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Atlas‑based finite element analyses 
with simpler constitutive models 
predict personalized progression 
of knee osteoarthritis: data 
from the osteoarthritis initiative
Mika E. Mononen 1*, Alexander Paz 1,2, Mimmi K. Liukkonen 3 & Mikael J. Turunen 1

New technologies are required to support a radical shift towards preventive healthcare. Here we focus 
on evaluating the possibility of finite element (FE) analysis‑aided prevention of knee osteoarthritis 
(OA), a disease that affects 100 million citizens in the US and EU and this number is estimated to 
increase drastically. Current clinical methods to diagnose or predict joint health status relies on 
symptoms and tissue failures obtained from clinical imaging. In a joint with no detectable injuries, 
the diagnosis of the future health of the knee can be assumed to be very subjective. Quantitative 
approaches are therefore needed to assess the personalized risk for the onset and development of 
knee OA. FE analysis utilizing an atlas‑based modeling approach has shown a preliminary capability 
for simulating subject‑specific cartilage mechanical responses. However, it has been verified with a 
very limited subject number. Thus, the aim of this study is to verify the real capability of the atlas‑
based approach to simulate cartilage degeneration utilizing different material descriptions for 
cartilage. A fibril reinforced poroviscoelastic (FRPVE) material formulation was considered as state‑
of‑the‑art material behavior, since it has been preliminary validated against real clinical follow‑up 
data. Simulated mechanical tissue responses and predicted cartilage degenerations within knee joint 
with FRPVE material were compared against simpler constitutive models for cartilage. The capability 
of the atlas‑based modeling to offer a feasible approach with quantitative evaluation for the risk for 
the OA development (healthy vs osteoarthritic knee, p < 0.01, AUC ~ 0.7) was verified with 214 knees. 
Furthermore, the results suggest that accuracy for simulation of cartilage degeneration with simpler 
material models is similar to models using FPRVE materials if the material parameters are chosen 
properly.

Osteoarthritis (OA) is the most common degenerative joint disease of the musculoskeletal system. It affects 
approximately 100 million citizens in the US and EU and this number is estimated to increase by 25% during 
the next 20 years due to the aging of the  population1,2. Currently, there is no cure for OA and current clinical 
practice in OA diagnosis is not able to detect early tissue changes due to OA. Therefore, knee OA often progresses 
inevitably to a stage where an expensive total knee replacement (TKR) surgery costing up to 50 000€ is the only 
recommended clinical solution. It has been reported that over 600 000 TKR procedures are performed each year 
in the US among patients aged 50–593. This generates annually over 30-billion-dollar direct costs to the US’s 
economy, highlighting the need for effective preventative interventions for clinical practice. For a solution to be 
clinically applicable, it has to be scalable, robust, and accurate.

Recently, OA research has increasingly started focusing on the development of different approaches and 
methods based on machine learning (ML)  algorithms4–7 and finite element analysis (FEA)8–10 to classify subjects 
at high risk for knee OA development. Especially, the aim has been to identify the high-risk subjects before any 
degenerative signs are detected from a clinical image. In ML  approaches4–7, the prediction is based on the param-
eters that can be easily quantified, such as age, height, weight, parameters that are evaluated from clinical image, 
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such as Kellgren–Lawrence (KL) grade or tibiofemoral angle, and parameters that are reported by the subject 
itself such as different physical activity levels and pain indexes. This generates a huge set of parameters that needs 
to be defined before making an accurate prediction. As some of the parameters are considerable subjective, such 
as pain and activity  levels11,12, it may generate biases to the data that is utilized to train ML algorithms. Further-
more, some of the parameters that are needed for ML approaches may be too time consuming or unpractical to 
collect (such as biomarkers of blood or urine) from the subjects which may limit its usability as a clinical  tool13.

In approaches based on predictions generated from finite element  analysis8–10, the mechanical response 
of the cartilage tissue within the joint is simulated and combined with degenerative algorithms that include a 
mechanical threshold(s) beyond which tissue degeneration takes place. Similarly, as with ML approaches, FEA 
approaches have its own limitations to be utilized as a part of clinical evaluation. For instance, constitutive models 
for cartilage tissue that has been utilized to predict tissue degradation due to OA progression are experimentally 
validated only with a complex fibril-reinforced poroviscoelastic material (FRPVE)  formulations14–18. As the 
FRPVE material can be considered to simulate mechanical tissue responses adequately (contact pressure, stress, 
strains, and cartilage degeneration) during various loading conditions (stress-relaxation) in articular cartilage, 
it can be considered as a reference material model. However, the main limitation is that implementation of the 
FRPVE material description is time consuming, needs extensive expertise to implement in different tissue shapes, 
and requires considerably more computational time compared to simpler material formulations. The second 
limitation in the current FEA workflow is related to the time that is needed in generation of a subject specific 
model geometry. This can be tackled with an atlas-based  approach8, where the existing atlas is scaled based on 
the measured anatomical knee joint dimensions. However, currently the applicability of the atlas-based approach 
has been verified with very limited subject number.

The aim of this study is to verify the real capability of the atlas-based approach to predict the progression of 
knee OA utilizing different material formulations for cartilage. We hypothesized that mechanical parameters 
in simpler constitutive models for cartilage can be adjusted so that tissue mechanical response corresponds 
with those simulated with the complex FRPVE material description. This will promote the usability of simpler 
constitutive models in simulating tissue mechanical responses, and especially, when predicting personalized 
progression of knee OA. We also hypothesized that simpler constitutive models combined with atlas-based 
modeling enable clinically feasible solutions to help clinicians to target conservative interventions for patients 
who are at high risk for the development of knee OA.

Materials and methods
Workflow. Magnetic resonance images (MRI) for 214 knee joints from 109 subjects were obtained from 
the osteoarthritis initiative database (OAI- https:// nda. nih. gov/ oai/). The study subjects were divided into three 
subject groups based on the 8-year follow-up Kellgren–Lawrence (KL) grade. Following inclusion criteria were 
used: Healthy subjects—30 random subjects whose KL grade at both knees remained zero during 8-year follow-
up; OA subjects—KL grade increase at least by 2 in one knee so that the baseline KL in both knees was zero, or, 
KL grade increase at least by 3 in one knee so that its baseline KL grade was zero, whereas other knee’s baseline 
KL was restricted to be less than 2; Pain subjects—30 random subjects who had constant knee pain at the base-
line in their left, right, or both knees. Then, intersections and patients older than 70 years were removed (Fig. 1). 
There were 222 knees having KL = 0, 24 having KL = 1 and 2 knees having KL = 2 in baseline. Finally, each knee 
joint was grouped based on their 8-year follow-up KL grade to three KL groups: (1) KL01: KL grades 0 and 1, (2) 
KL2: KL grade2, and (3) KL34: KL grades 3 and 4 (Table 1). Ethical approval for collecting all subject informa-
tion was provided by the OAI. Knee MRI’s were carried out in accordance with FDA guidelines, whereas knee 
radiographs (x-ray) were carried out in accordance with typical guidelines for annual and total radiation dosage 
to research subjects. Written consent was obtained from all subjects prior to each clinic visit. The OAI study was 
approved by Institutional Review Board (IRB) for the University of California, San Francisco (UCSF) and its 
affiliates. The IRB approval was also obtained from all the four clinical sites located at Brown University in Rhode 
Island, Ohio State University in Columbus, Ohio, University of Maryland/Johns Hopkins University joint center 
in Baltimore, Maryland, and at the University of Pittsburgh in Pennsylvania. Further details related to the OAI 
data are available in the OAI web-site (https:// nda. nih. gov/ oai/).

Previously developed atlas-based FE  approach8, utilizing the experimentally validated FRPVE constitutive 
model for cartilage, was considered as a reference model to simulate contact pressure, tissue tensile stress, com-
pressive strain and cartilage degeneration under gait loading conditions. A transversely isotropic poroelastic 
material (TIPE) model from previous  study19 and an optimized material model utilizing a homogeneous trans-
versely isotropic poroelastic material (HTIPE) formulation were selected for comparison of simulated mechanical 
responses and predicted cartilage degeneration against to FRPVE constitutive model (Table 2). The optimization 
for the HTIPE material was conducted manually to achieve similar tissue deformations and tensile stresses as 
obtained with the FRPVE material utilizing a simplified tibiofemoral geometry. Finally, to test the capability of 
the simpler constitutive models for cartilage (HTIPE and TIPE) to simulate different tissue mechanical responses 
in a knee joint level model, simulated contact pressures, contact areas, pore pressure, and tissue tensile stresses 
and strains were compared against FRPVE constitutive model as a function of gait loading utilizing previously 
developed atlas-based modeling  workflow8. All simulation were run in Abaqus (Dassault Systèmes). The FRPVE 
material implementation was done with UMAT subroutine that allows use of user-defined material behavior, 
whereas the simpler materials were implemented with inbuilt Abaqus options using the transverse isotropic mate-
rial implementation (engineering constants). Details of the main equations and collagen fibril implementation of 
the FRPVE material, and convergence criteria for the joint level models are given in the “Supplementary material”.

https://nda.nih.gov/oai/
https://nda.nih.gov/oai/
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Optimization of the HTIPE material. In the previously developed and verified algorithm to simulate 
cartilage  degeneration8, tissue degeneration was based on the simulation of exceeded levels of tissue tensile 
stresses experienced by the collagen fibril network, utilizing the FRPVE constitutive  model17,18. Thus, when 
optimizing the HTIPE material, the priority was to simulate identical tissue response in terms of tissue tensile 
stresses and cartilage deformation compared with the FRPVE constitutive model. It was assumed that similar 
stresses and deformations would produce similar distributions in other parameters (contact pressure, contact 
area, pore pressure, tensile strain).

First, tibiofemoral joint was modeled as a simplified joint geometry utilizing a cuboid of 32  mm3 
(2 mm × 4 mm × 4 mm) as tibial cartilage and a hemisphere with a radius of 2 mm as femoral cartilage (Fig. 2-
left). The FRPVE material was implemented into the simplified joint geometry so that primary fibril orientations 

Figure 1.  Inclusion criteria for the subject selection from the OAI database. In the selection of subjects with 
constant knee pain, pain frequency (V00P7LKFR (left knee) and V00P7RKFR (right knee) parameters from the 
OAI database) > 2 means daily knee pain to constant knee pain and pain severity (V00P7LKRCV (left knee) and 
V00P7RKRCV (right knee) parameters from the OAI database) > 5 means self reported pain level from 0 to 10, 
where 0 equals to “no pain” and 10 equals to “pain as bad as you can image”.

Table 1.  Variation in subject characteristics between different KL groups based on the KL grade at the 8-year 
follow-up. Number in parentheses indicates the number of pain subjects in the group.

AGE [years] BMI [kg/m2] Medial cartilage thickness [mm] Lateral cartilage thickness [mm]

Group
Left knee

KL01
N = 70 (15) 56.1 ± 6.2 28.3 ± 5.2 5.0 ± 1.0 5.6 ± 0.8

KL2
N = 20 (1) 58.1 ± 5.1 27.4 ± 4.7 4.9 ± 0.6 5.4 ± 0.8

KL34
N = 16 (2) 57.1 ± 6.2 31.8 ± 5.1 5.1 ± 1.0 5.3 ± 1.3

Group
Right knee

KL01
N = 69 (12) 56.0 ± 5.8 28.5 ± 5.6 5.1 ± 0.9 5.6 ± 1.0

KL2
N = 29 (4) 57.9 ± 6.1 29.0 ± 5.1 5.0 ± 1.0 5.6 ± 0.9

KL34
N = 10 (0) 56.0 ± 7.2 30.5 ± 5.9 5.3 ± 0.7 5.3 ± 0.6
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(4 primary  fibrils17,18) were parallel to the femoral and tibial cartilages surface through whole tissue depth. In 
the HTIPE material model, material orientations were matched with the FRPVE material so that the xy-plane of 
the cartesian coordinate system, that defines material orientations, was according to primary fibril orientations 
in the FRPVE material.

After generation of the simplified joint geometry, the FRPVE material properties mimicking tibial and femo-
ral cartilage were applied to the model geometry (Table 2). To match joint loading conditions during loading 
response, axial ramp loading of 50N was applied within 0.2 s (approximate time for loading response) on the top 
surface of femoral cartilage, while tibial bottom was fixed. Other degrees of freedom in femoral cartilage were 
kept fixed, except axial displacement that was controlled by the loading boundary condition. Biphasic contact was 
not used between femoral and tibial cartilage, and free fluid flow was not allowed at the free edges (Fig. 2-left). 
The outcomes of qualitative analysis on tissue tensile stresses and tissue deformations were used as references 
for optimizing material parameters for the HTIPE model.

As all material parameters are linked with the tissue’s mechanical response (stress level and deformation), 
some assumptions were made before manual optimization:

1. Void ratio and permeabilities are matched with FRPVE material (they were kept constant).
2. Initial Young’s moduli, Poisson’s ratios and shear moduli were based on the previous  study19.

Table 2.  Material parameters of the FRPVE, TIPE and HTIPE material models for the femoral and tibial 
cartilages. FRPVE material parameters: Eε = the strain-dependent fibril network modulus, E0 = the initial fibril 
network modulus, Em = the non-fibrillar matrix modulus,v m = the Poisson’s ratio of the non-fibrillar matrix, 
η = the damping coefficient, k0  = the initial permeability and nf = the fluid fraction. HTIPE and TIPE material 
parameters: E11 = E22 =  the in-plane Young’s modulus (representing primary collagen fibril orientation), 
E33 = axial Young’s modulus (perpendicular to in-plane direction), vij = the Poisson’s ratio that characterize 
the transverse strain in the j-direction, when the tissue is stresses in the i-direction., Gij  = the shear modulus 
that characterize strain in i-plane in j-direction, k = the permeability and nf = the fluid fraction. * In FRPVE hz 
represents normalized depth of the tissue from cartilage surface (hz = 1) to cartilage bone interface (hz = 0). 
** Orientation of the plane of isotropy represents primary collagen fibril orientation in cartilage. *** In TIPE 
material model, both the femoral and tibial cartilages were considered to have identical depth-wise material 
parameters.

FRPVE material  model8 Femoral cartilage Tibial cartilage

Collagen fibril network architecture Depth-wise arcade-like Depth-wise arcade-like

Eε      (MPa) 150 23.06

E0  (MPa) 0.92 0.18

Em (MPa) 0.215 0.106

υm 0.15 0.15

η (MPa s) 1062 1062

k0 (×  10−15  m4N−1  s−1) 6 18

nf* 0.8–0.15 Hz 0.8–0.15 Hz

HTIPE material model Femoral cartilage Tibial cartilage

Orientation of the plane of isotropy** Parallel to surface Parallel to surface

E11 = E22  (MPa) 60 50

E33 (MPa) 3 3

v12 0.42 0.42

v13 = v23 1.9 1.9

G12(MPa) 5.25 4.4

G13 = G23 (MPa) 7.9 6.4

k (×  10−15  m4N−1  s−1) 6 18

nf 0.8 0.8

TIPE material  model19*** Superficial zone Middle zone Deep zone

Orientation of the plane of isotropy** Parallel to surface Parallel to surface Parallel to surface

E11 = E22  (MPa) 24 16.97 8.485

E33 (MPa) 0.46 0.46 0.46

v12 0.42 0.42 0.42

v13 = v23 3 3 2.2

G12 (MPa) 8.45 5.98 2.99

G13 = G23 (MPa) 12 8.45 4.24

k  (×  10−15  m4N−1  s−1) 1 1 1

nf 0.8 0.8 0.8
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3. Due to primary fibril architecture in the FRPVE model (Fig. 2-left), Young’s moduli in the x and y direction 
(xy -plane) are considered to be even.

We were aware that mechanical responses in the FRPVE constitutive model are highly nonlinear with respect 
to local strain rates, due to the viscoelastic nature of the model, and thus it is impossible to get an identical match 
with simpler, non-viscoelastic materials. However, after about 100 iterations, both quantitative and qualitative 
comparisons between FRPVE and HTIPE material responses showed only minor differences between simulated 
stresses and tissue deformation. This was considered to justify further utilization of optimized HTIPE material 
(Fig. 2-right).

Atlas‑based method. Subject specific FE models for each knee joint were generated utilizing the atlas-
based  approach8. Shortly, an existing atlas geometry (includes FE geometry and data from the morphological 
dimensions of distal femur and tibiofemoral joint) is scaled based on the relative differences in morphologi-
cal dimensions of distal femur and tibiofemoral joint space between the subject of interest and atlas geometry 
(Fig. 3-top). Unlike as reported in the original atlas-based  approach8, cartesian cartilage thickness scaling was 
replaced with a radial scaling as it minimizes geometrical distortion in cases, when there exist substantial differ-
ences in cartilage thicknesses between the subject of interest and atlas geometry (Fig. 3-middle). A generic gait 
loading condition was scaled based on the body weight of the subject of interest and implemented into the FE 
models, similarly as in the original atlas-based approach paper (Fig. 3-bottom)8.

Simulation of cartilage degeneration. Cartilage degeneration was simulated as a function of ageing 
using age-dependent thresholds for tissue  failure20. Thus, the following equations were used to determine the 
age-dependent threshold values ( Tσf

 ) for tensile stresses to initiate of cartilage  degeneration8:

Based on the given age of subject (b = baseline age) and the desired simulated OA progression time (8y = simu-
lated time + b), volumetric cartilage degeneration (DEG(Age)) was calculated for each time point as the sum of 
the volumes of the elements where the threshold ( Tσf

 ) was exceeded (any given time point during the gait load-
ing). Thus, the simulated progression of degeneration (D) after 8-year follow-up can be formulated as follows:

The progression of degeneration was calculated using post-processing in Matlab (Mathworks) after simulating 
the tensile stresses during gait loading.

(1)Tσf
= 30 MPa, if (Age < 30),

(2)Tσf
= 30 MPa−

((

Age− 30
)

(20/15)
)

, if
(

30 ≤ Age ≤ 45
)

,

(3)Tσf
= 10 MPa−

((

Age− 45
)

(3/20)
)

, if (45 < Age ≤ 65),

(4)Tσf
= 7 MPa−

((

Age− 65
)

(2/100)
)

, if (65 < Age ≤ 75),

(5)Tf = 6.8 MPa, if (Age > 75).

(6)D = DEG
(

8y
)

− DEG(b).

Figure 2.  Final outcome (simulated mechanical responses) of the optimization of the mechanical parameters 
of the HTIPE material model using a simplified joint geometry for 0.2 s under an axial ramp load of 50 N. Fibril 
orientation refers to the collagen fibril structure implemented in the FRPVE model.
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Statistical analysis. To emphasize the effect of geometry scaling, average differences in different mechani-
cal parameters between FRPVE and simpler constitutive models were presented in the relation with thickness 
scaling. Correlations for each parameter was evaluated by the Pearson’s correlation. Bland–Altman plots were 
created and analyzed for agreement between the mechanical responses between FRPVE and the simpler material 
models. Cartilage degenerations were simulated with each constitutive material, and ROC (receiver operating 
characteristic) curves were calculated to demonstrate suitability of simpler constitutive models to predict pro-
gression of knee OA. Non-parametric Mann–Whitney U-test (two independent samples test) was used to evalu-
ate group-wise (KL grade at the 8-year follow-up) statistical differences in the predicted degenerations within 
each constitutive models and between pain and no pain subjects, whereas non-parametric Wilcoxon signed rank 
test (two related samples test) was used to evaluate statistical differences within each KL group (KL grade at the 
8-year follow-up) between different constitutive models. In all statistical tests p < 0.05 was considered as the level 
of significance.

Figure 3.  Overview of how the existing atlas FE geometry is scaled against measured morphological 
dimensions of subject of interest and how boundary conditions are implemented in the FE models considering 
body weight of subject of interest. The justification and how meniscus subraction is performed are explained in 
detail in a previous  study8.
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Results
Simpler constitutive models for femoral and tibial cartilages were unable to replicate all mechanical responses 
obtained with the FRPVE constitutive model. In general, the simpler constitutive models either underestimated 
(contact area, tensile stress, tensile strain) or overestimated (contact pressure, pore pressure) the mechanical 
responses (Figs. 4 and 5). However, the HTIPE model was able to replicate simulated tensile stresses (mean and 
peak values) with adequate accuracy compared to the FRPVE model (average difference < 10%). The average 
difference in other parameters (mean and peak values) was > 20%. TIPE model was unable to replicate tensile 
stresses compared to the FRPVE model (average difference > 30%), but the average differences in contact area 
and contact pressure were < 20% and the average difference in pore pressure (mean and peak values) was < 15% 
compared to the FRPVE model. Interestingly, both simpler models were unable to replicate tensile strains from 
the FRPVE model (average difference > 20%).

The cartilage thickness scaling (atlas scaling) significantly affected the differences in the mechanical responses 
from the TIPE and HTIPE models, as seen in the correlations between cartilage thickness scaling factor and 
FRPVE-HTIPE and FRPVE-TIPE mechanical responses (p < 0.01 for all, Fig. 6).

The range of simulated cartilage degenerations in all KL groups were similar in FRPVE and HTIPE models 
but were underestimated in TIPE model (Fig. 7-left). Wilcoxon signed rank test showed statistical differences 
(p < 0.01) between each model (FRPVE vs TIPE, FRPVE vs HTIPE, TIPE vs HTIPE) in each KL group. Based 
on the Mann–Whitney U-test, all models showed significantly larger cartilage degeneration in the KL34 group 
compared to the KL01 group (p < 0.01 for FRPVE and HTIPE, and p < 0.05 for TIPE). Additionally, the HTIPE 
model showed significant difference also between KL2 and KL34 groups (p < 0.05). There was no difference 
between cartilage degeneration in pain subjects and all subjects in any model.

The classification capability between KL01 and KL34 groups were in a similar range in the FRPVE and HTIPE 
models (AUC = 0.683 and 0.682, respectively), whereas the TIPE model showed the poorest classification capabil-
ity (AUC = 0.635) (Fig. 7-right). The simulated cartilage degenerations between FRPVE and HTIPE, and FRPVE 
and TIPE models correlated significantly (p < 0.01) in each KL group (Table 3).

Figure 4.  Simulated absolute differences (thick lines) in mechanical responses between FRPVE and simpler 
models (HTIPE and TIPE) with 95% confidence interval (thin lines). The “Mean” curves are calculated as 
average over the contact area and the ”Peak” curves are the peak maxima over the contact area as a function 
of stance phase. The green box indicates the average calculated over peak values generated during the loading 
response and terminal extension. This helps to interpret the simulated differences, i.e., are the simulated 
differences high or low.
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Discussion
In the current study, the mechanical responses of cartilage were simulated within various knee joints under 
generic gait loading with the HTIPE material model, where material parameters were optimized against to the 
mechanical responses simulated in experimentally validated FRPVE material model. The previously used TIPE 
material  model19 was only used to understand the potential limitations of predicting mechanical responses or 
cartilage degeneration with material models with different stiffness (the softness of TIPE model was not known 
in advance). Although the optimized HTIPE material model produced nearly identical mechanical responses 
to the FRPVE material model using a simple joint geometry, it was concluded that only tissue tensile stresses 
were reproduced with sufficient accuracy compared to the FRPVE knee joint model responses. Furthermore, it 
was concluded that the variation in cartilage thickness in the knee joint model alters substantially the simulated 
differences in the mechanical responses between the material models. However, this had only small contribution 
to predicted cartilage degeneration between the FRPVE and HTIPE models, since the simulated excessive joint 
loads are considered to be the main mechanisms behind the initiation of OA development and  progression21–24. 
Therefore, when classifying subjects into the KL01 and KL34 groups, the classification accuracy (moderate) was 
similar in both material models.

The material parameters of the TIPE model were derived from a previous  study19. Shortly, it was optimized 
to a fibril-reinforced poroelastic (FRPE) model without the viscous response of the collagen fibril network. 
Thus, it is not surprising that the simulated mechanical responses were constantly higher or lower as obtained 
from the FRPVE material model. In contrast, the HTIPE model was optimized for the mechanical response 
obtained from the FRPVE material model, and in the simplified joint geometry, primary aim of optimization 
(tensile stress and cartilage deformation) was reached. However, in knee joint geometry, only tensile stresses 
were moderately reproduced compared to the mechanical responses of the FRPVE material model. This can 

Figure 5.  Bland–Altman plots of mechanical responses between FRPVE and HTIPE, and FRPVE and TIPE 
models. The values are averages calculated over peak values generated during loading response and terminal 
extension during the gait cycle (as in Fig. 4 green boxes). The mean difference with ± 1.96 SD is indicated with 
the dashed lines.
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be explained mainly by the joint shape and cartilage thickness variation at the tibiofemoral contact during gait 
that generates varying load/strain rates on the cartilage surface between the models. As the FRPVE material is 
highly sensitive to load/strain-rate, due to viscoelasticity of the model, this causes mechanical responses that 
are not linearly dependent on load magnitude (this also occurs experimental  measurements25,26). For this rea-
son, simulated differences between FRPVE and HTIPE, and FRPVE and TIPE models were not constant, even 
though the mechanical responses in FRPVE and HTIPE models were the same in the simplified joint geometry 
using the linear strain rate.

The extent to which the thickness of the existing atlas model was scaled (when the patient specific models 
were generated) significantly affected the differences in the simulated mechanical responses between FRPVE vs 
HTIPE, and FRPVE vs TIPE material models. In cases where cartilage thickness of the existing atlas was only 
slightly scaled (< 20%), the average mechanical responses for tissue tensile stresses were in good agreement 
between FRPVE and HTIPE material models (difference < 1 MPa). Other simulated parameters were either 
overestimated or underestimated. However, importantly the thickness scaling has a (almost) linear response 
between the simulated mechanical responses of the different models (FRPVE vs HTIPE; FRPVE vs TIPE). This 
indicates that it is possible to estimate the mechanical response of the FRPVE model from these simple models, 
knowing how a change in geometry affects the differences in the simulated responses, as simulated in this work. 
This is important as complex FRPVE material models are computationally heavy compared to simpler material 
models. For instance, in the current study, simulation of a FRPVE model took ~ 2 h, whereas simulation of an 
HTIPE/TIPE model took ~ 20 min.

When simulating cartilage degeneration, the FRPVE and HTIPE models performed similarly, while the 
TIPE model underestimated the degeneration. The poorer performance in TIPE model is explained by the age-
dependent threshold for initiation of cartilage degeneration that works better in materials that produce higher 
tensile stresses. Although the AUC value was only moderate to classify subjects between KL01 (who will remain 
healthy) and KL34 (who will have OA) groups, it must be considered that average BMI’s of the different groups 
were between overweight and obesity (27-32 g/cm2). In other words, in terms of baseline BMI, most of the sub-
jects in each group had already a high risk for the onset and development of knee OA. When this information 
is reflected to the obtained ROC values, the prediction accuracy seems very promising. Interestingly, how the 
patients felt current knee pain had no effect on simulated degenerations. This indicates that knee pain is not 

Figure 6.  Simulated absolute differences in mechanical responses between FRPVE and simpler models (HTIPE 
and TIPE) in the relation with thickness scaling. A single point indicates the average difference through the 
entire stance phase for one knee model.  R2 indicates the Pearson’s correlation against to cartilage thickness 
scaling, *p < 0.01.
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associated with morphological changes in knee shape or cartilage thickness. This does not exclude the possibility 
that the pain is caused by a knee injury that has not yet been diagnosed.

Various machine learning (ML) models have been developed for classification of high and low risk  subjects4–6. 
In these ML models, AUC values ranged from 0.6 to 0.8. However, it should be noted that some of those models 
require up to 112 predictor variables to make the classification. Collecting of such number of predictors is not 
clinically feasible timewise. Furthermore, it should be acknowledged that ML models are not capable of simu-
lating quantitatively effects of different interventions such as weight loss or gait retraining that is possible with 
FEA based simulations, as utilized in the current study. However, it is possible to combine ML models with 
FEA-based simulations into a single  tool27. This might be the next route for classification algorithms generation 
for evaluating subject specific risks for the onset and progression of knee OA.

Despite the encouraging results on the personalized risk of onset and progression of knee OA, there are some 
limitations to this study. First, only medial compartment of the knee was utilized in the simulation. Although OA 
usually initiates on the medial compartment, some patients exhibit the initiation on the lateral  compartment28,29. 
Consideration of this aspect might offer an improvement in the classification results (Fig. 7). We consider this 
as critical limitation that should be addressed in coming papers. Second, loading conditions were assumed 
to be identical for all subjects. It is well known that loading conditions vary among different  subjects30,31. We 
utilized a generic loading that was scaled based on the body weights of  subjects8,32. This can be considered as a 
feasible simplification since wrong estimation for personalized loading condition might produce even higher 
inaccuracies compared with the generic loading conditions. Third, when biomechanical models are optimized, 
they may become overfitted to their calibration conditions. Depending on the complexity of the model, even a 
small change in the boundary condition or geometry can affect its accuracy. In this work, this phenomenon was 
clearly observed in how the tibiofemoral cartilage thickness affected the differences in the simulated mechani-
cal responses in the HTIPE and TIPE models compared to the simulated mechanical responses in the FRPVE 
model. This should be considered when using the results of this work in future studies. Fourth, the inflammatory 
mechanisms were not considered in our predictive model for OA progression. It is known that during the early 
stages of post-traumatic OA due to joint injury, pro-inflammatory cytokines derived from the synoviocytes of 

Figure 7.  Simulated cartilage degenerations with all models and resulted ROC (receiver operating 
characteristic) curves with AUC (area under the ROC curve) values indicating classification superiority. Mann–
Whitney U-test *p < 0.05 and **p < 0.01. Green, yellow and orange background indicate KL01, KL2 and KL34 
groups, respectively. Box plot with light color in KL01 group indicates knee joints from the subjects having knee 
pain (see Fig. 1 for inclusion criteria for those).

Table 3.  Pearson correlations  (R2) of simulated cartilage degenerations between FRPVE and HTIPE, and 
FRPVE and TIPE models in each KL group. **p < 0.01.

Group FRPVE vs HTIPE FRPVE vs TIPE

KL0-1 0.792** 0.707**

KL2 0.738** 0.810**

KL3-4 0.587** 0.570**

Pooled KL0-4 0.771** 0.719**
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the synovial lining are secreted to the synovial fluid and then diffuse and advect into the cartilage, reducing bio-
synthesis and predisposing to tissue  degeneration33. However, it should be noted that it is extremely challenging 
to validate this mechanism with whole knee joint level models, as suitable multi-year follow-up data with are 
currently not available. Last, material properties were not subject specific and quantitative measures that indicate 
cartilage health such as T2 values from MRI were not  utilized9. In future studies, current joint integrity should 
be addressed when making predictive models. In the current study, an existing degeneration  algorithm8 with 
high subject number was utilized.

The presented results suggest that simpler material models are capable to predict subject specific progres-
sion of knee OA if material parameters are selected properly. In the future, the presented workflow with simpler 
material model should be tested against to larger cohort data with a wider range of subject characteristics. The 
contribution of the lateral compartment should also be taken into account when making predictions for the onset 
and progression of knee OA. Furthermore, FEA based simulations merged with ML models could provide an 
accurate and fast clinical tool for prediction of osteoarthritis and simulation of different conservative preventa-
tive interventions, such as weight loss and gait retraining.

Data availability
The data created and analysed during the current study are available from the corresponding author upon rea-
sonable request.
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