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A novel defined pyroptosis‑related 
gene signature predicts prognosis 
and correlates with the tumour 
immune microenvironment in lung 
adenocarcinoma
Zi Chen 1,5, Linyang Ge 1,5, Shuanglan Xu 1,5, Qin Li 2,3* & Linfu Zhou 1,4*

Lung adenocarcinoma (LUAD) is one of the most common causes of cancer‑related death. The role of 
pyroptosis in LUAD remains unclear. Our study aimed to identify a prognostic signature of pyroptosis‑
related genes (PRGs) and explore the connection of PRGs with the tumour microenvironment in 
LUAD. Gene expression and clinical information were obtained from The Cancer Genome Atlas 
database. Consensus clustering was applied to classify LUAD patients. The least absolute shrinkage 
and selection operator Cox and multivariate Cox regression models were used to generate a PRG‑
related prognostic signature. The correlations between PRGs and tumour‑infiltrating immune cells 
or the tumour mutational burden were analysed by Spearman’s correlation analysis. In this study, 
44 PRGs significantly differed in expression between LUAD and normal tissues. Based on these 
genes, patients were clustered into three clusters with significantly different distributions of tumour‑
infiltrating immune cells and immune checkpoint regulators. A total of four PRGs (NLRP1, HMGB1, 
CYCS, and BAK1) were used to construct a prognostic model. Significant correlations were observed 
between these prognostic PRGs and immune cell infiltration or the tumour mutational burden. 
Predictive nomogram results showed that BAK1 could be an independent prognostic biomarker in 
LUAD. Additionally, the expression level of BAK1 was validated in two independent Gene Expression 
Omnibus cohorts. Our identified prognostic PRG signature may provide insight for future studies 
targeting pyroptosis and the tumour microenvironment in LUAD. Future studies are needed to verify 
our current findings.

Lung cancer is one of the leading causes of death in the world, with an estimated 2.09 million new cases and 1.76 
million deaths each  year1,2. Non-small cell lung cancer (NSCLC) is one of the most common types, accounting 
for approximately 80% of all lung cancer cases, and can be further classified into three subtypes: lung squamous 
cell carcinoma (LUSC), lung adenocarcinoma (LUAD) and large-cell  carcinoma2–4. LUAD is the most common 
histologic subtype, with an extremely poor survival rate ranging from 4 to 17%5. Although substantial progress 
has been made in the diagnosis and treatment of LUAD, the 5-year survival rate has been slow to  improve5,6. 
Therefore, developing a novel and efficient prognostic model is important for the treatment of LUAD.

Pyroptosis is a newly identified type of programmed cell death characterized by rapid rupture of the cellular 
membrane and release of proinflammatory intracellular contents; it is thus also known as cellular inflammatory 
 necrosis7. During pyroptosis, the inflammasome, caspase and gasdermin families are key  executors7–9. The process 
comprises canonical and noncanonical regulatory pathways. The canonical pathway is initiated by activation 
of caspase-1 either directly or through recruitment of apoptosis-related speck-like proteins (ASC), followed 
by cleavage of gasdermin D (GSDMD) and further exposure of the N-terminal domain with pore formation, 
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resulting in the release of intracellular contents, especially IL-1β and IL-18. In the noncanonical pathway, CASP-
11 (CASP-4 or CASP-5 in humans) can be activated directly by cytosolic LPS from gram-negative bacteria, 
resulting in cleavage of GSDMD to induce cell  pyroptosis10–12.

The relationship between pyroptosis and cancer is complex since the release of inflammatory mediators can 
form a microenvironment suitable for tumour cell growth, while on the other hand, as a type of cell death, the 
induction of tumour pyroptosis can inhibit the occurrence and development of  tumours9,12–14. Therefore, pyropto-
sis is thought to play a dual role in tumours. In NSCLC, a higher expression level of GSDMD is related to invasive 
features, including an advanced tumour-node-metastasis stage and enlarged tumour  size12,15. Downregulation of 
gasdermin A (GSDMA) results in caspase-3 activation and cancer cell death through the mitochondrial apop-
totic  pathway16,17. Researchers also found that GFNA5/GSDMD could determine the caspase-3-activated cell 
death mode and drug  reactivity12,18. Some studies have explored the roles of pyroptosis-related genes (PRGs) in 
LUAD. Song et al.19 constructed a pyroptosis-related lncRNA signature to predict prognosis in LUAD patients. 
Lin et al.20 and Liu et al.21 each applied the same pyroptotic gene set consisting of 33 PRGs to investigate the 
roles of these genes in LUAD. These studies provide convincing evidence that pyroptosis is closely connected 
with LUAD pathogenesis.

In this study, based on an improved pyroptosis-related gene set consisting of 52 genes, we clustered LUAD 
patients from The Cancer Genome Atlas (TCGA) database and explored the tumour immune status within each 
subclass. Then, we developed a prognostic signature using the least absolute shrinkage and selection operator 
(LASSO) Cox method and studied the correlations between prognostic PRGs and the tumour mutational burden 
(TMB) or tumour-infiltrating immune cells. The expression level of BAK1, a potential independent predictor in 
LUAD, was validated in two independent Gene Expression Omnibus (GEO) datasets. Our findings indicate the 
potential connections of pyroptosis with disease prognosis and the immune microenvironment in LUAD patients.

Materials and methods
Acquisition of gene expression and clinical data. We obtained the RNA-sequencing data of 513 
LUAD patients and corresponding clinical information from TCGA database (https:// portal. gdc. cancer. gov/ 
repos itory). Data and figures were analyzed and generated by R software (version v4.0.3; https:// www.r- proje 
ct. org/).

Identification of differentially expressed PRGs. A total of 52 PRGs were obtained from previous 
 reviews10,15,22–26, as shown in Table 1. We included 49 normal and 513 tumour tissue samples to identify PRGs. 
The ‘limma’ package was used to identify PRGs with an adjusted p-value < 0.05 and |log2FC|≥ 1. The PRGs are 
noted as follows: * if p < 0.05, ** if p < 0.01, and *** if p < 0.001.

Estimation of immune cell type enrichment. Immune cell enrichment analysis of the RNA-seq data 
was performed with xCell. Relative cell type abundance was quantified and visualized across all samples. The 
abundance of each cell type across the clusters was compared using the Kruskal‒Wallis test. Cell types with 
p < 0.05 were considered significantly differentially enriched.

Development of a PRG‑based prognostic model. Cox regression analysis was performed to evaluate 
the prognostic roles of PRGs. Kaplan‒Meier survival analysis was applied to compare survival difference 
between two groups, with the p-values and hazard ratios (HRs) of 95% confidence intervals (CIs) generated by 
log-rank tests and univariate Cox proportional hazards regression. PRGs with significant prognostic values were 
included in further analyses. LASSO Cox regression analysis was used to construct a prognostic model based on 
the identified PRGs. The LUAD patients were divided into low- and high-risk clusters according to the median 
risk score, and the overall survival (OS) time was compared by Kaplan‒Meier analysis. Predictive accuracy was 
evaluated by performing time receiver operating characteristic (ROC) curve analysis.

Construction of a gene‑based prognostic nomogram. A composite nomogram was constructed 
based on the results of multivariate Cox proportional hazards analysis to predict 1-, 3-, and 5-year overall 
recurrence. A forest plot was used to present the p-value, HR, and 95% CI of each variable via the ‘forestplot’ R 
package.

Immune infiltration and tumour mutational burden (TMB) analysis. The correlation between each 
prognostic PRG and tumour-infiltrating immune cells was analysed by Tumour Immune Estimation Resource 
(TIMER, https:// cistr ome. shiny apps. io/ timer/), a web portal for comprehensive analysis of tumour-infiltrating 
immune cells. Spearman’s correlation analysis was applied to describe the correlation between each prognostic 
PRG and the TMB. A p-value less than 0.05 was considered statistically significant.

Results
Identification of differentially expressed PRGs between normal and LUAD tissues. The 
expression levels of 53 PRGs were compared between 49 normal and 513 LUAD tissues from the TCGA. Forty-
four PRGs were significantly differentially expressed (Fig. 1A). The expression of GSDMC, CHMP4C, CYCS, 
CASP3, CASP6, PLCG1, GSDMB, CHMP4A, PJVK, BAK1, PYCARD, GSDMD, GPX4, PRKACA , CHMP4B, 
BAX, CHMP2aA, CHMP7, TP53, HMGB1, IRF2, CASP4, IL18, GSDME, CASP8, GSDMA, NLRP7, AIM2, IRF1, 
GZMB, and GZMA was increased in LUAD compared with normal tissues, while the expression of CHMP3, 
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Table 1.  Full names of pyroptosis-related genes.

Genes Full-names

BAK1 BCL2 antagonist/killer 1

BAX BCL2 associated X, apoptosis regulator

CASP1 Caspase 1

CASP3 Caspase 3

CASP4 Caspase 4

CASP5 Caspase 5

CHMP2A Charged multivesicular body protein 2A

CHMP2B Charged multivesicular body protein 2B

CHMP3 Charged multivesicular body protein 3

CHMP4A Charged multivesicular body protein 4A

CHMP4B Charged multivesicular body protein 4B

CHMP4C Charged multivesicular body protein 4C

CHMP6 Charged multivesicular body protein 6

CHMP7 charged multivesicular body protein 7

CYCS Cytochrome c, somatic

ELANE Elastase, neutrophil expressed

GSDMD Gasdermin D

GSDME Gasdermin E

GZMB Granzyme B

HMGB1 High mobility group box 1

IL18 Interleukin 18

IL1A Interleukin 1 alpha

IL1B Interleukin 1 beta

IRF1 Interferon regulatory factor 1

IRF2 Interferon regulatory factor 2

TP53 Tumour protein p53

TP63 Tumour protein p63

AIM2 Absent in melanoma 2

CASP6 Caspase 6

CASP8 caspase 8

CASP9 Caspase 9

GPX4 Glutathione peroxidase 4

GSDMA Gasdermin A

GSDMB Gasdermin B

GSDMC Gasdermin C

IL6 Interleukin 6

NLRC4 NLR family CARD domain containing 4

NLRP1 NLR family pyrin domain containing 1

NLRP2 NLR family pyrin domain containing 2

NLRP3 NLR family pyrin domain containing 3

NLRP6 NLR family pyrin domain containing 6

NLRP7 NLR family pyrin domain containing 7

NOD1 Nucleotide binding oligomerization domain containing 1

NOD2 Nucleotide binding oligomerization domain containing 2

PJVK Pejvakin

PLCG1 Phospholipase C gamma 1

PRKACA Protein kinase cAMP-activated catalytic subunit alpha

PYCARD PYD and CARD domain containing

SCAF11 SR-related CTD associated factor 11

TIRAP TIR domain containing adaptor protein

TNF Tumour necrosis factor

GZMA Granzyme A
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TIRAP, ELANE, NLRP1, NOD1, IL1A, IL1B, TNF, NLRC4, NLRP3, CASP1, and CASP5 was decreased in LUAD 
compared with normal tissues. The correlation network containing all PRGs is presented in Fig. 1B.

Identification of LUAD clusters by consensus clustering. To explore the connections between the 44 
PRGs and LUAD subtypes, we performed consensus clustering analysis of all 513 LUAD patients in the TCGA 
cohort. The number of clusters was represented by the parameter ‘k’. The empirical cumulative distribution 
function (CDF) was plotted to determine the optimum k value for the sample distribution to reach maximal 
stability (Fig. 2A). By increasing k from 2 to 6, we found that when k = 2, LUAD patients could be divided into 
three distinct and nonoverlapping clusters (Fig. 2B). The differential gene expression profile is presented in a 
heatmap (Fig. 2C). The OS time was compared among the three clusters, and no obvious differences were found 
(p = 0.39, Fig. 2D).

Distinct TMEs of PRG‑based clusters. Next, we analysed tumour-infiltrating immune cell data and 
found that most of the infiltrating immune cells were abundant in Cluster 3, which included T cells (naive  CD8+ 
T cells, effector memory  CD8+ T cells, central memory  CD8+ T cells, central memory  CD4+ T cells, and effector 
memory  CD4+ T cells), B cells (naive B cells, plasma B cells, class-switched memory B cells, and memory B cells), 
macrophages (M1 and M2), dendritic cells (activated myeloid dendritic cells and plasmacytoid dendritic cells), 
monocytes, mast cells, neutrophils and eosinophils (Fig. 3A). We also found that the proportions of immune 
cells within each of the three clusters were different, while the composition types were the same (Fig. 3B).

We also checked the expression of immune checkpoint-related genes (SIGLEC15, CD274, HAVCR2, 
PDCD1LG2, CTLA4, TIGIT, LAG3, and PDCD1) within the 3 clusters. The results revealed an expression profile 
similar to that of tumour-infiltrating immune cells in the 3 clusters. As shown in the immune checkpoint-related 
gene expression heatmap, where different colours represent the expression trends in each sample, the expression 
of immune checkpoint-related genes was most enriched in Cluster 3 (Fig. 3C).

Construction of a PRG‑based prognostic model. To construct a PRG-based prognostic model, 
univariate Cox expression analysis was performed to screen the differentially expressed PRGs for prognostic 
value. We identified 8 genes with significant prognostic value in Kaplan–Meier survival curves (Fig.  4). The 
results suggested that a poor survival rate in LUAD patients was related to high expression of BAK1 (Fig. 4A, p = 
0.014), CHMP4C (Fig. 4B, p = 0.036), CYCS (Fig. 4C, p = 0), HMGB1 (Fig. 4D, p = 0.004), and CASP6 (Fig. 4E, 
p = 0.034), while a poor survival rate was related to low expression of the other 3 genes: GSDMA (Fig. 4F, p = 
0.047), NLRP1 (Fig. 4G, p = 0.012), and NLRP7 (Fig. 4H, p = 0.02). LASSO Cox regression analysis was performed 
to construct a prognostic gene model based on the 4 prognostic PRGs (BAK1, CYCS, HMGB1, and NLRP1) 
with the most significant p-values (Fig. 5A,B). The risk score = (0.1918) *BAK1 + (0.2309) *CYCS + (0.0635) * 
HMGB1 + (− 0.1105) * NLRP1. Based on the risk score, LUAD patients were separated into two clusters. The 
risk score, overall survival time and expression of these four PRGs are presented in Fig. 5C. As the risk score 
increased, the survival time of patients decreased. HMGB1, CYCS, and BAK1 were associated with an increased 
risk score, while NLRP1 was a protective gene that was correlated with a decreased risk score (Fig. 5C). Kaplan–
Meier curves indicated that patients with a high risk score had a worse overall survival probability than those 
with a low risk score (median time: 3.2 years in the high-risk subgroup versus 7.1 years in the low-risk subgroup, 
p < 0.001, Fig.  5D). Time-dependent receiver operating characteristic (ROC) curve analysis was applied to 
evaluate the sensitivity and specificity of the prognostic model, and the results showed that the areas under 
the ROC curves (AUCs) were 0.646 for 1-year survival, 0.592 for 2-year survival and 0.662 for 5-year survival 
(Fig. 5E).

Figure 1.  Expression of the 44 PRGs and the interactions among them. (A). Heatmap (red: high expression 
level; blue: low expression level) of the PRGs between normal (brilliant blue) and tumour tissues (red). p-values 
were shown as: ** p < 0.01; *** p < 0.001. (B). The correlation network of the PRGs (red line: positive correlation; 
blue line: negative correlation). The depth of the colours reflects the strength of the relevance.
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Building a predictive nomogram. To explore the value of these prognostic PRGs for clinical application, 
we built a nomogram including the clinical features (age, sex, race, pTNM stage, and smoking status) that were 
generally believed to have a certain impact on the prognosis of LUAD and the 4 prognostic PRGs to predict the 
survival rate of LUAD patients (Fig. 6). Univariate and multivariate analyses indicated that BAK1 expression 
might be a candidate independent factor, similar to pTNM stage, that affects the prognosis of LUAD patients 
(Fig. 6A,B). A C-index of 0.693 indicated that the nomogram had good predictive value (Fig. 6C). The predictive 
nomogram suggested that 2-year, 3-year and 5-year overall survival rates could be predicted relatively well 
according to an ideal model in the entire cohort (Fig. 6D).

Associations of the tumour mutational burden (TMB) and tumour‑infiltrating immune 
cells with prognostic PRGs. The TMB has been identified as a promising biomarker for predicting 
immunotherapy responses in patients with NSCLC. To explore the possibility of using prognostic PRGs as 
biomarkers in immunotherapy for LUAD, we analysed the correlations of prognostic PRGs with the TMB 
(Fig. 7). The results revealed positive correlations between the TMB and CYCS (Fig. 7B, p = 1.54e−5) or HMGB1 
(Fig. 7C, p = 0.04) and a negative correlation between TMB and NLRP1 (Fig. 7D, p = 2.1e−6). However, there was 
no significant correlation between TMB and BAK1 (Fig. 7A, p = 0.96).

Furthermore, to determine the roles of these prognostic PRGs in the tumour immune microenvironment, we 
performed correlation analysis of tumour-infiltrating immune cells with each prognostic PRG in LUAD by the 
TIMER database (Fig. 7E). Our results showed positive correlations between NLRP1 expression and the abun-
dance of B cells (p < 0.01), macrophages (p < 0.01), myeloid DCs (p < 0.01), neutrophils (p < 0.01),  CD4+ T cells 
(p < 0.01) and  CD8+ T cells (p < 0.01). Significant negative correlations were observed between the expression of 
HMGB1 and B cells (p < 0.01), myeloid DCs (p < 0.01), and  CD4+ T cells (p < 0.01). The same negative correlation 

Figure 2.  Tumour classification based on PRGs. (A, B). 513 LUAD patients were grouped into three clusters 
according to the consensus clustering matrix (k = 2). (C). Heatmap of the three clusters classified by these PRGs. 
(D). Kaplan–Meier OS curves for the three clusters.
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pattern was also observed for CYCS with immune cells, including B cells (p < 0.01), myeloid DCs (p < 0.01),  CD4+ 
T cells (p < 0.01), macrophages (p < 0.01) and neutrophils (p < 0.05). We also found positive correlations between 
BAK1 expression and myeloid DCs (p < 0.05) or neutrophils (p < 0.01).

Construction of a prognostic model with BAK1. As indicated by our analysis of the predictive 
nomogram results, we concluded that BAK1 might be an independent prognostic biomarker in LUAD. We 
further performed prognostic analysis of BAK1 in patients based on the risk score. The risk score distribution, 
survival time and BAK1 expression are shown in Fig. 8A. As the expression of BAK1 increased, the risk score 

Figure 3.  Tumour-infiltrating immune cells and immune checkpoint-related genes distribution in the three 
clusters. (A) Immune cell score heatmap with colours representing the expression trend in the three clusters. 
p-values were shown as: *p < 0.05; **p < 0.01; ***p < 0.001. (B) The percentage abundance of tumour-infiltrating 
immune cells in each sample. The abscissa represents the sample, and the ordinate represents the percentage 
of immune cell content in each sample. (C) The heatmap of immune checkpoint-related genes, where the 
horizontal axis represents each sample in the three clusters, and the vertical axis represents immune checkpoint-
related gene expression. p-values were shown as: *p < 0.05; **p < 0.01; ***p < 0.001.

Figure 4.  The Kaplan–Meier survival analysis for each prognostic PRG. The OS curve of BAK1 (A), CHMP4C 
(B), CYCS (C), HMGB1 (D), CASP6 (E), GSDMA (F), NLRP1 (G), and NLRP7 (H) in LUSC patients in the 
high-/low-expression group. The p-values and hazard ratio (HR) with 95% confidence interval (CI) were 
generated by log-rank tests and univariate Cox proportional hazards regression.
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increased; thus, patients’ risk of death increased accordingly (Fig.  8A). Kaplan–Meier curves revealed that 
patients with a high risk score presented a worse overall survival probability than those with a low risk score 
(Fig. 8B; median time: high-risk group, 3.5 versus low-risk group, 4.4; p = 0.0137). The AUCs of the risk score 
were 0.552 for 1 year, 0.543 for 3 years, 0.619 for 5 years and 0.763 for 10 years (Fig. 8C).

Validation of BAK1 expression in two independent GEO datasets. Two independent GEO cohorts 
were utilized to validate the BAK1 expression results in LUAD patients. GSE 10,799 included 3 normal controls 
and 16 LUAD patients, while GSE 66,759 included 5 controls and 76 LUAD patients. The Wilcox test was used 
to compare BAK1 expression between LUAD and normal samples. The results consistently showed that BAK1 
expression was significantly higher in LUAD samples than in control samples (Fig. 9).

Discussion
Pyroptosis is a newly identified type of programmed cell death that plays a dual role in tumour development 
and therapeutic  mechanisms7,27. The process is characterized by rapid rupture of the cell membrane and release 
of proinflammatory intracellular  contents8,9,13,14. This unique type of death has led to considerable studies on 
pyroptosis in various  tumours28–31. However, the specific role of pyroptosis in LUAD remains unclear.

In this study, we explored 52 currently known PRGs in LUAD and normal tissues and identified that most of 
them (44/53) were differentially expressed. The three clusters defined based on the differential PRGs did not show 
any significant differences in overall survival time. However, the abundance of tumour-infiltrating immune cells 
and immune checkpoint regulators showed significant differences among the three clusters. To further assess the 

Figure 5.  Construction of a prognostic PRGs model. (A) LASSO coefficient profiles of the PRGs. (B) Plots of 
ten-fold cross-validation error rates. (C) Distribution of risk score, survival status, and the expression of four 
prognostic PRGs in LUAD. (D, E). OS curves for LUAD patients in the high- and low-risk group and the ROC 
curve of measuring the predictive value.
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prognostic value of these PRGs, we constructed a 4-gene risk signature via Cox univariate analysis and LASSO 
Cox regression analysis and found that it had good accuracy for predicting the survival of LUAD patients.

Survival analysis and prognostic models were developed based on four genes (BAK1, CYCS, HMGB1, and 
NLRP1) in this study. Among these, BAK1 was an independent risk factor for OS in patients with LUAD. High 
levels of endogenous BAK have been observed in both small cell lung cancer and NSCLC cell lines. In addi-
tion, increased BAK expression was correlated with a poor prognosis in NSCLC  patients32. Recent research has 
suggested that BAK could be a promising prognostic indicator and potential therapeutic target in lung cancer 
 patients33. These studies are in line with our findings, indicating that BAK1 has a positive correlation with LUAD 
patient prognosis. We confirmed the high BAK1 expression level in two independent GEO cohorts. Pyroptosis 
in colon cancer cell lines can be mediated by BAK1 or BAX alone, and caspase 3 activity is required in BAK/
BAX-mediated  pyroptosis34. It is reasonable to hypothesize that abnormal BAK1 expression could promote 
the development of LUAD by regulating the pyroptotic  pathway34. However, the mechanisms by which BAK1 
mediates pyroptosis and leads to LUAD remain elusive. CYCS, as a mitochondrial protein that participates in 
the regulation of cell death, was reported to be an oncogene in  LUAD35. Previous research has demonstrated that 
serum CYCS levels are correlated with disease progression and a poor prognosis in  NSCLC36, which is consistent 
with our current results. Feng et al. proved that HMGB1 was overexpressed in NSCLC  tissues37. We also found 
that higher expression of HMGB1 was correlated with a poor clinical prognosis in LUAD patients. Similar results 
from Chang et al. showed that HMGB/RAGE signalling was significantly associated with patient prognosis, 
which agrees with our survival analysis results for the TCGA  datasets38. NLRP1 is recognized as an important 
component of complexes that can activate caspase-1  directly39. Shen et al. reported that the NLRP1 expression 
in LUAD tissue was considerably lower than that in normal  tissues40. This decreased NLRP1 expression was 
associated with high T and N  stages40. Consistently, we found that LUAD patients with low NLRP1 expression 
had a worse prognosis than those with high expression. Caspase-6 has been shown to be an important regulator 
in inflammasome activation that could promote the activation of programmed cell death pathways, including 
pyroptosis, apoptosis and necroptosis (PANoptosis)41. Studies have indicated that NLRP3 inflammasome activa-
tion enhances the proliferation and metastasis of the lung adenocarcinoma cell line A549, which are mediated 
by AKT, ERK1/2, and CREB, and upregulation of  SNAIL42. Consistent with these findings, in our current study, 
the expression of CASP6 was negatively correlated with patient OS.

Recent research has demonstrated that the TMB is a determinant of immune-related survival in a variety of 
tumours, such as breast cancer and lung  cancer43–46. In the current study, the prognostic pyroptosis-related genes 

Figure 6.  Construction of a predictive nomogram. (A, B) Hazard ratio and p-value of the constituents involved 
in univariate and multivariate Cox regression considering clinical the parameters and the four prognostic PRGs. 
(C,D) Nomogram to predict 1-year, 2-year, 3-year, and 5-year OS ratio of LUSC patients. Calibration curve for 
the OS nomogram model in the discovery group. A dashed diagonal line represents the ideal nomogram.
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CYCS and HMGB1 were positively correlated with the TMB, while the expression of NLRP1 was negatively cor-
related with the TMB. Pyroptosis was initially found in macrophages but has recently been identified in a variety 
of immune  cells8,11,47. Another interesting finding in our results is that the above four prognostic PRGs (BAK1, 
CYCS, HMGB1, and NLRP1) were significantly correlated with immune cell infiltration, which further confirmed 
that pyroptosis in immune cells might participate in regulating the tumour microenvironment.

Our study has great clinical significance, especially the prognostic model that can be used to predict the prog-
nosis of LUAD patients. Although various advances have been shown to be beneficial to some patients, such as 
immune checkpoint therapies including programmed cell death protein-1 (PD-1) and T-lymphocyte-associated 
antigen 4 (CTLA4) blockade, a proportion of patients are resistant to current therapeutic strategies, partly due 
to the heterogeneity in PD-L1 expression, the TMB and T-cell infiltration in  LUAD48. Clinically, PRG-based 
classifiers have the potential to provide a novel approach for identifying novel subtypes of LUAD and personal-
ized treatment for these patients. In terms of immune checkpoint therapy, some of these agents could affect the 
immune microenvironment through pyroptosis. Therefore, TMB-related PRGs have the potential to be used to 
guide the curative efficacy of immune checkpoint inhibitors. This study provides new insight into the molecular 
mechanism underlying LUAD pathogenesis.

Figure 7.  The correlation of prognostic PRGs with TMB and tumour infiltrating immune cells. The correlation 
of TMB with BAK1 (A), CYCS (B), HMGB1 (C), and NLRP1 (D) were presented. (E) A heatmap of the 
correlation between prognostic PRGs with tumour-infiltrating immune cells. The horizontal and vertical 
coordinates represent each prognostic PRG and immune cells, respectively, and the different colours represent 
correlation coefficients (blue represents positive correlation and red represents negative correlation).
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Our current study is an exploratory analysis conducted using the TCGA-LUAD cohort, and the results pre-
sented here will need to be confirmed in larger datasets. Additionally, the results presented here will need to be 
confirmed by in vivo and in vitro experiments.

In conclusion, our study identified 44 PRGs that were differentially expressed between LUAD and normal 
tissues. Based on these PRGs, LUAD patients were classified into 3 subclusters with differential expression levels 
of tumour-infiltrating immune cells and immune checkpoint regulators. A novel prognostic model based on 
four PRGs was constructed and used to predict the prognosis of LUAD patients. The correlations of PRGs with 
the TMB and immune cells may provide evidence that pyroptosis might play an important role in the tumour 
microenvironment.

Figure 8.  Construction of a prognostic model based on BAK1 expression. (A) Distribution of risk score, 
survival status, and the expression of BAK1 in LUAD. (B,C) OS curves for LUAD patients in the high- and low-
risk group and the ROC curve of measuring the predictive value for 1-, 3-, 5-, and 10-year.
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Data availability
Publicly available datasets were analyzed in this study. This data can be found here: GSE 10,799 (https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE10 799); GSE 66,759 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE66 759).
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