
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:8925 | https://doi.org/10.1038/s41598-023-36088-2

www.nature.com/scientificreports

File‑level malware detection using
byte streams
Young‑Seob Jeong 1, Medard Edmund Mswahili 1 & Ah Reum Kang 2*

As more documents appear on the Internet, it becomes important to detect malware within the
documents. Malware of non-executables might be more dangerous because people usually open them
without worrying about inherent danger. Recently, deep learning models are used to analyze byte
streams of the non-executables for malware detection. Although they have shown successful results,
they are commonly designed for stream-level detection, but not for file-level detection. In this paper,
we propose a new method that aggregates the stream-level results to get file-level results for malware
detection. We demonstrate its effectiveness by experimental results with our annotated dataset, and
show that it gives performance gain of 3.37–5.89% of F1 scores.

We are exposed to daily threat of malware programs. Non-executables (e.g., Microsoft word documents) might
be more dangerous than executables (e.g., EXE files) because people open the non-executables without worry-
ing about the inherent dangers; for example, we simply download and open attached documents when we get
e-mails from colleagues or friends. As more non-executables are appearing on the Internet, it is becoming more
important to detect the inherent dangers of malware.“

The malware detection is essentially a binary classification task on two classes (e.g., malware and normal).
There have been studies for malware detection, and machine-learning (ML) models have shown quite success-
ful results. However, using ML models have two limitations: (1) it requires much effort of domain experts for
feature definition, and (2) it is poor at newly appeared malware because it takes time to find new features for
dealing with the new malware. Deep-learning (DL) technique is a solution to the limitations, as it is known to
extract arbitrary features from data without paying much human-effort on feature definition, and also known
to be robust to newly appearing malware.

Recently, there have been few studies that applied the DL models to analyze byte streams for malware
detection1,2. These studies are based on an assumption that the DL models better detect malicious actions within
files by finding arbitrary patterns underlying the byte streams. They mainly exploited convolutional neural net-
works (CNN)3, that is known to be effective in capturing local patterns, and the CNN-based models achieved
successful performance (e.g., accuracy, F1 score). These studies have the common limitation that their models are
stream-level models; in other words, they are not designed for file-level malware detection, but for stream-level
detection. They take a byte stream as input and predicts whether the given stream is malicious or not. However,
a file may have one or more byte streams, and the file should be regarded as malware even if a single stream has
malicious actions; this implies that the malware detection task is basically a file-level task. Such gap between the
previous models and the task might cause low performance on the file-level detection.

In this paper, we propose a new method for malware detection using byte stream. Our method is designed to
work in file-level by exploiting an aggregate function and the stream-level model. To the best of our knowledge,
this is the first study that propose a file-level classifier for malware detection on non-executables. We conducted
experiments with our manually annotated dataset collected from MS office documents (e.g., MS word, power-
point, and etc.), and demonstrate that our method better detects the malware files than stream-level models.

Preliminaries
Malware detection on MS office files.  There are two versions of MS office files: the 97-2003 version
of the compound file binary format (.doc, .ppt, .xls) and the 2007 version of the OOXML structure (.docx,
.pptx, .xlsx). In this paper, compound document files called Object Linking and Embedding (OLE) format were
targeted. The OLE format has a structure similar to the File Allocation Table (FAT) file system manufactured
by Microsoft. The concepts of files and folders in the file system are referred to as storage and streams in OLE
format, respectively. An OLE file is largely divided into a header block and a data block. The header block has a
size of 512 bytes and contains the main information of the entire OLE file. Magic ID exists in the range of 8 bytes

OPEN

1Department of Computer Engineering, Chungbuk National University, Cheongju 28644, South
Korea. 2Department of Information Security, Pai Chai University, Daejeon 35345, South Korea. *email: armk@
pcu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-36088-2&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:8925 | https://doi.org/10.1038/s41598-023-36088-2

www.nature.com/scientificreports/

from 0x0000 to 0x0007 in the header block, and it is usually a sequence of [D0, CF, 11, E0, A1, B1, 1A, E1] which
is a signature keyword indicating that it is an OLE file. A data block is more than 512 bytes and has properties:
stream data, Big Block Allocation Table (BBAT), and Small Block Allocation Table (SBAT). The properties hold
information about files or folders in the device. BBAT is a link-type structure that includes stream location
information inside OLE, and increases as the OLE file grows. SBAT stores a small area of data when entering a
document. Stream data is the most important in an OLE file and takes up most of the data blocks. To extract byte
streams from files, we can use python libraries such as olefile, zlib, BytesIO, and struct. The file header with ole-
file.OleFileIO and openstream functions are firstly extracted, and it is necessary to check file information such
as properties, encryption, compression, and script inclusion. Once the list of streams in the OLE file is obtained,
every stream is decompressed.

There have been studies of malware detection on MS office files. Yang et al.4 proposed a method for detecting
MS-DOC malware using CNN models. Through static analysis, they found that the malicious MS-DOC files
often have irregular file names and sensitive API calls. They showed that the malicious MS-DOC contains an
encryption code to evade malware detection and a large number of meaningless characters. They converted MS-
DOC files into 1024×1024 gray images and processed them as input image. The results showed that the model
had an average accuracy of 94.70%.

Mimura5 analyzed malicious MS office non-executable documents (e.g., .doc, .docx, .xls, .xlsx, .ppt, and
.pptx) using language models. Malicious MS office documents were collected from VirusTotal and normal MS
office documents were gathered from Stack overflow6. As most malicious MS office documents contain mali-
cious VBA macros, this study checked if functions related to encoding, replacing, or splitting were included in
VBA macro. Streams containing VBA macros are used to detect malware using language models and classifiers.
Aishwarya et al.7 created MS office documents through Apache Poor Obfuscation Implementation (POI) and
put some macro into randomly selected files. Apache POI allows to read or write MS Office file format in Java
language, and supports Word, Excel, PowerPoint and the Open Office XML (OOXML) files (e.g., .docx, .xlsx,
and .pptx). They analyzed the file structures of the complex file binary format (e.g., .doc, .ppt, and .xls) and
OOXML format, and extracted features using oletools that is a Python package for malware analysis on MS Office
documents. The feature set consists of more than 20 fields, and some features are based on fields such as Macro,
AutoOpen, Suspicious, IOCs, HexStrings, Base64, Legitmate, Richtext, and DDElink. They exploited machine
learning models such as random forest, Gradient boost and Ada boost algorithm for malware classification, and
the random forest had the best accuracy of 96%. Most previous studies including above works mainly utilized a
customized feature set obtainable from target files, but there are emerging recent studies that directly analyzes
byte streams within files using deep learning techniques. In the next subsection, such studies are summarized
and their common limitation is explained.

Malware detection on byte streams.  Malware detection on non-executables (e.g., MS Word file) is
basically a classification task on two classes (e.g., normal and malware). There are two categories of approaches
for the task: static and dynamic. The dynamic approach is to exploit a separated platform or an isolated virtual
environment (e.g., virtual box), and analyzes step-by-step actions of a suspicious program. The existing studies
of this approach have a common limitation that they are not reproducible as they usually exploit different emula-
tions. On the other hand, the static approach is to directly analyze the target file without running it. Therefore,
considering that we face more data everyday, the static approach will be preferable as it is relatively more efficient.

There have been studies of the static approach that uses handcrafted features and various machine-learning
(ML) models such as support vector machines (SVM)8, logistic regression (LR), random forest (RF)9, and extreme
gradient boosting (XGB)10. For example, Ranveer and Hiray11 trained the SVM with frequency-based patterns
obtainable from executables, and it gave 95% of true positive rate (TPR). Morales-Molina et al.12 defined features
on portable executable (PE) files and OpCode sequences, and achieved 89 and 96% of F1 scores using the RF
model. Ajit Kumar et al.13 compared various ML models (e.g., decision tree, random forest, k-nearest neighbors,
logistic regression, naive bayes, and linear discriminant analysis), and the best accuracy was 89.23%. Although
the ML models have shown quite successful results, they have a common limitation that they require a huge
effort of domain experts to find meaningful features.

Deep-learning (DL) technique is one of solutions for this limitation because it is able to learn underlying
patterns or features automatically from given data. Especially, few studies exploited convolutional neural net-
works (CNN) for malware detection or classification, where CNN is known to effectively extract arbitrary local
patterns. For example, Thosar et al.14 proposed a hybrid approach of gradient boosting and CNN for malware
family classification, and achieved 93.53% of F1 score. Another studies applied the CNN models directly to the
byte streams within non-executables. Raff et al.1 proposed a new shallow CNN architecture that takes as input a
byte stream of PE header. Chen et al.15 formulated that the bytes in files are image pixels, and designed a CNN
model for malware detection by capturing local patterns in the images. Jeong et al.2 used spatial pyramid pooling
with average operation; it dramatically reduced the number of trainable parameters compared to other existing
models without losing effectiveness (e.g., accuracy). In another paper of theirs16, they found that byte streams
of different file formats (e.g., hangul word processor (HWP), portable document format (PDF)) allow CNN
models to better learn underlying patterns for malware detection. These studies have shown potential of CNN
models with byte streams, but they have a common drawback that their models work in stream-level. Figure 1
depicts how stream-level malware detection works. Each file contains arbitrary number of byte streams, and some
streams may have malicious actions. Even if a file has only a single malicious stream, the file should be regarded
as malware. With the stream-level model MS in Fig. 1, it misses only a single stream (i.e., the last stream) out of
7 streams, but it actually gave wrong prediction for the file ‘B’ out of two files; this implies that the model is poor

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:8925 | https://doi.org/10.1038/s41598-023-36088-2

www.nature.com/scientificreports/

for file-level prediction although it may seem fairly good for stream-level prediction. As far as we know, our
paper is the first study of file-level malware detection for non-executables using byte streams.

Method
Malware detection services are supposed to provide how likely a given file (or a set of files) contains malicious
actions. Even if the file has only a single suspicious byte stream, the services must warn users about the danger.
This implies that the services work in file-level, whereas previous studies using byte streams focused on devel-
oping stream-level prediction models (e.g., MalConv1, SPAP2). It is possible, of course, the stream-level models
can be used for file-level prediction, as shown in Fig. 1; the model firstly generates per-stream predictions, and
the file-level result will be ‘malware’ only if there is one or more ‘malware’ predictions in the per-stream results.
However, the prediction model is designed to take as input a byte stream and generates a prediction, so it does not
see file-level patterns (i.e., relation between byte streams). Such gap between the prediction model and services
will probably lead to poor results (e.g., lower accuracy).

When we simply try to train the stream-level models to work in file-level, we face a challenging issue that the
models must be applicable to varied number of streams. For example, in Fig. 1, the stream-level model MS takes
as input four streams when it learns from file ‘A’, whereas it takes three streams for file ‘B’; but it is impossible to
take such varied number of streams as input if we use conventional architectures such as fully-connected layers,
convolutional layers, or pooling layers. Table 1 shows the statistics about the varied number of streams.

As described in Fig. 2, our proposed method employs two models (i.e., MS and MF ) and the aggregate function
f. More formal representation of our method is described via Eqs. (1), (2), and (3). Through the Eq. (1), given a set
of padded streams S = {s1, . . . , si , . . . , s|S|} , we obtain real-numbered vectors Vs = {vs1 , . . . , vsi , . . . , vs|S| } where
|Vs| = |S| , and vsi ∈ R

m is the output of MS for the i-th padded stream si . The Eq. (2) implies that the aggregate
function f digests Vs (i.e., set of arbitrary number of vectors) and gives a vector vf ∈ R

n . Finally, the output (i.e.,
two-dimensional vector or a probability of malware) is obtained from MF that takes the vf as input. Algorithm 1
provides a formal description of the steps.

Figure 1.   Stream-level malware detection, where MS indicates a stream-level model that predicts whether the
given byte stream is malicious or normal.

Table 1.   The number of streams in a non-executable file.

Mean Variance

Malware 16.03 73.84

Normal 3.38 0.35

Total 9.65 76.76

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:8925 | https://doi.org/10.1038/s41598-023-36088-2

www.nature.com/scientificreports/

Aggregate function.  To deal with the varied number of streams, we defined an aggregate function f that
digests outputs of MS into a single representation of n-dimensional real-number vector, as shown in Fig. 2. For
example, if we deal with the file ‘A’, then the four streams with different lengths are firstly padded, so they become
to have the same length. Here, we generalize the functionality of MS that takes each stream as input and gives
m-dimensional vector as output. If MS is assumed to be a multi-layered network, then it will give vectors of
different dimensions as we pick different layers; for example, when MS has three layers of 100, 50, and 2 dimen-
sions, then m might be 100, 50, or 2 depending on which layer we determined to generate output of MS . When
we obtain four vectors of m dimensions from the four streams of file ‘A’, then they are passed into the aggregate
function f that generates n-dimensional representation as output. While there are many options (e.g., hash func-
tion) as the aggregate function, we chose ‘average’ function that generates an averaged vector from the varied
number of vectors; m = n when we use the average function because the function generates an averaged value
for each dimension.

File‑level classifier.  With the n-dimensional vector as a feature vector generated by the aggregate function,
we train a file-level classifier MF . The classifier might be any conventional models such as linear classification
models, neural networks, or support vector machines. In this paper, we used a k-dimensional fully-connected
layer followed by a two-dimensional output layer. The difference between MS and MF is that the file-level clas-
sifier MF is trained with a n-dimensional feature vector of every file, whereas the stream-level classifier MS is
trained with a padded byte stream.

Ethical standards.  This study does not involve data of human participants or animals. We have no potential
conflicts of interest.

Experiments
Data and settings.  We collected malware and normal files of Microsoft (MS) office. Malicious files were
obtained from a Korean anti-virus company, and normal files were collected from public portal site operated
by the Korean Ministry of the Interior and Safety. We extracted all streams from malicious and normal files in
bytes, and if the stream is compressed, it was extracted after decompressing it. The stream data is available online.

The data is split into three subsets: training, validation, and test set, as summarized in Table 2. The imbalance
of streams is caused by the extremely high variance of the number of malware streams, as shown in Table 1.
Streams belonging to the same file are placed in the same subset. We used a machine of Intel(R) Xeon(R) Silver
4214 CPU @ 2.20 GHz 48 cores and four graphics processing unit (GPU) of NVIDIA Quadro RTX 5000. All
models are implemented using Python3 language with Tensorflow packages.

Results.  We employed two recent CNN models, MalConv1 and SPAP2, as MS , and compared them by per-
formance (e.g., accuracy). The convolutional layers of MalConv have 128 dimensions with kernel size of 500,
while the consecutive convolutional layers of SPAP have 64 and 264 dimensions. We made them to have the same
dimension of 128 at the layer just before their output layers, and took 128-dimensional real-number vectors
from the layer as the output of MS ; in other words, m = 128 as we picked the layer just before their output layer.
When we train the SPAP, batch normalization17 and drop-out techniques18 are used for convolutional layers and
fully-connected layers, respectively. For the MalConv, the drop-out is applied to its fully-connected layers. The

(1)vsi =MS(s
i)

(2)vf =f (Vs)

(3)o =MF(vf)

Figure 2.   File-level malware detection, where MS indicates a stream-level model, MF is a file-level model, and f
is an aggregate function.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:8925 | https://doi.org/10.1038/s41598-023-36088-2

www.nature.com/scientificreports/

parameters of MalConv and SPAP models were updated for 20 and 15 epochs, respectively, using cross-entropy
loss function and Adam optimizer19 with initial learning rate of 0.001, where the hyper-parameter setting is
determined by a grid searching. We also employed a sample weight technique to mitigate the imbalance of the
dataset; that is, the data instances are weighted using a ratio between two classes (i.e., malware and normal). Note
that it is not our purpose to improve performance of these two stream-level models, but to prove our proposed
method works better than just using the stream-level models for file-level malware detection.

We used ‘average’ function as the aggregate function f that computes averaged value for each dimension of
varied number of 128-dimensional vectors that came from the MS . We set k = 32 , so the file-level classifier MF
has a 32-dimensional fully-connected layer with a drop-out followed by a 2-dimensional output layer with a
softmax function. The parameters of MF were updated for 10 epochs using cross-entropy loss function and Adam
optimizer with initial learning rate of 0.001. Figure 3 is a plot of training and validation loss of the file-level clas-
sifier. During the training phase of MS , the parameters of MF were not updated.

Table 3 summarizes the results of file-level malware detection, where the precision, recall, and F1 scores are
averages of three independent experiments. Our method exhibited a significant improvements compared to the
stream-level models; for example, our method with SPAP achieved 91.12% of F1 score for malware class whereas
using SPAP only gave 85.23% of F1 score. The results imply that our method generally gives 3–6% improvements

Table 2.   Data statistics.

Malware Normal Total

File

Train 413 432 845

Validation 45 48 93

Test 68 56 124

Stream

Train 6749 1455 8204

Validation 688 158 846

Test 996 199 1195

Figure 3.   Loss plot of the file-level classifier, where the horizontal and vertical axis are loss and the number of
epochs, respectively.

Table 3.   Results of file-level malware detection, where △ indicates how much performance was improved by
our method.

Precision (%) Recall (%) F1 score (%)

Malware Normal Malware Normal Malware Normal

MalConv 97.46 76.28 75.00 97.62 84.77 85.64

SPAP 96.42 77.20 76.47 96.43 85.23 85.71

Ours (with MalConv) 96.61 82.67 83.33 96.43 89.47 ( △4.70) 89.01 ( △3.37)

Ours (with SPAP) 96.26 86.07 86.77 95.83 91.12 ( △5.89) 90.55 ( △4.84)

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:8925 | https://doi.org/10.1038/s41598-023-36088-2

www.nature.com/scientificreports/

of F1 scores. Such a big performance gap is due to the inconsistency between the task and the models. That is, the
stream-level models are designed and trained for the task of ‘stream-level’ prediction, so they must be poor on
the ‘file-level’ prediction. On the other hand, our method is designed for the file-level prediction by considering
relational information between streams within a given file.

When we look at precision, the models commonly suffer from low performance in normal class, probably due
to the class imbalance as shown in Table 2. our method gives significant improvements in the normal class, with-
out losing much precision of malware class; this in turn allows our method to have greater F1 scores. A similar
phenomenon appears in recall, and our method again gives improvements in malware class. We also observed
that our method gives better performance when it works with SPAP. This implies that using better stream-level
model as MS probably contributes to better file-level performance.

Discussion
The two stream-level models, MalConv and SPAP, exhibited comparable results as shown in Table 3, while the
SPAP is slightly better in terms of the F1 scores. Both models have shown better results when they work with
our method. The reason of such performance gap is that our method eliminates the inconsistency between the
stream-level models and the file-level task. Our aggregate function plays a crucial role in here, as it makes a fixed
dimensional vector out of varied number of byte streams in each file.

Our method might be seen that we just use the stream-level models MS as feature generators and train a shal-
low neural network as a file-level classifier. It is worth noting that it is not trivial to use MS as feature generator
because there are varied number of streams in a file; that is, the dimension of feature vector varies if we simply
concatenate the output vectors of MS , so it is not possible to use it as a feature vector for the file-level classifier.
Therefore, the aggregate function f plays a crucial role in our method because it allows the feature vector to have
a fixed dimension.

In this paper, we basically chose the ‘average’ function as the aggregate function f. We also investigated some
other functions to check how important the aggregate function is. Table 4 summarizes the results with two dif-
ferent aggregate functions: ‘max’ and ‘min’. Interestingly, these two functions did not give much performance
improvements compared to the results of stream-level models. This might be explained that the generated vectors
by the stream-level models carry meaningful information of the varied number of streams, and ‘min’ or ‘max’
operation may lose such meaningful information as they keep only the smallest or greatest values.

Conclusions
In this paper, we proposed a new method of file-level malware detection. The proposed method consists of
a stream-level model MS , an aggregate function f, and a file-level classifier MF . By experimental results, we
demonstrated that our method works better than previous stream-level models. We trained MS firstly, and used
their output vectors to generate a fixed length of feature vector using f. As a future work, we plan to design a new
file-level model that does not require to train such stream-level models. We are also looking for better aggregate
functions instead of the ‘average’ function, and perform experiments with other stream-level models.

Data availability
The stream data used in this study is available for non-commercial use: https://​sites.​google.​com/​arkang.​net/​
malwa​rebyt​estre​ams.

Received: 21 December 2022; Accepted: 29 May 2023

References
	 1.	 Raff, E. et al. Malware detection by eating a whole exe. In Proceedings of the Workshops of the Thirty-Second AAAI Conference on

Artificial Intelligence 268–276 (New Orleans, USA, 2018).
	 2.	 Jeong, Y.-S., Woo, J., Lee, S. & Kang, A. R. Malware detection of hangul word processor files using spatial pyramid average pooling.

Sensors 20(18), 1–12 (2020).
	 3.	 Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324

(1998).
	 4.	 Yang, S., Chen, W., Li, S. & Xu, Q. Approach using transforming structural data into image for detection of malicious MS-DOC files

based on deep learning models. In 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC) 28–32. https://​doi.​org/​10.​1109/​APSIP​AASC4​7483.​2019.​90232​08 (2019).

	 5.	 Mamoru, M. An improved method of detecting macro malware on an imbalanced dataset. IEEE Access 8, 204709–204717. https://​
doi.​org/​10.​1109/​ACCESS.​2020.​30373​30 (2020).

Table 4.   Results of file-level malware detection using different aggregate functions.

Precision (%) Recall (%) F1 score (%)

Malware Normal Malware Normal Malware Normal

Ours (with MalConv, f = max) 98.05 75.69 74.02 98.21 84.35 85.49

Ours (with MalConv, f = min) 97.58 79.25 78.92 97.62 87.25 87.47

Ours (with SPAP, f = max) 97.00 80.17 79.90 97.02 87.52 87.73

Ours (with SPAP, f = min) 92.32 78.63 79.41 91.97 85.38 84.78

https://sites.google.com/arkang.net/malwarebytestreams
https://sites.google.com/arkang.net/malwarebytestreams
https://doi.org/10.1109/APSIPAASC47483.2019.9023208
https://doi.org/10.1109/ACCESS.2020.3037330
https://doi.org/10.1109/ACCESS.2020.3037330

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:8925 | https://doi.org/10.1038/s41598-023-36088-2

www.nature.com/scientificreports/

	 6.	 Stack overflow. https://​stack​overf​low.​com. Accessed 29 Mar 2023.
	 7.	 Aishwarya, B. B., Suman, S. & Ravi, V. Detection of macro based attacks in office documents using machine learning. J. Adv. Res.

Ideas Innov. Technol. 7, 760–764 (2021).
	 8.	 Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998).
	 9.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	10.	 Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining 785–794 (San Francisco, CA, USA, 2016).
	11.	 Ranveer, S. & Hiray, S. SVM based effective malware detection system. Int. J. Comput. Sci. Inf. Technol. 6, 3361–3365 (2015).
	12.	 Morales-Molina, C. D. et al. Methodology for malware classification using a random forest classifier. In Proceedings of IEEE Inter-

national Autumn Meeting on Power, Electronics and Computing 1–6 (Ixtapa, Mexico, 2018).
	13.	 Kumar, A., Kuppusamy, K. S. & Aghila, G. A learning model to detect maliciousness of portable executable using integrated feature

set. J. King Saud Univ. Comput. Inf. Sci. 31, 252–265 (2019).
	14.	 Thosar, K., Tiwari, P., Jyothula, R. & Ambawade, D. Effective malware detection using gradient boosting and convolutional neural

network. In Proceedings of the 2021 IEEE Bombay Section Signature Conference 1–4 (2021).
	15.	 Chen, C.-M., Wang, S.-H., Wen, D.-W., Lai, G.-H. & Sun, M.-K. Applying convolutional neural network for malware detection.

In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology 1–5 (Morioka, Japan, 2019).
	16.	 Jeong, Y.-S., Lee, S.-M., Kim, J.-H., Woo, J. & Kang, A. R. Malware detection using byte streams of different file formats. IEEE

Access 10, 51041–51047 (2022).
	17.	 Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the 32nd International Conference on Machine Learning 448–456 (Lille, France, 2015).
	18.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
	19.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning

Representations 1–15 (San Diego, CA, USA, 2015).

Acknowledgements
This work was supported by the research grant of Pai Chai University in 2021.

Author contributions
Y.S.J. and M.E.M. wrote the manuscript. Y.S.J. conducted the experiments. A.R.K. analysed the results. All authors
reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.R.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://stackoverflow.com
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	File-level malware detection using byte streams
	Preliminaries
	Malware detection on MS office files.
	Malware detection on byte streams.

	Method
	Aggregate function.
	File-level classifier.
	Ethical standards.

	Experiments
	Data and settings.
	Results.

	Discussion
	Conclusions
	References
	Acknowledgements

