced fit”) or the protein conformation suitable for binding (bound state) can be explored by the protein 
even in the absence of the molecular partner (the “conformational selection” model); these three views suggest 
different key contributors to the conformational changes between the unbound and bound structures, but for 
all of them shape complementarity is a necessary condition for the complex formation.

Table 3.  Discriminating power of the Zernike-based expansion of molecular and electrostatic potential 
surface for different pH ranges. In the ZernikeShape column, the AUC of the ROC curves is computed from the 
distribution of the Zernike distances between the molecular surface of interacting patches and the random 
decoys. In the ZernikeElectrostatic column the AUC of the ROC curves is computed considering the electrostatic 
potential description of the patches. The results are divided according to the pH of the complexes.

ZernikeShape ZernikeElectrostatic

pH < 5.5 0.84 0.55

5.5 < pH < 7.5 0.76 0.63

pH > 7.5 0.77 0.61

Figure 5.  Electrostatic complementarity contribution in protein-protein complexes divided according to their 
secondary structure (a) Distributions of the F values of the interacting patches in complexes from the SS (red), 
HH (yellow) and SH (blue) classes. In the insert the corresponding ROC curves. (b) Fraction of concordant 
regions as a function of the pH and computed correlation (in the legend). From left to right the considered 
complexes are the SS, HH and SH complexes. (c) Distributions of the distances between the Zernike vectors 
describing the molecular surface of SS, HH and SH interacting (red, yellow and blue respectively) and random 
(grey) patches in the ’Human’ dataset. (d) ROC curves of the distributions in c) and corresponding AUC (in 
the legend) computed against the random distribution. (e) For each patch the distance between the Zernike 
vectors describing the electrostatic potential surface in that region is computed. Then the same analysis and 
classification as in c) is performed. (f) ROC curves of the distributions in e) and corresponding AUC (in the 
legend) computed against the random distribution.
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Usually, by including the electrostatic contribution to the binding process investigation, in addition to the 
van der Waals forces, one aims at more precise discrimination of the biological interfaces.

In this respect, computational methods can be divided into two categories: model-based and feature-based 
approaches. The former exploits the residue-conservation found between similar proteins, the latter is based on 
local features of protein sequences and/or structures. Feature-based approaches are more general and can work 
on any type of protein. Even if the availability of protein structures is less abundant than sequences, structural 
features are fundamental for understanding binding between proteins. Moreover, the recent advances in the field 
of protein structure prediction starting only from its amino acid  sequence63, vouch for an even more important 
role of the structural-based method than in the past years. Nonetheless, even using structural information, the 
identification of interfaces remains a challenge in structural biology. Machine learning-based approaches give 
promising results, but they require the definition and training of several parameters and lack a clear physical-
chemical interpretation. Here, we proposed an approach for the rapid and quantitative evaluation of electrostatic 
complementarity and we probed its role in the identification of binding regions and complexes’ stability. Analy-
sis of the electrostatic potential of protein-protein complexes has led to the general assertion that electrostatic 
complementarity must be of importance at the interfaces of biological  complexes22; nevertheless, a well-settled 
definition of how electrostatic complementarity should be quantified and what is its role was still missing.

With this aim, we collected two large datasets of protein dimers with known structural information strati-
fied by dimer type, prevailing secondary structure and stability (quantified by means of experimental binding 
affinity). At first, we analyzed the amino acid composition of the binding region with respect to those of the 
proteins’ cores and solvent-exposed regions. Next, we looked at the presence and disposition of the charged 
residues on the binding regions finding that different classes of dimers and structures have slightly different 
disposition/abundances of charged-charged interactions. Finally, we further increase the complexity of the elec-
trostatic description, considering the full electrostatic potential generated by the protein partial charges on the 
solvent-exposed molecular surface. This representation allows for a high-level measurement of the electrostatic 
complementary at the interface of the interacting molecules. Indeed, comparing the spatial correspondence of 
the potential sign (see F descriptor), we found that the binding regions exhibit a complementary higher than the 
one we could expect by chance. Notably, the signal is influenced both by the complex class and the experimental 
pH and binding affinity. In particular, we observed that the maximum complementarity is shown by low-affinity 
complexes ( Ba > −6.0 ), while SH complexes and homodimers sharing some residues on the binding regions 
(SBR-hom) exhibit a nearly random match. Finally, we propose a novel method to assess electrostatic comple-
mentarity without the need of having complex structures. Indeed, we already developed a novel computational 
protocol based on the Zernike polynomials to describe the shape of portions of the molecular surface in the form 
of a vector of  numbers16,37–40. Here, the method is extended to molecular surfaces for which the electrostatic 
potential has been calculated through the Poisson-Boltzmann  equation44. Indeed, after a proper projection of 
the electrostatic potential surfaces on the 2D plane, electrostatic complementarity can then be defined again as 
the Euclidean distance between these new Zernike invariant descriptors (see Methods).

Figure 6.  Superposition-free classification of transient and permanent interactions. (a) Probability density 
functions of the Zernike electrostatic distances of the ’Affinity’ dataset complexes. Green (respectively red) 
distribution corresponds to complexes having Ba values higher (respectively lower) than -6, corresponding to 
transient and permanent interactions, respectively. Grey curves correspond to the distances of random decoy 
patches on the protein surfaces. (b) ROC curves of the transient (green) and permanent (red) interactions with 
respect to the decoy distribution, together with the ROC curve of the transient distribution with respect to 
the permanent one (brown). (c) Same as in a) but considering transient complexes with pH higher than 7 and 
permanent interactions with pH lower than 7, in maroon and light green respectively. (d) ROC curves of the 
two distributions displayed in panel c).
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Comparing the electrostatic complementarities at the complex interface via the Zernike method, we found 
that we are able to discriminate between transient and permanent interactions with an AUC of the ROC of 0.8. 
Interestingly, the electrostatic complementarity evaluated with the Zernike method on five mutants with known 
mutations at the binding sites and experimentally determined dissociation constant seems to indicate that our 
method is able to capture to a certain extent also the effect of point mutations on the complex binding affinity.

In conclusion, we found that electrostatic complementarity in the binding region is efficiently measured 
simply requiring a spatial match between the signs of the electrostatic potentials. Moreover, such complemen-
tarity strongly depends on both the kind of the considered complex, the pH of the environment, and the tran-
sient/permanent nature of the binding. In particular, we observe an evident inversely proportional relationship 
between electrostatic complementarity and the experimental binding affinity. Our results thus help shed light 
on the often contrasting conclusions of previous works that measured electrostatic complementarity using large 
datasets. Leveraging on our findings, we adapted the Zernike formalism to measure both shape and electrostatic 
complementarity in a fast and superposition-free manner. Finally, we note that our findings could be used to 
reinforce the docking algorithm, or/and to perform pose selection. Moreover, our method could be adapted to 
other properties that can be described with numerical values assigned to each surface point, since the Zernike 
expansion can be applied to any function.

Methods
Protein complex datasets. To probe the degree of electrostatic complementarity in protein-protein bind-
ing regions, we collect a dataset of protein-protein dimers for which structure information was available from 
the 3D complex  database64. Selecting only non-redundant human dimers, with an x-ray crystal resolution better 
than 3.0 Å and no missing residues in the binding region, we ended up with 199 human protein complexes in 
PDB  format65. We opted to restrict to only one organism to avoid spurious effects on the charges distribution in 
the protein structure, due for instance to thermal  adaptation10,13,66.

Looking at the dimer composition and spatial orientation, we classify the dataset, that we call ‘Human‘ dataset, 
into four groups:

• 44 homodimers with Identical Binding Regions (IBR-hom), i.e. binding regions that have at least 70% of 
common residues.

• 66 homodimers with Shifted Binding Regions (SBR-hom), i.e. interacting patches that have between 30% 
and 70% of common residues.

• 54 homodimers with non-Identical Binding Regions (nIBR-hom), i.e. binding regions that share less than 
30% of the residues.

• 35 heterodimers (nIBR-het), where two different proteins are interacting.

To gain more insights into the structural dependence of electrostatic complementarity, we considered a second 
independent classification of the same dataset. For this classification we looked at the secondary structure of 
each protein. Per residue secondary structure assignment was done using the  DSSP67 module implemented in 
Python. Proteins with a prevalence of residues associated to helices are classified as H, otherwise as S. Looking 
at the structural composition of the binding partners, the ’Human’ dataset is classified in three classes:

• 133 HH complexes, i.e. complexes where both partners have a prevalence of helices over strands.
• 57 SS complexes, i.e. complexes where both partners have a prevalence of strands over helices.
• 9 SH complexes, i.e. complexes where one of the partners has more helices residues and the other more 

strands residues.

Table SI shows the list of the PDB id of the complexes in the ’Human’ dataset, together with their dimer and 
structural classification. Figure S2 shows the amino acid composition and charge properties of the three classes.

To analyze the correlation between electrostatic complementarity and binding stability we consider a second 
dataset, composed of 123 complexes extracted from the dataset used  in10. To our knowledge, that dataset is 
the largest available collection of complexes with experimental data of binding affinity Ba , defined as the log10 
of the equilibrium dissociation constant Kd

68. We then select the complexes with known pH and no missing 
atoms or residues and call the resulting collection ’Affinity’ dataset. Two of these complexes are also part of the 
‘Human‘ dataset as heterodimers: 2HTH and 3MZG. The list of the complexes together with their Ba is reported 
in Table SII.

Computation of the surfaces and surface residues definition. The solvent-accessible surface for 
each structure of the dataset was computed using  DMS69, with a density of 5 points per Å 2 and a water probe 
radius of 1.4 Å. For each surface point, the unit normal vector was calculated with the flag −n. Starting from 
these surfaces, the electrostatic potential of each protein was calculated independently from the partner using 
the APBS  code43, considering the experimental pH. The electrostatic potential surface was then defined by build-
ing a grid and selecting the values of the electrostatic potential in the grid cells corresponding to each surface 
point.

To select among the residues included in the surface the mainly superficial ones, we computed the Relative 
Solvent Accessibility as the ratio between Solvent Accessibility and the maximum Solvent Accessible Surface 
Area of the considered amino acid. The Solvent Accessibility is calculated with DMS by computing the portion 
exposed to the solvent of each residue involved in the interaction, while the maximum Solvent Accessible Surface 
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Area of the twenty natural amino acids was taken  from70. A residue is considered superficial if it has a Relative 
Solvent Accessibility higher than 0.25. The interacting regions were defined as the points on a protein surface 
closer than 6Å to its partner surface.

Patch definition and projection. To define a surface patch, we use a spherical region with radius R cen-
tered at one point of the surface. This point is randomly extracted for the decoy random patches, while to study 
the binding regions the geometrical center of the experimental interacting regions is considered. For this study, 
we chose R = 9Å to be able to study simultaneously the shape and electrostatic complementarity with the 2D 
Zernike-based method. Indeed, in a previous work, we discussed the range of R values resulting in the best iden-
tification of binding regions when considering shape  complementarity16.

Once the patch has been selected, we re-orient the coordinates. When two random patches are compared, for 
each patch we build a plane passing through it and we orient the coordinates so that the z-axis is perpendicular 
to the plane. It must be remembered that when comparing the shape of patches, their relative orientation must 
be evaluated: to assess their shape complementarity, we have to orient the patches contrariwise, i.e. one patch 
with the solvent-exposed part toward the positive z-axis (‘up’) and one toward the negative z-axis (‘down’).

On the other hand, to compare the EMs and SEMs of interacting patches we compute the mean of the normal 
vector of the first partner and the inverse of the normal vector of the second one. The binding patches are then 
rotated so that this averaged vector is along the z-axis. This step results again in two patches contrariwise ori-
ented, but in addition to this, we can preserve the spatial correspondence of the surface points after the rotation. 
We want to remark here how this correspondence is not necessary when the projections are decomposed in the 
Zernike basis and compared with the Zernike protocol, giving the rotation invariance of the Zernike polynomi-
als. Therefore, to study the patches in terms of the Zernike polynomials expansion we reorient each binding site 
along the z-axis independently from its partner.

Once the patches have been rotated, two protocols can be implemented. The first one is used to obtain the 
projections of the corresponding regions of the electrostatic potential surface, whereas the second one provides 
the projections of the molecular surfaces.

Electrostatic projection. Each point of the re-oriented electrostatic surface is projected on the x-y plane. Next, 
we build a square grid (25× 25 pixels) and associate each pixel with the mean value of the electrostatic potential 
of the points projected inside of it, and call it the Electrostatic Matrix (EM).

Shape projection. Once the patch has been rotated, given a point C on the z-axis we define the angle θ as the 
largest angle between the z-axis and a secant connecting C to any point of the patch. C is then set so that θ = 45◦.

To study the shape of the patch, each surface point is labeled with its distance r to C. We then build a square 
grid (25× 25 pixels), associating each pixel with the mean r value calculated on the points inside it.

Zernike 2D protocol. Each function of two variables f (r,ψ) defined in polar coordinates inside the region 
of the unitary circle ( r < 1 ) can be decomposed in the Zernike basis as

where

and

cn′m are the expansion coefficients, while the complex functions Zn′m(r,ψ) are the Zernike polynomials. The 
radial part Rn′m is given by

Since for each couple of polynomials, it is true that

the complete sets of polynomials form a basis, and knowing the set of complex coefficients cn′m allows for a 
univocal reconstruction of the original patch. The resolution of this reconstruction depends on the order of 
expansion N = max(n

′
).

The norm of the coefficients zn′m = |cn′m| defines the Zernike invariant descriptor, which is invariant for 
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The complementarity between two given patches defined with a sphere of radius R can then be measured as 
the Euclidean distance between the two corresponding invariant vectors: the more the complementary the smaller 
the distance between their corresponding Zernike vectors. This evaluation can be applied to any properties of 
the patches that can be described by assigning a numerical value to each surface point.

The efficiency of this method depends on two key parameters: the radius R and the Zernike maximum expan-
sion order N. When R is too low, the patches lack sufficient surface to distinguish the compatibility between 
interacting regions, whereas too-large patches would include non-interacting regions that have a low comple-
mentarity per se. N, on the other hand, determines the level of details captured: too low orders could confuse 
interacting and random patches because the surfaces are excessively “smoothed”, while an excessively accurate 
level of description would model unnecessary (and time-consuming) details.

In this study, we performed the Zernike protocol using R = 9Å and N = 20 , in accordance with the most 
efficient parameters identified in the previously mentioned  work16.

Code availability
All codes and relevant data are within the Main Text, and at: https:// github. com/ matmi8/ Zerni ke2D.
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