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In‑vitro and in‑silico evidence 
for oxidative stress as drivers 
for RDW
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Red blood cell distribution width (RDW) is a biomarker associated with a variety of clinical outcomes. 
While anemia and subclinical inflammation have been posed as underlying pathophysiology, it is 
unclear what mechanisms underlie these assocations. Hence, we aimed to unravel the mechanisms 
in silico using a large clinical dataset and validate our findings in vitro. We retrieved complete blood 
counts (CBC) from 1,403,663 measurements from the Utrecht Patient Oriented Database, to model 
RDW using gradient boosting regression. We performed (sex‑stratified) analyses in patients with 
anemia, patients younger/older than 50 and validation across platforms and care settings. We then 
validated our hypothesis regarding oxidative stress using an in vitro approach. Only percentage 
microcytic (pMIC) and macrocytic (pMAC) erythrocytes and mean corpuscular volume were most 
important in modelling RDW (RMSE = 0.40,  R2 = 0.96). Subgroup analyses and validation confirmed 
our findings. In vitro induction of oxidative stress underscored our results, namely increased RDW 
and decreased erythrocyte volume, yet no vesiculation was observed. We found that erythrocyte 
size, especially pMIC, is most informative in predicting RDW, but no role for anemia or inflammation. 
Oxidative stress affecting the size of the erythrocytes may play a role in the association between RDW 
and clinical outcomes.

Red Blood Cell (or: Erythroycte) Distribution Width (RDW) is reported extensively as a biomarker predictive 
for future deterioration of illness. RDW is a measure of the distribution of the volume of erythrocytes, derived 
from the mean corpuscular volume (MCV) by dividing the standard deviation of erythrocyte volume (RBCV) 
by the mean volume (MCV), and multiplying this by 100 to present the final number as coefficient of variation 
in percentages (i.e.: (σRBCV/MCV) × 100)1. A higher RDW has been associated with a large variety of adverse 
clinical outcomes, including heart failure, cancer treatment outcomes, postoperative sepsis development, improv-
ing ICU scoring systems, long term outcomes in sepsis, trauma, (hip) fractures in the elderly, and  mortality2–11.

Yet, it is still unclear how RDW may reflect the underlying pathophysiology of this plethora of clinical out-
comes. In literature, MCV itself is not considered the underlying culprit. Some studies point towards microcytic 
anemia via malnutrition which increases  anisocytosis2. Others point towards a possible role of  inflammation12,13, 
which can lead to disruption of erythropoiesis and premature erythrocyte destruction, resulting in microcytic 
 anemia14. The only way to test these hypotheses is by using a very large dataset with available RDW as well as 
accompanying blood cell characteristics to study the role of anemia, inflammation and other possible patho-
physiological mechanisms.

In the UMC Utrecht, Utrecht, the Netherlands, a detailed blood panel of 79 hematological parameters, includ-
ing complete blood count (CBC), erythrocyte measurements, leukocyte differentiation and ‘research-only’ values 
regarding leukocytes, erythrocytes and platelets, is measured by hematology analyzers in routine clinical care and 
stored in the Utrecht Patient Oriented Database (UPOD)15. This way, RDW and accompanying hematological 
values are available including research-only values that are not used in clinical practice, but are measured as a 
result of hematological analysis in routine care.

In this study, using a homogenous data set with over 1.4 million measurements from the UPOD, we aimed 
to unravel the pathophysiological mechanisms underlying the association between RDW and clinical outcomes, 
specifically anemia and inflammation, by creating a machine learning model to find associations with regards to 
RDW, and further study these in silico findings in an in vitro study.
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Materials and methods
Database. For this study data from the Utrecht Patient Oriented Database (UPOD) were  used15. In brief, 
UPOD is an infrastructure of relational databases comprising data on patient characteristics, hospital discharge 
diagnoses, medical procedures, medication orders and laboratory tests for over 2.5 million patients treated at in 
and outpatient clinics at the University Medical Center Utrecht (UMC Utrecht), Utrecht, the Netherlands, since 
2004. UPOD data acquisition and management is in accordance with current regulations concerning privacy 
and ethics including the General Data Protection Regulation (GDPR).

In the UPOD 79 hematological characteristics are stored as a result of measurements during routine care 
using the Cell-Dyn Sapphire hematology analyzer (Abbott Diagnostics, Abbott, Santa Clara, California, USA). 
These characteristics encompass erythrocytes, leukocytes, platelets, and reticulocytes, as well as characteristics 
that are directly derived from the raw measurements i.e., characteristics on axial light loss (ALL), intermedi-
ate angle scatter (IAS), polarized and depolarized side scatter (PSS and DSS respectively), and fluorescence of 
erythrocytes and leukocytes, as measured by the FL1 and FL3 channels respectively. A full description of all 
blood cell characteristics can be found in supplementary Table 1.

Study population. As we wanted to study the general determinants for RDW, we extracted a homogeneous 
discovery dataset and excluded the following patients (Fig. 1): patients aged < 18, hemato-oncology patients and 
measurements with a hematocrit value < 0.20 or > 0.60 (blood cancers, and bone marrow disorders). Addition-
ally, patients that received blood transfusion < 120 days prior to their lab measurement were excluded because 
their erythrocytes do not reflect true erythroid homeostasis. To further ensure a homogenous discovery data set 
and exclude remaining hemato-oncology patients, outliers for the white blood cell (> 50 × 10^9/L), eosinophil 
(> 5 × 10^9/L), and basophil (> 5 × 10^9/L) counts, white blood cell viability factor (< 0.8), and the coefficients of 
variance of the platelet complexity (> 100 AU) and lobularity (> 100 AU) were excluded. We allowed for multiple 
observations per patient meaning that we selected all available measurements for each patient, not taking into 
account the time between measurements or amount of measurements per patient. The study was conducted in 
accordance with the declaration of Helsinki. The institutional review board (Medical Research Ethics Comittee 
NedMec) waived the need for informed consent (IRB number 18/130) as only pseudonymized data were used 
for a large patient sample. This study was not subject to the Human Subjects Act (in Dutch: Wet Medisch-
Wetenschappelijk onderzoek met mensen, WMO) and we therefore obtained a waiver for study approval from 
the institutional review board (Medical Research Ethics Comittee NedMec).

Blood cell characteristics. We used all available hematological characteristics, yet excluded highly corre-
lating variables and variables reflecting percentages (Supplementary Figs. 1 and 2). To study the role of (chronic) 
inflammation on RDW, we included counts of leukocytes, neutrophil count, monocyte count, lymphocyte count, 
eosinophil count and basophil count, as well as variables reflecting size, complexity, and viability of these cell 
types. As modelling outcome, we used RDW as calculated by the Abbott algorithm, which uses the erythrocyte 
volume distribution at 50% of the peak  height16.

For modelling, the blood cell data was further subsetted to be able to compare different sets of predictors 
for RDW. These subsets were built as follows: all of the variables were used for a full estimation of all relevant 
blood cell characteristics (Set 1). For Set 2 MCV, percentage microcytic erythrocytes (pMIC), and the percentage 
macrocytic erythrocytes (pMAC) were omitted from set 1 because they are obvious drivers of RDW as they are 
derivatives of MCV which in turn is used to calculate RDW. In Set 3 all parameters linked to reticulocyte counts 

Figure 1.  Flowchart of the discovery analysis steps followed in this project.
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were omitted from set 2, because these variables show the level of maturity for erythrocytes which in turn influ-
ences RDW (i.e., immature erythrocytes have a larger size, thus influencing the RDW).

Clinical chemistry characteristics. Folic acid, vitamin B12, iron and ferritin were measured according to 
standard diagnostic procedures on routine analyzers (AU5800 and Dxi, Beckman Coulter Inc., Brea CA, USA).

Descriptive analyses. First, we scrutinized RDW by descriptive analytics. Because associations are known 
between sex and age and  RDW12,17, we tried to replicate those. All variables are presented as means +/− SD for 
normally distributed variables and medians +/− IQR for non-normally distributed variables. We modelled the 
effect of RDW on age by linear regression and studied differences between the sexes by the Mann–Whitney U 
test.

Modelling approaches. In order to analyze the association of other blood markers with RDW values we 
used two different modelling approaches (summarized in Fig. 1). First, we used a more classic approach using 
Ridge  regression18. Additionally, to capture non-linear associations, a gradient boosting (GB) regression method 
was  used19. Each analysis method was used for modelling RDW with the use of the three sets of determinants 
(Set 1–3), and for each of these sets, a tenfold cross-validation was carried out. We assessed feature importance of 
the blood cell characteristics in predicting RDW in the three sets by using shapley values (calculated per fold and 
averaged), indicating importance of a variable in a specific model in predicting a certain outcome. The resulting 
importance for a feature is the mean difference between the model prediction with and without said  variable20. 
For computational reasons the feature importances for the GB models were calculated on at most 10,000 random 
samples per fold. To assess the resulting models, the performance was measured using the Root Mean Squared 
Error (RMSE, lower score is better) and the  R2 score (higher score is better). Considering the relatively poor 
performance of the Ridge regression models and the aim of this research, we followed-up on the GB regression 
models only, as they modelled RDW more accurately.

Subgroup analyses. To further unravel the found effects, we performed sensitivity analyses inour data for 
different subgroups by selecting these subgroups as follows: anemic patients (Hb < 13.9 g/dL for men, < 11.9 g/
dL for women), people with microcytic and macrocytic anemia in subgroups of patients with low iron 
(< 8umol/L for men, < 5 umol/L for women), low ferritin (< 25 ug/L for men, < 20 ug/L for women), low folic 
acid (< 6.8 nmol/L) or low vitamin B12 levels (< 130 pmol/L). In addition, we performed a subgroup analysis 
on patients with age > 40, patients < 40, and per sex. Lastly, different subgroups along the hemoglobin distribu-
tion curve were analyzed (low: < 15.5 g/dL for men, < 13.7 g/dL for women, normal: 13.9–17.2 g/dL for men, 
11.9–15.5 g/dL for women, high: 15.5–17.2 g/dL for men, 13.7–15.5 g/dL for women) to study the possible effects 
of subclinical anemia. For each of these groups, we followed the same approach for the overall population i.e., we 
developed both a ridge regression and GB regression model, and assessed their performance in these subgroups.

In‑silico validation studies. In order to assess the generalizability of our model, we selected data from the 
Abbott Cell-Dyn Sapphire as well as the new Abbott Cell-Dyn Alinity hq (Abbott Diagnostics, Abbott, Santa 
Clara, California, USA) for the same measurements (December 2021). These measurements were measured in 
parallel as part of a comparison study between the Cell-Dyn Sapphire and Alinity analyzers. We selected the 
overlapping variables and applied the same patient filters that corresponded with our selection criteria in the 
discovery data set.

Additionally, to validate our findings in different care settings, we used a Cell-Dyn Sapphire data set contain-
ing samples measured in primary and secondary care only. We selected data based on the same inclusion criteria 
in our original data set, and excluded the hemato-oncology patients based on the same blood cell characteristics 
(blood transfusion data were unavailable).

Software. All analyses except for the Mann–Whitney U and Kruskal–Wallis test (R version 3.6.2) were car-
ried out using Python 3.7. Ridge regression was carried out using scikit-learn package version 0.22.1 and the GB 
regression was carried out using the xgboost package version 0.90. Feature importances were calculated using 
the SHAP package version 0.34.0.

Erythrocyte isolation, stimulation and analysis. To follow up on our findings in silico and hypothesis 
concerning the role of oxidative stress on RDW, we performed in vitro induction of oxidative stress in triplicate, 
for which blood from healthy volunteers was collected in  K2EDTA tubes (approved by the institutional review 
board). Erythrocytes were isolated using α-cellulose columns as previously  reported21, washed with saline and 
resuspended in Ringer buffer (32 mM HEPES, 125 mM NaCl, 5 mM KCl, 1 mM  MgSO4, 1 mM  CaCl2, 5 mM 
glucose, pH 7.4) at a final hematocrit of 40%. erythrocytes were stimulated with tert-Butyl Hydroxyperoxide (5 
or 7.5 mM) (tBHP, Luperox, Aldrich 458,139) or Diamide (5 or 10 mM Diamide) (Sigma D3648) for 30 min, on 
a rotator at room temperature. Alternatively, the cells were stimulated with 1-Acetyl-2-phenylhydrazine (5 mg/
mL) (PHZ, Sigma A4626) for 1 h at 37 °C.

After treatment, the cells were analyzed using a Cell-Dyn Sapphire hematology analyzer. Additionally, deform-
ability of erythrocytes was analyzed using the osmoscan module on the Laser Optical Rotational Red Cell Ana-
lyzer (Lorrca, RR Mechatronics, Zwaag, The Netherlands)22.
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Nanoparticle tracking analysis. For vesiculation experiments, after treatment, cells were pelleted at 
1000 g for 10 min at room temperature. Supernatants were transferred to new tubes, diluted fivefold with phos-
phate buffered saline (PBS), and centrifuged again at 1000 g for 10 min at 4 °C. Aliquots of the supernatant were 
diluted 1:20 with PBS and analyzed using a NanoSight NS500 system equipped with an LM14 405 nm violet laser 
unit (Malvern Instruments, Worcestershire, UK). For each sample, 5 movies of 30 s were recorded at camera level 
15. Analysis of particle concentration was performed using NTA 3.4 software with detection threshold set at 7.

Results
After filtering, 1,403,663 observations (214,315 patients) remained (Fig. 1). Mean age was 55.26, 51% observa-
tions from male patients. Median RDW was 12.62% (IQR 11.84–14.06%).

RDW differs between ages, sexes and birth months. To confirm previous findings, we replicated the 
differences in RDW over age (β = 0.018 RDW increase per year, Supplementary Fig. 3), and sexes (median men: 
12.67% (IQR: 11.90–14.11%), women: 12.56% (IQR 11.78–13.99%) (W = 2.57 ×  1011, p < 0.001)). We replicated 
the sex-differences in the population below 40 (W = 1.25 ×  1010, p = 0.041) as well as above 40 (W = 1.44 ×  1011, 
p < 0.001) years of age.

RDW is best explained by erythrocyte characteristics. To study the association between blood 
cell characteristics and RDW, we used all blood cell characteristics as determinants and RDW as outcome. GB 
regression models showed that the percentage of microcytic and macrocytic erythrocytes were most important 
in set 1 (RMSE = 0.40,  R2 = 0.96). pMIC was most important, followed by pMAC, and percentage hypochromic 
erythrocytes (pHPO—Fig. 2a). In set 2, pHPO showed the highest feature importance , followed by the lym-
phocyte count, while in set 3 segmented neutrophil count, the CV of the Neutrophil size, and the lymphocyte 
count showed the highest importances (Fig. 2b and c). However, the models that were used to model RDW with 
the characteristics of sets 2 and 3, performed considerably worse (RMSE = 1.00,  R2 = 0.76; RMSE = 1.34 and a 
 R2 = 0.57 respectively, Supplementary Fig. 4, Supplementary Table 2). In summary, these models show that RDW 
is best modelled using erythrocyte size markers, specifically by the percentage of microcytic erythrocyte.

RDW modelling is not influenced by anemia. In order to further study the explanation of RDW in 
different subpopulations of anemia, we stratified the cohort into different subgroups and trained our GB models 
again. Our findings in subgroups of patients with low B12, low folic acid, low iron, and low ferritin, as well as 
patients with low hemoglobin, high hemoglobin and normal hemoglobin values, did not result in a different 
outcome compared to the main results. All models showed high feature importances for pMIC, pMAC and to a 
lesser extent pHPO (Supplementary Table 2).

In silico validation shows consistent model performance across analyzers and care set-
tings. Validation of the model showed that our model, as trained in the original data set, showed high perfor-
mance, also in the Cell-Dyn Alinity comparison data sets. The RMSE was 0.53 and 0.75 with  R2 of 0.93 and 0.87 
for the Sapphire and Alinity data set respectively. Additionally, calculating feature importances for the models in 
the validation set showed that pMIC was still highly important, with pMAC as second. pHPO scored lower, and 
for both sets the MCH scored higher (Fig. 3). The validation in data from primary and secondary care showed 
that our findings were consistent, with a high model performance (RMSE = 0.46,  R2 = 0.94). Indeed, the percent-
age of microcytic erythrocytes was again the most important feature for predicting RDW in these data, followed 
by pMAC and pHPO (Fig. 3).

In vitro exposure of erythrocytes to oxidative stress mimics in silico findings. The high impor-
tance of pMIC in modelling RDW, and decrease in MCV, were likely not related to iron status or hematopoietic 
differences, for we found no different results in subgroup analyses. One possible explanation could be that the 
decrease in erythrocyte size and volume was caused by oxidative stress-induced loss of membrane, a common 
pathophysiological feature of many  diseases23. To test this hypothesis, purified erythrocytes were exposed to 
three commonly used inducers of oxidative stress: tBHP (5 mM and 7.5 mM)24, diamide (5 and 10 mM)25, and 
PHZ (5 mg/mL)26. Nanoparticle tracking analysis however showed no increase in relative particle concentration 
compared to baseline for either of the three inducers of oxidative stress (Fig. 4a), for comparison: erythrocytes 
vesicle release induced by calcium ionophore exposure caused a 500-fold increase in relative particle concen-
tration (data not shown), indicating that these forms of oxidative stress were not associated with an increase 
in membrane vesiculation. Interestingly however, erythrocytes exposed to tBHP did show a dose-dependent 
increase in RDW (Fig. 4b) and pMIC (Fig. 4c) as well as a lowered MCV (Fig. 4d). This was accompanied by 
a dose-dependent decrease in deformability (Fig. 4e). Notably, these changes were not seen upon exposure to 
diamide and PHZ, indicating that the lipid peroxidation induced by tBHP is responsible for the observed altered 
erythrocyte features. Hence, we speculate that tBHP-induced lipid peroxidation causes erythrocytes to become 
smaller and more rigid—explaining the increased RDW and pMIC, thereby inhibiting vesiculation. To test this 
hypothesis, erythrocytes were treated with Calcium Ionophore to induce vesiculation. As expected, pre-treat-
ment of the cells with tBHP almost entirely inhibited such vesiculation.
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Discussion
In this study, using routine hematologic characteristics of 1,403,663 measurements from 214,315 patients we 
found that RDW was best modelled using erythrocyte size characteristics, specifically pMIC. We found consist-
ent results in several subgroups of clinical and subclinical anemia and replicated our results across platforms 
and care settings. Moreover, we did not find any indication for a role of other cell types, for example leukocytes, 
which could point towards inflammation. We found in vitro evidence that oxidative stress affecting the size of 
the erythrocytes may play a role in the association between RDW and clinical outcomes.

Our results indicate a large and consistent role for pMIC in modelling RDW. First, our models show the 
percentage of small erythrocytes is the most important feature associated with increased RDW measurements. 
Second, we only found small and unstable importances for hematological inflammatory markers, as we found 
no high importances for leukocyte characteristics, or the characteristics of neutrophils, lymphocytes, monocytes, 
basophils, and eosinophils.. Third, we also found no different results for anemic patients: hemoglobin values were 
not among the most important features, and subanalyses in patients without anemia (normal hemoglobin levels) 
were similar. In subgroup analyses where we hypothesized an importance for macrocytic cells (i.e., low folic acid 
and vitamin B12 in macrocytic anemia), the feature importance was still highest for pMIC. Additionally, when 
removing pMIC, pMAC and MCV, model performance dropped dramatically, therefore the ability of the models 
to reflect the true relationships of hematological parameters and RDW within our data.

Figure 2.  Feature importances for the GB regression models in sets 1, 2 and 3 respectively, showing a large 
importance for the percentage of microcytic erythrocytes in modelling RDW: (a) Feature importance in set 1. 
(b) Feature importance in set 2. (c) Feature importances in set 3.
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Our study is the largest study into modelling RDW using routine hematology markers. Previous studies 
identified a negative relationship between hemoglobin and RDW which we did observe  also27. Additionally, a 
previous study in 250,000 samples found moderate (< 0.7) linear associations between the percentage microcytic 
and macrocytic erythrocytes and  RDW28. We used linear (ridge) and non-linear (GB) regression models, and 
found better performance for the latter, also in subgroup analyses. Because poor performance affects the cer-
tainty of the model to reflect the truth, the use of non-linear models in our study provides more insight in the 
true relationships between hematological characteristics, as these relationships indeed may not always be linear.

In addition, several studies have examined blood levels of biomarkers that are associated with RDW as a 
first step in unraveling the pathophysiological mechanism of increased  RDW12,13. RDW could be predicted 
independently of age, sex, MCV, hemoglobin and ferritin by high-sensitivity C-reactive protein, a biomarker 
for inflammation, and erythrocyte sedimentation  rate12. We found no indication of inflammation in our study 
in the hematological markers for inflammation. Unfortunately we were not able to retrieve C-reactive protein 
levels for our measurements. Additionally, stratification of RDW has been shown to be associated with several 
markers for ineffective erythropoiesis, inflammation, and nutritional  deficiency13.

Subgroup analyses showed no effect of microcytic or macrocytic anemia on the importance of characteristics 
in modelling RDW. Healthy erythrocytes decrease in volume as they get older, because of budding, where small 
parts of the membrane are excreted as vesicles. This decrease leads more dense and less deformable cells, and 

Figure 3.  Feature importances in the validation data, using the models predicting RDW showing the high 
importance of the percentage microcytic erythrocytes in modelling RDW: (a) Validation of the feature 
importances in the Sapphire data from the Alinity comparison study. (b) Validation of the feature importances 
in the Alinity data from the Alinity comparison study. (c) Validation of the feature importances in primary and 
secondary care.
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eventual (splenic) clearance from the bloodstream. As we observed that the percentage of microcytic eryth-
rocytes is highly important in explaining RDW, one could speculate that our results are driven by accelerated 
vesicle budding. In turn, the reason why this vesicle budding is accelerated may be because of increased levels 
of oxidative stress, often found in various diseases, and is not reflected by blood cell characteristics as measured 
in this study. The relationship between oxidative stress and accelerated erythrocyte aging has been described 
 elsewhere29. However, in set 2 we saw that the percentage of hypochromic cells (pHPO) is an important vari-
able for RDW, rather than MCHC and the percentage hyperchromic cells (pHPR), which would be expected 
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Figure 4.  In Vitro results, showing an increase of RDW and microcytic erythrocytes after induction of 
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when erythrocytes would be denser after vesicle budding. Additionally, we did not find any evidence for vesicle 
budding after in vitro induction of oxidative stress. Yet, we did found a decrease in cell volume, as well as an 
increased RDW and pMIC by tBHP-induced lipid peroxidation. A possible explanation for this phenomenon 
is that (tBHP-induced) lipid peroxidation causes erythrocytes to become rigid and lose  deformability30. Hence, 
we postulate that oxidative stress affecting the size of the erythrocytes may play a role in the association between 
RDW and clinical outcomes. Of course the relatively short exposure to oxidative stress in vitro represents only 
a model for (sustained) oxidative stress in vivo, and we can not fully rule out other components that may play a 
role. However, the knowledge we gained from our in silico research, as well as the results from our in vitro study, 
do point towards oxidative stress as an important driver, and limited influence for inflammation and anemia.

There are some limitations in this study. First, we used data from routine care settings that do not reflect the 
general population. We encountered missing data in our subanalyses and although preprocessed with care, we 
cannot fully rule out the effect of specific diseases that affect blood cell size in our data. For example, we were 
unable to exclude patients with hemoglobinopathies, though we think it is unlikely this small set of patients 
significantly influences our results. Using this very large dataset we found consistent results, even in subanaly-
ses, and we are therefore confident that including omitted data will not lead to different results. Additionally, 
our validation across platforms and health care settings further accentuated our results. Furthermore, feature 
importances in ensemble methods such as GB can be influenced by  collinearity31. We corrected for collinearity 
when filtering the variables, but some variables that were correlated (e.g., neutrophils and white blood cell count) 
were kept because of biological relevance. pMIC, pMAC, mean corpuscular volume of reticulocytes (MCVr), and 
MCH highly correlated to MCV, implying that high feature importance values for these variables can mean that 
MCV might be underrepresented. However, this does not change our finding that erythrocyte characteristics 
are most important in explaining RDW. Finally, one limitation concerning our in vitro approach is the use of 
a commonly used yet only a single source of oxidative stress (PHZ) as a model of oxidative stress in vivo. This 
leaves room for a possible oxidant-dependent effect on hemoglobin oxidation and consequently RDW.

Further research could include scrutinizing the data for specific subgroups of patients or measurements, for 
example by leveraging data on clinical outcomes, which we were not able to retrieve for this study. For these 
groups stratified or multilevel analyses could then be performed, to further estimate a population-wide and 
subgroup effect of hematological markers on RDW. This way, we can further unravel the pathophysiological 
mechanisms underlying the association between RDW and health.

Conclusion
In a dataset of 1,403,663 blood sample measurements from routine clinical care, we found that RDW was best 
modelled by erythrocyte size characteristics, specifically pMIC. Moreover, we did not find any indication for a 
role of inflammation or anemia, but we found evidence pointing towards decreasing erythrocyte volume, which 
can be the result of oxidative stress. In this study we have identified important leads for further research on the 
relationship between RDW and clinical outcomes.

Data availability
Data from this study will not be shared publicly considering privacy regulations, but will be made available upon 
reasonable request.
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