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Comorbidity genetic risk 
and pathways impact SARS‑CoV‑2 
infection outcomes
Rachel K. Jaros 1, Tayaza Fadason 1,2, David Cameron‑Smith 3, Evgeniia Golovina 1 & 
Justin M. O’Sullivan 1,2,4,5,6*

Understanding the genetic risk and mechanisms through which SARS‑CoV‑2 infection outcomes and 
comorbidities interact to impact acute and long‑term sequelae is essential if we are to reduce the 
ongoing health burdens of the COVID‑19 pandemic. Here we use a de novo protein diffusion network 
analysis coupled with tissue‑specific gene regulatory networks, to examine putative mechanisms for 
associations between SARS‑CoV‑2 infection outcomes and comorbidities. Our approach identifies a 
shared genetic aetiology and molecular mechanisms for known and previously unknown comorbidities 
of SARS‑CoV‑2 infection outcomes. Additionally, genomic variants, genes and biological pathways 
that provide putative causal mechanisms connecting inherited risk factors for SARS‑CoV‑2 infection 
and coronary artery disease and Parkinson’s disease are identified for the first time. Our findings 
provide an in depth understanding of genetic impacts on traits that collectively alter an individual’s 
predisposition to acute and post‑acute SARS‑CoV‑2 infection outcomes. The existence of complex 
inter‑relationships between the comorbidities we identify raises the possibility of a much greater post‑
acute burden arising from SARS‑CoV‑2 infection if this genetic predisposition is realised.

Genome-wide association studies (GWAS) have identified genetic associations with severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2)  infection1–7, consistent with a complex genetic contribution to infec-
tion susceptibility and severity. Additionally, epidemiological studies have connected the outcome of SARS-
CoV-2 infection with comorbidities including diabetes, obesity, active cancer, hypertension, and coronary artery 
 disease8, all of which intensify SARS-CoV-2 health  burdens9–13. Yet, the interactions between the genetic contri-
butions associated with these complex comorbidities and the risk variants associated with SAR-CoV-2 infection 
outcomes remain unexplored. The reason for this is not that we are unaware of the need to treat SARS-CoV-2 
infections holistically. Rather, characterising the potential causal mechanisms underlying the total genetic bur-
den for SARS-CoV-2 infection outcomes and comorbidities requires an integrative translational approach that 
moves beyond cross-cohort genome-wide associations for single conditions. Thus, the problem lies in how we 
undertake studies to characterise the total genetic burden for SARS-CoV-2 infection, including the full suite of 
comorbid conditions, to gain a functional understanding of the mechanisms. Yet, the significant acute and long-
term sequelae associated with ongoing SARS-CoV-2 infections mean that it is essential we address the interaction 
with comorbid conditions. Only then will we achieve a step-change in our ability to predict, treat and mitigate 
the worst outcomes of SARS-CoV-2 infection.

The COVID-19 Host Genetics Initiative (COVID-19 HGI) (https:// www. covid 19hg. org/) undertook a meta-
analysis of 49,562 cases and 2 million controls across 46 distinct studies from 19 countries to identify the host 
genetic determinants of SARS-CoV-2 infection and the severity of the resulting  disease4. The COVID-19 HGI 
identified variants associated with: (1) severe cases and (2) cases of moderate or severe SARS-CoV-2 (herein: 
hospitalised). Severe cases required respiratory support in hospital or died due to SARS-CoV-2; hospitalised cases 
were hospitalised as a result of SARS-CoV-24. Mendelian Randomisation analyses, performed using 38 a priori 
selected  phenotypes4, identified BMI (hospitalisation and reported infection), smoking initiation (hospitalisa-
tion), red blood cell count and height (reported infection), and Parkinson’s disease (hospitalisation European 
only without UKBiobank) as being causally related to SARS-CoV-2. In addition, eight genetic traits (diabetes, 

OPEN

1The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand. 2Maurice Wilkins Centre for 
Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand. 3College of Health, Medicine 
and Wellbeing, The University of Newcastle, Callaghan 2308, Australia. 4MRC Lifecourse Epidemiology Unit, 
University of Southampton, Southampton, UK. 5Singapore Institute for Clinical Sciences, Agency for Science, 
Technology and Research (A*STAR), Singapore, Singapore. 6Australian Parkinson’s Mission, Garvan Institute of 
Medical Research, Sydney, NSW, Australia. *email: justin.osullivan@auckland.ac.nz

https://www.covid19hg.org/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-36900-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9879  | https://doi.org/10.1038/s41598-023-36900-z

www.nature.com/scientificreports/

BMI, lupus, ischemic stroke, ADHD, coronary artery disease [CAD], smoking initiation, cigarettes per day) 
were genetically correlated with severity and hospitalisation. Notably, CAD was inconsistently associated with 
infection  severity4, despite epidemiological studies having confirmed a strong incidence of cardiovascular disease 
that increased with the care setting during acute infection (e.g. infected, hospitalised, or intensive  care9). The 
biological mechanisms that account for the causal and genetic relationships between SARS-CoV-2 and these 
conditions remain obscure.

Disease  biology14, transcriptome-wide association study  analysis5 and phenome-wide association  studies15–18 
have identified lung tissue and function as central for understanding the genetic risk contributed by SARS-CoV-2 
associated variants. Yet, translating genetic knowledge into functional understandings of individual and shared 
disease processes is complicated by the fact that: (1) individual genetic variants associated with complex polygenic 
disorders typically have small effect sizes; (2) regulatory mechanisms are generally cell/tissue type-specific19,20; 
and (3) the functional outcomes of intergenic trait associated genetic variants are frequently associated with genes 
that are non-adjacent within the linear DNA  sequence21,22. The application of regulatory genomics approaches 
has emerged as a promising strategy to identify GWAS variants that are enriched in regulatory regions relevant to 
the pathophysiological basis of a given  trait23,24. In addition, protein–protein interaction networks and pathway-
based approaches have identified ‘pathways’ where genes converge between  diseases25,26. However, the integration 
of these information sources remains a complex undertaking.

Phenome-wide association  studies16 have been used to screen SARS-CoV-2 associated risk variants for asso-
ciations with known diseases or traits. These studies have identified an association between SARS-CoV-2, chro-
mosome 3p21.31 and traits in monocytes, eosinophils, and  neutrophils17. Similarly, the SARS-CoV-2 associated 
variant rs657152 (ABO) has been linked to 40 associations, including heart failure (OR, 1.09; 95% CI 1.03–1.14; 
q = 0.046) and diabetes (OR, 1.05; 95% CI 1.02–1.07; q = 0.004)18. Papadopoulou, et al. 27 identified increased 
risk for phlebitis and thrombophlebitis (OR = 1.11, p = 5.36 ×  10–8) in severe SARS-CoV-2 cohorts and increased 
risk for leg blood clots (OR = 1.1, p = 1.66 ×  10–16) in SARS-CoV-2 susceptible patients. Finally, 17q21.31 has 
previously been associated with SARS-CoV-2, red blood cells (count and distribution width), haemoglobin 
(levels and concentration), lung function traits and chronic obstructive pulmonary disorder (COPD)15. Despite 
these insights, the challenges associated with interpreting genetic variants identified by GWAS also applies to 
phenome-wide association studies insofar that functional information and tissue/cell type regulatory mecha-
nisms are rarely addressed.

The combined genetic risks of SARS-CoV-2 comorbidities and predispositions have not been systematically 
investigated. Here, we assessed the function of SARS-CoV-2 variants in the lung, blood, brain and coronary artery 
by integrating chromatin conformation data (i.e. tissue-specific Hi-C) with common genetic variation (i.e. minor 
allele frequency ≥ 0.05, which designates the frequency cut-off at which the second most common allele occurs in 
a given population) and gene expression data  (GTEx28) to identify spatially constrained expression quantitative 
trait loci (i.e. eQTLs). eQTLs are SNPs that explain variation in expression levels of mRNAs. We then performed 
an unbiased, de novo protein diffusion network analysis coupled with tissue-specific gene regulatory networks 
to identify spatially constrained eQTLs that regulate the encoding proteins, the traits, and biological pathways 
that link inherited risk factors for SARS-CoV-2 with recognised and unrecognised phenotypes.

Results
Lung protein interaction network analysis identifies known and unknown comorbidities of 
SARS‑CoV‑2 infection. Proteins that interact within networks are more likely to contribute to a specific 
cellular  process29. Therefore, we undertook a de novo protein interaction network analysis to explore comorbidi-
ties and predispositions associated with SARS-CoV-2 (Fig. 1). The protein interaction network was generated 
in two stages. Firstly, we used  CoDeS3D29 to integrate empirically defined information on the 3-dimensional 
organisation of the genome in lung cells (captured by Hi-C30) with functional data (lung tissue expression Quan-
titative Trait  Loci28 [eQTL]) to assign functional (gene expression) impacts for SARS-CoV-2 risk variants (asso-
ciated with severe and hospitalised phenotypes) in lung tissue (Fig. 1a). There was a significant variant overlap 
between the hospitalised (71.3%) and severe (87.9%) phenotypes (Supplementary Fig. 1a). Secondly, we gener-
ated protein interaction networks by parsing the proteins encoded by the SARS-CoV-2-associated spatial eQTL 
targeted genes through the  STRING31 or PROPER-Seq databases to identify proteins they directly interact with 
(Fig. 1b). The gene targets identified by CoDeS3D (Supplementary Fig. 1) formed level 0 (index set, n = 227; 
Supplementary Table 2) of the protein interaction network. The protein interaction network was expanded to 
four levels such that the proteins on each level were curated as interacting with proteins on the previous level 
(Fig.  1b). Only proteins that were expressed in lung tissue  (GTEx28) were included in the expanded protein 
interaction network (severe; n = 462 proteins; and hospitalised; n = 720 proteins; Supplementary Table S3a and 
b). For replication purposes, the process was repeated using the PROPER-seq protein interaction  dataset32. In 
comparison to  STRING31, PROPER-seq is restricted to empirically captured protein–protein  interactions32.

We parsed all known common SNPs (MAF ≥ 0.05;  dbSNP15433) through CoDeS3D using lung cell genome 
structure (Hi-C) and lung tissue gene expression data to identify spatial eQTLs. This analysis generated a lung 
gene regulatory network (GRN) that consisted of 908,356 spatial eQTLs (731,067 SNPs [MAF ≥ 0.05] and 15,532 
genes) that impacted gene expression within lung tissue (“Methods”). We used the lung GRN to obtain eQTLs 
associated with proteins within levels 1 to 4 of the expanded protein interaction network (Fig. 1b). eQTLs for the 
genes within each level of the expanded protein interaction network were tested for trait enrichment (hypergeo-
metric test) within the GWAS Catalog. eQTLs were tested for significance within each level independently and 
were not aggregated across the levels. Bootstrapping (n = 1,000 randomly chosen gene sets of equal size to the 
severe [n = 104] and hospitalised [n = 123] sets; Supplementary Fig. 1c]) confirmed that 49 of 80 level-specific 
traits were non-random and unique to SARS-CoV-2 (p ≤ 0.05; Supplementary Fig. 2 and Supplementary Table 4). 
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As expected, due to the overlap of SNPs between the hospitalised and severe phenotypes (Supplementary Fig. 1a), 
a subset of significant trait associations were shared (n = 20; Fig. 2a), unique to hospitalised (n = 16; Fig. 2d), or 
unique to the severe (n = 13; Fig. 2e) SARS-CoV-2 infection outcomes (Supplementary Table 3a,b).

Inspection of the phenotypes that were associated with the eQTLs for proteins at each interaction net-
work level identifies traits: (1) with obvious relevance (e.g. lung function); (2) that support epidemiological 
observations (e.g. cardiovascular  disease9, idiopathic pulmonary  fibrosis34, mood  disorders35 and Parkinson’s 
 disease36); and (3) that have not yet been, or are weakly implicated in SARS-CoV-2 infection outcome (e.g. and 
immunoglobulin A vasculitis). Among all 55 significant (p ≤ 0.05) traits identified using the STRING-informed 
protein interaction network, 33 were replicated using a network of protein interactions captured within human 
embryonic kidney, T lymphocyte, and endothelial cells (PROPER-seq32; Supplementary Fig. 3; Supplementary 
Table 4c,d).

Index level genes that have eQTLs associated with other traits are, by definition, pleiotropic. Seven of the 21 
index level traits, for both SARS-CoV-2 phenotypes, were mood disorders (Fig. 2a). The eQTLs associated with 
the index level mood disorders are associated with MAPT, KANSL1 and WNT3 transcript levels (Fig. 2b–c). 
These genes, in combination with PLEKHM1 and HLA-DQB1 are also associated with the GWAS Catalog trait, 
“Parkinson’s disease” (level 0; Fig. 2a–c). The trait-associated eQTLs (n = 34) that regulate MAPT are located 

Figure 1.  SARS-CoV-2 associated GWAS SNPs were assessed to ascertain loci functionality and identify 
putative mechanisms for comorbid and genetic predispositions for traits associated with SARS-CoV-2. (a) 
The Codes3D pipeline generates the index level set of target genes (Supplementary Fig. 1d) associated with 
the severe and hospitalised phenotypes. SNPs obtained from COVID-19  HGI47 (Supplementary Table 1) 
were screened through tissue-specific Hi-C  datasets30,53–55 to identify cis (< 1 Mb), trans (> 1 Mb) and trans-
interchromosomal SNP-gene interactions. eQTL effects were identified by testing the SNP-gene pairs against 
the GTEx database (version 8)28. The resulting statistically significant (FDR ≤ 0.05) SARS-CoV-2-specific genes 
(spatial eQTL-gene pairs), from both the hospitalised and severe phenotypes were assessed for protein–protein 
interactions using the  STRING56 and PROPER-Seq32 databases. All genes were assessed using g:Profiler57 to 
obtain gene ontology terms. (b) The protein–protein interaction network analysis pipeline has two parts: (1) all 
interacting protein partners from level 0 (CoDeS3D identified index level set of genes) to level 4 were identified 
by querying the STRING database with parameters of high confidence threshold score > 0.7; and (2) tissue-
specific gene regulatory maps were queried to obtain all known eQTLs for each protein within the expanded 
network. The eQTLs were then tested for enrichment (hypergeometric test) within the GWAS Catalog (https:// 
www. ebi. ac. uk/ gwas/) to identify associated phenotypes.

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/


4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9879  | https://doi.org/10.1038/s41598-023-36900-z

www.nature.com/scientificreports/

across a 1 Mb locus on chromosome 17 (Supplementary Fig. 4). This is consistent with the existence of multiple 
trait-specific regulatory elements for MAPT within chromosome 17q21.31.

“Cardiovascular disease” was significantly associated with the hospitalised (adj p = 3.96 ×  10–3) phenotype 
within lung tissue, following bootstrapping (Fig. 2d). There was a total of 32 eQTLs and 34 genes enriched for 
“cardiovascular disease” in the lung interaction network (Supplementary Fig. 5; Supplementary Table 3b). Of 
the 34 genes, NOS3, ADK, ACE, AGT  and PIK3CB were identified as being druggable  targets37 (Supplementary 
Table 5), however the impact of therapeutics on the risk of cardiovascular disease associated with SARS-CoV-2 
remains unknown.

Traits affecting lung function share molecular interactions with the SARS-CoV-2 infection phenotypes 
(Fig. 2d–e). However, the hospitalised phenotype was associated with lung function (FEV1/FVC; Fig. 2d; Sup-
plementary Table 4b)38. The eQTLs responsible for this hospitalised phenotype-specific lung function association 
were linked to 55 genes (Supplementary Fig. 6; Supplementary Table 3b). By contrast, the severe SARS-CoV-2 
phenotype was associated with traits that are typically recognised as having greater impact on lung function, 
e.g., “chronic obstructive pulmonary disorder” (Fig. 2e; Supplementary Table 4a). The severe lung function traits 
were due to eQTLs targeting PSMA4 and CHRNA3 (Supplementary Fig. 6f-g; Supplementary Table 3a). Chronic 
obstructive pulmonary disorder is an epidemiologically verified comorbidity for severe SARS-CoV-2  infection8.

Tissue specific regulatory roles reveal epidemiologically verified SARS‑CoV‑2 comorbidities 
and predispositions. SARS-CoV-2 hospitalisation and  death13 have been epidemiologically linked to obe-
sity and  diabetes10,11. Neither obesity nor diabetes were identified as being comorbid with infection severity in 

Figure 2.  Protein interaction network analysis identifies associations between SARS-CoV-2 and complex 
traits. The protein interaction network analysis (Fig. 1b) was applied to lung tissue using genes (i.e. severe = 104; 
hospitalised = 123; Supplementary Fig. 1d; Supplementary Table 2) targeted by SARS-CoV-2 associated eQTLs 
in this tissue (Supplementary Table 8), and the lung GRN (Supplementary Table 7). Traits that were significant 
following bootstrapping (p ≤ 0.05) were (a) shared, (d) unique to the hospitalised phenotype, or (e) unique to the 
severe phenotype. Pleiotropic genes are responsible for the trait associations in level 0 for (b) the shared severe 
phenotype and (c) the shared hospitalised phenotype. Bi-clustering of the genes x traits was performed using 
constrained eQTLs for the gene and trait in question. Bubble size is proportional to the total number of eQTLs 
enriched in each trait, bubble colour is proportional to the adjusted p-value (Bonferroni correction) for GWAS 
trait enrichment.
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our analysis of the lung (Fig. 2). However, gene regulation is tissue  specific19,20 and we hypothesised that the 
comorbid effects associated with these traits are mediated through other organ(s). Genes targeted by spatially 
constrained eQTLs were identified (FDR ≤ 0.05) within whole blood and brain cortex using 5,594 SNPs that 
were associated with SARS-CoV-2 hospitalisation or severe phenotype (Supplementary Fig.  1d; Supplemen-
tary Table 6). GRNs for  blood39 and brain cortex (1,050,155 spatial eQTLs involving 862,964 SNPs and 14,428 
genes; Supplementary Table 7) were generated. There were 111 and 43 traits associated (FDR < 0.05) with the 
SARS-CoV-2 protein interaction network within blood and brain tissue, respectively, following bootstrapping 
(Fig. 3; Supplementary Fig. 7; Supplementary Table 8). “Type 1 diabetes and autoimmune thyroid diseases” (adj 
p = 3.87 ×  10–4) and “Type 1 diabetes (age at diagnosis)” (adj p = 1.76 ×  10–11) were significantly associated with 

Figure 3.  Additional traits are associated with SARS-CoV-2 infection severity in blood and brain. The protein 
interaction network analysis (Fig. 1b) was applied to whole blood and brain tissues using genes (i.e. severe = 206; 
hospitalised = 214 in blood, severe = 35; hospitalised = 38 in brain; Supplementary Fig. 1d; Supplementary 
Table 6) targeted by SARS-CoV-2 associated eQTLs in these tissues (Supplementary Table 6),  blood39 and brain 
GRNs (Supplementary Table 7). Blood tissue traits identified from the STRING protein interactions that were 
(a) shared across both severe and hospitalised phenotypes; and (b) were shared and observed in the brain. Only 
traits that were significant following bootstrapping (p ≤ 0.05) are shown. Bubble size is proportional to the total 
number of eQTLs enriched in each trait, bubble colour is proportional to the adjusted p-value (Bonferroni 
correction) for GWAS trait enrichment. The heatmaps highlight genes that are associated with the level 0 traits 
in the severe (c) and hospitalised (d) phenotypes in the brain.
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the SARS-CoV-2 severe and hospitalisation phenotypes in whole blood tissue (Fig. 3a). These associations were 
replicated in our analysis of protein interactions derived from PROPER-Seq (Supplementary Figs. 8 and 9; Sup-
plementary Table 8e and g). There are 14 eQTLs and 27 pleiotropic genes, located within the HLA region on 
chromosome 6, that are associated with “Type 1 diabetes (age at diagnosis)” across both phenotypes in blood 
(Supplementary Table 3c and d; Supplementary Fig. 10). This is concordant with the major genetic susceptibility 
determinants for Type 1  diabetes40.

We compared the multimorbid traits that were significantly associated, following bootstrapping, with SARS-
CoV-2 infection severity across the lung, blood, and brain GRNs (Supplementary Fig. 11a). We identified 471 
eQTLs regulating 230 genes enriched for 7 traits (e.g. Parkinson’s disease), which were shared across these tissues 
(FDR ≤ 0.05; Supplementary      Fig. 11b; Supplementary Table 3g). However, whilst the traits are shared, distinct 
tissue-specific eQTL and gene profiles are responsible for the enrichment of each trait (Supplementary Fig. 11b). 
Notably, among the unique traits, 14 of the 39 ‘blood traits’ that were associated with the hospitalised phenotype 
(e.g. cholesterol and fatty acid measures, and serum metabolites in chronic kidney disease) were enriched for 
eQTLs targeting the FADS2-FADS1 genes (Supplementary Fig. 12).

Identification of shared risk for cardiovascular disease factors and SARS‑CoV‑2 infec‑
tion. Cardiovascular disease is a known risk factor for acute and post-acute SARS-CoV-2  aetiology9. Coro-
nary artery disease (CAD) was associated with both SARS-CoV-2 phenotypes in blood prior to bootstrapping 
(adj p = 3.20 ×  10–3 and 4.08 ×  10–4 hospitalised and severe, respectively; Supplementary Table 8a and c). Similarly, 
CAD was associated with the severe phenotype (adj p = 0.004; Supplementary Table 8i) in the coronary artery 
prior to bootstrapping, but not following (Supplementary Figs. 13 and 14), indicating the association in these 
tissues may not be unique to SARS-CoV-2, however, still statistically and biologically relevant based on epide-
miological  studies9. CAD remained associated with the hospitalised phenotype in brain following bootstrap (adj 
p = 0.03; Fig. 3b; Supplementary Table 8d).

The CAD-association in brain (Fig. 3b; Supplementary Table 8d) was due to 30 spatially constrained eQTLs 
and 18 genes, which formed 8 protein clusters and 124 proteins within the expanded protein interaction network 
(Supplementary Fig. 15; Supplementary Table 9a). The genes (e.g. ERBB4, NOTCH4, HSD17B12) and pathways 
(e.g. ErbB signaling pathway [p = 9.36 ×  10–6]; fatty acid metabolism [p = 2.16 ×  10–7]) have recognised relevance 
to  CAD41 and SARS-CoV-242. Notably, one eQTL we identified as regulating ERBB4 within the brain regulatory 
map has not been mapped to ERBB4 by GWAS (Supplementary Table 9b).

Traits known to increase the risk of cardiovascular events (i.e. Takayasu  arteritis43 [hospitalised adj 
p = 9.51 ×  10–9; severe adj p = 0.001], giant cell  arteritis44 [hospitalised adj p = 7.66 ×  10–5; severe adj p = 4.89 ×  10–5], 
immunoglobulin A  vasculitis45 [hospitalised adj p = ; severe adj p = 1.89 ×  10–76]) and clotting factors (i.e. fibrino-
gen  levels46 [hospitalised adj p = 6.30 ×  10–5; severe adj p = 0.009]) were associated with both phenotypes in blood 
(Fig. 3a; Supplementary Table 8a and c), brain (i.e. immunoglobulin A vasculitis [hospitalised adj p = 4.41 ×  10–6; 
severe adj p = 2.23 ×  10–8]; Fig. 3b) and severe only in the lung (i.e. immunoglobulin A vasculitis [adj p = 0.007], 
fibrinogen levels [adj p = 0.03]; Fig. 2e).

Discussion
This study integrated a protein interaction network with tissue-specific gene regulatory networks to identify 
comorbidities and predispositions of SARS-CoV-2 infection outcomes, and the mechanisms that potentially link 
them, without a priori assumptions. The analysis identified known comorbid traits such as CAD, type 1 diabetes, 
mood disorders and asthma etc. Evidence for genetic predispositions for traits that have not previously been 
associated or have only been weakly associated with SARS-CoV-2 was also obtained (i.e., Parkinson’s disease, 
Alzheimer’s disease, Hirschsprung disease and inflammatory bowel disease). Collectively our results support 
the potential for a much greater post-acute SARS-CoV-2 burden if these genetic predispositions are realised.

The pathway and network-based approach we used anchors the convergence of diseases in their shared genetic 
aetiology. There are two key implications of this new understanding of the genetic and biophysical interactions 
between the complex conditions and SARS-CoV-2 infection. Firstly, therapeutic stratification of acute and post-
acute SARS-CoV-2 patients according to genetically defined comorbidities is possible by analysing the individu-
alised combined genetic burden for SARS-CoV-2 infection outcome and comorbidities. Secondly, therapeutics 
that address the comorbidities, and thus potentially reduce the impacts of the interactions with SARS-CoV-2 
infection, may be clinically viable when applied in individuals who have the predisposing genetic burden.

The discovery-based protein interaction network approach we developed has uncovered putative mechanisms 
for comorbid and genetic predispositions for traits associated with SARS-CoV-2. However, this study has several 
limitations. (1) Study cohorts within the GWAS catalogue are biased to participants of European descent. (2) 
The identification of traits is limited to those that were listed in the GWAS Catalog (02-12-2021). For example, 
the COVID-19 HGI variants were not listed in the GWAS Catalog when this analysis was performed. (3) We 
were limited to the analysis of common genetic variants (MAF ≥ 0.05). The inclusion of rare variants, with larger 
effect sizes, may possibly impact on additional pathways with greater phenotypic consequences. (4) We did not 
include epigenetic data, which captures environmental interactions, within our analyses. For instance, we have 
not considered the downstream effects of changes to transcription factor target information or transcript levels 
on gene expression (5) The protein interaction networks were dependent upon curated protein interaction data 
from STRING and PROPER-seq. It is likely that these datasets do not capture all biologically relevant protein 
interactions. Finally, we did not obtain protein interaction, spatial genome [Hi-C], and gene expression data from 
an identical sample. Therefore, inter-sample variation between the different datasets will impact the analysis.

The population controls used in the COVID-19 HGI consortium were individuals without knowledge of 
SARS-CoV-2 infection or COVID-19  status4. Although this definition of population controls may lead to biased 



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9879  | https://doi.org/10.1038/s41598-023-36900-z

www.nature.com/scientificreports/

effect size estimates if some of these individuals were exposed to the virus and became infected with SARS-CoV-2 
or developed severe COVID-19, we and the COVID-19 Host Genetics Initiative consortium acknowledge this 
limitation. However, the COVID-19 Host Genetics Initiative conducted sensitivity analyses and determined that 
the use of population controls in infectious disease host genetic studies is a valid  approach4.

Several of the target genes we identified within the index level are novel due to both a) the incorporation 
of variants with suggestive significance and b) spatial regulatory information. For example, SMARCA4 was 
identified as being targeted by lung specific eQTLs (rs10416073, rs7247198) in the severe phenotype (within 
the limitations COVID-19 Host Genetics Initiative definition). Notably, this gene was not identified as a target 
in the SARS-CoV-2  GWAS2,4,47. However, SMARCA4 was identified by CRISPR screen to be the second strong-
est SARS-CoV-2 pro-viral gene after ACE248. We contend that the convergence of results from candidate gene 
and population studies supports the putative biological importance of our expanded findings, compared to the 
SARS-CoV-2 GWAS  studies1–7.

We identified tissue-specific pleiotropy between SARS-CoV-2 infection and the genetic risk for Parkinson’s 
disease, neurological conditions, and mood disorders. Parkinson’s disease was identified as being causally related 
to SARS-CoV-24. Whilst the biological relevance of this relationship is unclear, we identified a total of 26 vari-
ants and 28 genes (e.g. MAPT, CRHR1, and KANSL1)49 across all tissues tested that are associated with this link. 
This association was driven predominantly by HLA region (i.e. 6p21) variants and the 17q21.31 locus. Consist-
ent with our findings, the 17q21.31 locus has been identified as linking SARS-CoV-2 and Parkinson’s  disease15, 
likely driven by the recognised inversion in this region. We have expanded on the proposed 17q21.31 linkage 
between SARS-CoV-2 and Parkinson’s disease by identifying 4 variants and 2 pleiotropic genes (i.e. TLK1 and 
FDFT1) in blood, located outside 17q21.31 and 6p21, that are also associated with both traits. Moreover, the 
integration of spatial constraints in the identification of tissue-specific regulatory connections (i.e. constrained 
eQTLs), reduced the overall number of traits and genes that were associated with the pleiotropic 17q21.31 
 locus15. Whilst the long-term significance of SARS-CoV-2 infection and Parkinson’s disease onset and severity 
remains inadequately understood, this is an area of  concern36. Notably, the 1918 Spanish flu (influenza A H1N1 
virus) pandemic resulted in an increase in the incidence of Parkinson’s  disease50. Therefore, we contend that 
the genetic architecture and protein interactions we identified may represent high-value therapeutic targets to 
affect the causal  relationship4 and reduce long-term increases in the incidence of Parkinson’s disease following 
SARS-CoV-2 infection.

Consistent with epidemiological  observations10–12, we identified type 1 diabetes (age at diagnosis) as being 
associated with the severe and hospitalised phenotypes, as defined by the COVID-19 Host Genetics Initiative. 
This association was due to 27 pleiotropic genes (e.g. NOTCH4). Collectively, these results suggest several puta-
tive mechanisms that may link type 1 diabetes and SARS-CoV-2  infection51.

Cardiovascular disease burden increases according to severity of SARS-CoV-2  infection9. However, the mech-
anism by which this increase occurs is unknown. In the hospitalised phenotype, we identified 34 genes and 32 
eQTLs enriched for cardiovascular disease in the lung protein interaction network and 18 genes and 30 eQTLs 
enriched for the CAD-association in the brain protein interaction network. We have reproduced and expanded 
on the known genetic correlation between CAD and SARS-CoV-24 by including tissue  specific19,20 and  spatial23,24 
regulatory mechanisms in our analysis. The proteins encoded by CAD-associated genes in brain (e.g. ERBB4 
[eQTL rs582384]) functioned within pathways (e.g.“ErbB signaling pathway”) that are activated in CAD, exert-
ing disease mitigation and regenerative effects, and preventing pathological processes (i.e. atherosclerosis) that 
trigger  CAD41. Therefore, since the variants we identified are found in the germline, we contend that a genetic 
predisposition for CAD can amplify the risk of adverse SARS-CoV-2 outcomes. Moreover, in individuals who 
develop CAD following SARS-CoV-2 infection, the infection activates an existing, albeit unrecognised, genetic 
predisposition for CAD. ERBB4 is found here to be interacting significantly with NGR1 (NGR-1), an agonist of 
the ErbB4 receptor. The NRG-1/ErbB4 signalling system is critical for the mitigation of heart failure, an outcome 
of late-stage CAD. Circulating NRG-1 levels are inversely related with the severity of CAD lesions, it reduces 
the magnitude of ischemic heart and brain injury, and inhibits atherogenesis via suppression of macrophage cell 
 formation41. NRG-1 also inhibits cellular senescence, a key contributor to atherosclerosis, via  ErbB452. Clinical 
trials of recombinant NRG-1 acting via ErbB4 successfully improved overall survival in a cohort of 1,600 patients 
with heart  failure52.

In conclusion, the network approach we developed here anchors known SARS-CoV-2 comorbidities and 
previously undescribed genetic predispositions in a shared genetic aetiology. In so doing, it identifies molecular 
insights, and potential therapeutic targets. Collectively, these findings pave the way for patient stratification, not 
simply based on their visible comorbidities, but through an in depth understanding of genetic impacts on traits 
that collectively alter an individual’s predisposition to acute and post-acute SARS-CoV-2 infection outcomes.

Methods
Genetic variants used in this study. Genome-wide association study (GWAS) data for SARS-CoV-2 
clinical phenotypes was obtained from the Covid-19 Host Genetics initiative (COVID-19 HGI)47. Single nucleo-
tide polymorphisms (SNPs) for the hospitalised versus population and severe (hospitalised AND death or res-
piratory support) versus population (p-value threshold of 1 ×  10–5) cohorts were obtained from COVID-19 HGI 
release 6 (https:// www. covid 19hg. org/ resul ts/ r6/; Supplementary Table 1). Full summary statistics and details 
from COVID-19 HGI are available at https:// app. covid 19hg. org/47.

Assigning putative transcriptional functions to SARS‑CoV‑2 SNPs. Severe and hospitalised 
SARS-CoV-2 associated SNPs were analysed separately using  CoDes3D29 to identify phenotype-specific spa-
tially constrained expression quantitative trait loci (eQTLs) and their target genes (Supplementary Table 2a and 

https://www.covid19hg.org/results/r6/
https://app.covid19hg.org/
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b). Phenotype-specific (i.e. hospitalised or severe) spatial connections for each SNP-gene pair were identified 
from Hi-C chromatin contact data derived from human lung primary  tissue30, blood (peripheral blood B cells, 
peripheral blood  CD4+ T cells, peripheral blood  CD8+ T  cells53, peripheral blood T  cells54), brain (dorsolateral 
prefrontal cortex  cells30) and the coronary artery (smooth muscle  cells55). To identify which SNPs are eQTLs, 
the SNP-gene pairs were used to query lung, whole blood, brain cortex and the coronary artery within the GTEx 
 database28. Multiple testing was corrected using the Benjamini–Hochberg procedure (FDR < 0.05) and interac-
tions were kept if the logarithm of allelic fold change (log_aFC) ≥ 0.0529. eQTL and gene chromosome positions 
were annotated according to human reference genome GRCh38/hg19.

LD analysis. LD analysis was conducted for eQTL-gene combinations using LDLink 4.0 LDMatrix Tool 
(https:// ldlink. nci. nih. gov/? tab= ldmat rix). Parameters included: SNP rsID numbers from  dbSNP15433; genotyp-
ing data from phase 3 (version 5) of the 1000 Genome Project; European population.

Generation of gene regulatory networks. We generated gene regulatory networks (GRNs), which 
included all spatially constrained eQTLs for all known SNPs (MAF ≥ 0.05;  dbSNP15433) for lung, whole blood 
(dbGaP accession: phs000424.v8.p2; approved project number: #22937) and brain cortex (GTEx v 8.0)28. SNPs 
were screened through CoDes3D one chromosome at a time. Multiple testing was corrected using the Benja-
mini–Hochberg procedure (FDR ≤ 0.05) and interactions were kept if the logarithm of allelic fold change (log_
aFC) ≥ 0.0529.

Protein–protein interaction network analysis. Curated protein–protein interaction data were 
obtained from STRING (https:// string- db. org). STRING was mined using lists of genes targeted by spatially 
constrained eQTLs and the following parameters: experiments, text mining, co-expression and databases, spe-
cies limited to “Homo sapiens”, and an interaction score ≥ 0.7.

Experimentally validated protein interaction data was also obtained from the protein–protein interaction 
sequencing (PROPER-Seq) tool database (v1.0; https:// genemo. ucsd. edu/ proper/). Protein interactions were 
obtained from HEK293T cells, Jurkat cells, and human umbilical vein endothelial cells (HUVECs). Genes tar-
geted by spatially constrained eQTLs were imputed to the PROPER-Seq tool to discover additional cell-line 
specific protein–protein interactions.

Expanded protein–protein interaction network analysis. The expanded protein–protein interac-
tion network analysis first takes genes of interest (i.e. the SARS-CoV-2 genes identified by CoDes3D), then 
parses these genes to  STRING31, or PROPER-Seq32 databases, to identify protein interactions (Fig. 1b). The input 
gene list is assigned as level 0. The proteins in Levels 1 to 4 include proteins for which there are curated interac-
tions with the previous level. Proteins within levels 1 to 4 may, or may not, interact with each other. The genes 
that encode the proteins that are present within each level of the protein interaction network (0–4) were then 
mined against the lung, whole blood and brain-specific GRNs to identify all significant (adj p ≤ 0.05) spatially 
constrained regulatory eQTLs that are associated with the genes of interest (Fig. 1c). The spatially constrained 
eQTLs are tested for enrichment within SNPs associated with GWAS traits within the GWAS catalogue (p =  10–8). 
Curated GWAS associations were downloaded from the NHGRI-EBI GWAS  Catalogue38 on 02-12-2021. Statis-
tically significant eQTL enrichments were determined by hypergeometric distribution analysis (p ≤ 0.05), calcu-
lated on the total number of spatially constrained eQTLs at each protein interaction network level. Bonferroni 
correction for multiple hypothesis testing was calculated on the enriched eQTLs using the p-value list and the 
number of tests that were  performed58. eQTLs with an adjusted p-value ≤ 0.05 were selected as being significant.

Bootstrapping analysis (n = 1,000 iterations) was conducted to determine traits identified by the protein 
interaction network (at all levels) that are uniquely associated with SARS-CoV-2. Genes lists of the same size 
as the protein interaction network input datasets (i.e. severe = 104; hospitalised = 123 in lung, severe = 206; hos-
pitalised = 214 in blood, severe = 35; hospitalised = 38 in brain, severe = 86; hospitalised = 89 in coronary artery; 
Supplementary Fig. 1d; Supplementary Table 2 and 6) were generated randomly from GenBank. The protein 
interaction network analysis pipeline was run on lung, blood, brain, and coronary artery tissues using the ran-
dom gene lists. The number of shared traits were compiled in a python dictionary and calculated for significance 
according to frequency (p = trait/1000). Traits with p-value ≤ 0.05 were deemed to be unique to SARS-CoV-2.

Functional and pathway enrichment analyses. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes  (KEGG59–61) pathway enrichment analysis was conducted using g:Profiler (https:// biit. cs. 
ut. ee/ gprofi ler/ gost) and the Reactome (REAC), WikiPathways (WP), Transfac (TF), mirTarBase (MIRNA), 
Human Protein Atlas (HPA), CORUM and Human Phenotype Ontology (HP) databases. Pathways and signifi-
cant terms were selected with the threshold of adjusted p-value < 0.05.

Data visualisation used in this study. R studio (version 1.3.959), and  ggplot262,  VennDiagram63 and 
 UpsetR64 R packages were used to visualise results. Cytoscape (version 3.8.2) was used for visualising the 
STRING network. K-means clustering was performed using the R package pheatmap.

Data and code availability
The code and data sources used in the analysis are listed in Supplementary Table 11. All findings, scripts and the 
reproducibility report are available on github at https:// github. com/ rkjar os/ covid_ multi morbi dity. All figures 
and gene regulatory networks are available on figshare (https:// doi. org/ 10. 6084/ m9. figsh are.c. 60784 62. v1).

https://ldlink.nci.nih.gov/?tab=ldmatrix
https://string-db.org
https://genemo.ucsd.edu/proper/
https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
https://github.com/rkjaros/covid_multimorbidity
https://doi.org/10.6084/m9.figshare.c.6078462.v1
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