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Machine learning for predicting 
survival of colorectal cancer 
patients
Lucas Buk Cardoso 1,5*, Vanderlei Cunha Parro 1,5, Stela Verzinhasse Peres 2, 
Maria Paula Curado 3, Gisele Aparecida Fernandes 3, Victor Wünsch Filho 2,4 & 
Tatiana Natasha Toporcov 4

Colorectal cancer is one of the most incident types of cancer in the world, with almost 2 million new 
cases annually. In Brazil, the scenery is the same, around 41 thousand new cases were estimated 
in the last 3 years. This increase in cases further intensifies the interest and importance of studies 
related to the topic, especially using new approaches. The use of machine learning algorithms for 
cancer studies has grown in recent years, and they can provide important information to medicine, 
in addition to making predictions based on the data. In this study, five different classifications were 
performed, considering patients’ survival. Data were extracted from Hospital Based Cancer Registries 
of São Paulo, which is coordinated by Fundação Oncocentro de São Paulo, containing patients 
with colorectal cancer from São Paulo state, Brazil, treated between 2000 and 2021. The machine 
learning models used provided us the predictions and the most important features for each one of 
the algorithms of the studies. Using part of the dataset to validate our models, the results of the 
predictors were around 77% of accuracy, with AUC close to 0.86, and the most important column was 
the clinical staging in all of them.

The analysis of the survival of cancer patients is fundamental for the planning and evaluation of health services. 
Additionally, the identification and validation of prognostic factors are important to guide the treatment protocol.

Epidemiological studies have used statistical models, based on pre-established predictors for the prognosis 
of survival in patients with colorectal cancer (CRC). Such techniques have limitations related to the adaptation 
of models, changes in the reality, and potential reduction in accuracy over  time1. The most common statistical 
models are linear and depart from explicit descriptions of the relationships between data. Currently, artificial 
intelligence (AI) has been collaborating in the diagnosis of several  diseases2,3 and in the evaluation of  survival4, 
the machine learning technique, an application based on artificial intelligence data, in which systems learn 
and improve automatically without explicit  programming5, has been used in the search for an evaluation that 
demands fewer human resources, possibly more accurate and perennial survival. They are quickly and easily 
adaptable to new realities and their use has been tested in cancer  studies6.

Since models using machine learning do not provide structure and parameters in an explicit and easily inter-
pretable way, it becomes crucial to test their use and their accuracy with real data. In recent years, cancer registry 
data, such as the US Surveillance, Epidemiology and End Results (SEER), have been used to predict mortality or 
survival in the US using artificial  intelligence5,7.

Colorectal cancer (CRC) is among the ten most incidents in the  world8. It is estimated that approximately 
10% of cancer cases in the world in 2020 will be in the colon or rectum, corresponding to approximately 1.8 mil-
lion new cases  annually9, with an increasing trend in both genders. In Brazil, around 41 thousand new cases are 
estimated between 2020 and  202210. The Hospital Based Cancer Registries of São Paulo state (RHC-SP), based 
at the Fundação Oncocentro do Estado de São Paulo (FOSP), covers a population of approximately 30 million 
inhabitants, with 33,000 cases of colorectal cancer, configuring a unique opportunity to carry out of mortality or 
survival prediction studies for Brazilian patients. The objective of the present study is to evaluate and compare the 
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validity of three artificial intelligence algorithms for predicting the survival of patients with CRC treated in São 
Paulo, the most populous state in Brazil, from 2000 to 2021, based on data from the RHC-SP.

Results
Characteristics of the population
When analyzing the patients’ survival over the years after the diagnosis, extracting this information directly 
from the dataset, a decay can be seen up to the fifth year, being 77% of survival in 1 year, 59% in 3 years, and 
53.2% in 5 years, Supplementary Fig. S1. The selection of data, creation of columns, and pre-processing steps 
that were used in the analyses are shown according to the driagram in Fig. 1, 31,916 patients were eligible. For 
the patients’ survival studies (1, 3, and 5 years), a selection was made to remove data from patients who were 
not followed up for the label period, so 29,670, 26,231, and 23,338 patients were eligible for the analyzes 1-year, 
3-year, and 5-year survival, respectively.

Training and validation
The division of the dataset into training and testing was performed randomly, with 75% for training and 25% for 
test data, in addition, there was no significant difference between the sets in the percentage of patients contained 
in each class, Table 1.

Models were trained and fitted for each analysis and validations were performed using the confusion matrix 
for the test data, along with the ROC curve and the corresponding training and testing AUC. For the Random 

Figure 1.  Diagram with the steps performed in the studies. All specific selections, created columns, and 
preprocessing steps are described, with a greater focus until the division of the data set into training and testing 
for each analysis. After this, we have the encoding of the features to numerical values and their normalization, 
followed by the steps of training and validation of the created models.

Table 1.  Percentage of patients in each class for the training and test sets. There are no major differences in the 
distribution of classes between the training and testing sets in all analyses.

Cancer specific (%) Overall (%) One-year (%) Three-year (%) Five-year (%)

Train

 No (Class 0)
 Yes (Class 1)

58.8
41.2

47.0
53.0

21.7
78.3

48.0
52.0

63.4
36.6

Test

 No (Class 0)
 Yes (Class 1)

59.0
41.0

47.2
52.8

22.1
77.9

48.0
52.0

63.8
36.2
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Forest and XGBoost models, a search for the best hyperparameters of these models was also performed for each 
of the analyses, a summary of the results for the test set is presented in Table 2. Observing the AUC values, it is 
noticed that some of the models show a significant difference between the values for training and testing, espe-
cially the Random Forest models. This characterizes the problem of overfitting in these models, which occurred 
due to the search for parameters in a wider range of values. However, the XGBoost models did not show this 
problem so pronouncedly and obtained the best accuracy results in all studies.

Finally, some neural network possibilities were tested for these data, both sequential and more complex 
models, but the performance was lower than the machine learning algorithms used, obtaining lower accuracy 
than the Random Forest and XGBoost models in all tests performed. Therefore, the use of neural networks in 
this study was not further explored.

Cancer specific survival
The Naive Bayes model had the worst performance among those used, observing the accuracy of the model, we 
obtain an unbalanced classification, getting more data from class 1 to class 0 (Fig. 2a), in the ROC curve, the 
value was AUC = 0.767 for training and 0.765 for testing (Fig. 3). With the Random Forest model, the accuracy 
was almost 77% in both classes (Fig. 2b), the training and testing AUC values were 0.974 and 0.844, respectively 
(Fig. 3). Finally, using the XGBoost model, a better performance, comparing with Random Forest model was 
obtained, with more than 77% of accuracy in the prediction of both classes (Fig. 2c). AUC values were 0.909 for 
training and 0.845 for testing (Fig. 3).

The five most important features of the Random Forest model were clinical staging, presence of recurrence, 
year of diagnosis, service category and surgery (Fig. 4a). For the feature service category, the conclusions are 
similar to those of the clinical staging column, lower values have a negative impact and higher values have a 
positive impact. In the columns’ presence of recurrence, year of diagnosis, and surgery, higher values of these 
features negatively influence the prediction, contributing more to class 0, which means that the patient did not 
die from cancer. The lower values of the features contributed the most to class 1.

Regarding the XGBoost model, four of them are similar to the conclusions of the Random Forest model 
(Fig. 4b), they are clinical staging, year of diagnosis, presence of recurrence, and surgery. The other column that 
appeared was age, which had higher values having a greater impact on patient death (class 1) and lower values 
for survival (class 0).

Table 2.  Summary of the results. Accuracy and AUC values for each of the three models used, using the test 
data.

Naive Bayes Random Forest XGBoost

Acc (%) AUC Acc (%) AUC Acc (%) AUC 

Cancer specific 50.2 0.765 76.8 0.844 77.1 0.845

Overall 50.0 0.781 77.2 0.852 77.7 0.857

One-year 62.3 0.772 76.8 0.842 77.4 0.846

Three-year 59.3 0.743 74.4 0.823 74.7 0.826

Five-year 50.1 0.759 77.1 0.853 77.9 0.858

(a) (b) (c)

Figure 2.  (a) Naive Bayes, (b) Random Forest, (c) XGBoost. Confusion matrices of the models, cancer specific 
survival. The Naive Bayes model (a) had the worse performance, besides not having balanced accuracy in both 
classes. On the other hand, the Random Forest (b) and XGBoost (c) models had a performance with a very 
similar accuracy.
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Overall survival
The Naive Bayes model had the worst performance among those used, observing its accuracy, we obtain an unbal-
anced classification, so the model got more data from class 0 in relation to class 1 (see Supplementary Fig. S2a), 
in the ROC curve, the value was AUC = 0.773 for training and 0.781 for testing (Supplementary Fig. S3). With 
the Random Forest model, the accuracy was 77% in both classes (see Supplementary Fig. S2b), the training and 
test AUC values were 0.958 and 0.852, respectively (Supplementary Fig. S3). Finally, using the XGBoost model, 
the best performance was obtained, with almost 78% accuracy in class prediction (see Supplementary Fig. S2c). 
AUC values were 0.873 for training and 0.857 for testing (Supplementary Fig. S3).

The five most important features of the Random Forest model were clinical staging, year of diagnosis, age, 
presence of recurrence, and surgery (Supplementary Fig. S4a). For the features age the conclusions are similar 
to the staging column, smaller values have a negative impact and larger values have a positive impact. In the col-
umns’ year of diagnosis, presence of recurrence, and surgery, higher values of these features negatively influence 
the prediction, contributing more to class 0, which means that the patient did not die for any reason. The lower 
values of the features contributed the most to class 1. Regarding the XGBoost model, all of them are similar to the 
conclusions of the Random Forest model (Supplementary Fig. S4b), they are clinical staging, year of diagnosis, 
age, presence of recurrence and surgery.

(a) (b)

Figure 3.  (a) Training, (b) Test. ROC curves of the models, cancer specific survival. As expected, the Naive 
Bayes model showed the worst AUC values, both for the training and test sets. Looking at the curves for the 
Random Forest and XGBoost models, it can be noticed that there is some overfitting in both models, especially 
in the case of the Random Forest model, due to the difference in AUC values between the training and test 
metrics.

(a) (b)

Figure 4.  (a) Random Forest, (b) XGBoost. Feature importances of the models, cancer specific survival. 
The SHAP values show the most important features for the Random Forest and XGBoost models, allowing 
for analysis and validation, based on medical knowledge, of the algorithms’ training. Both presented similar 
columns among the top ten, with only the order varying, probably due to differences between the two 
algorithms.
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One‑year survival
The Naive Bayes model had the worst performance among those used, observing the accuracy, the model predicts 
almost all data as being of class 0 (see Supplementary Fig. S5a), in the ROC curve, the value was AUC = 0.761 for 
training and 0.772 for testing (Supplementary Fig. S6). With the Random Forest model, the accuracy was 77% in 
both classes (see Supplementary Fig. S5b), the training and test AUC values were 0.862 and 0.842, respectively 
(Supplementary Fig. S6). Finally, using the XGBoost model, a performance a little bit higher than Random Forest 
was obtained, with more than 77% accuracy in the prediction (see Supplementary Fig. S5c). AUC values were 
0.865 for training and 0.846 for testing (Supplementary Fig. S6).

The five most important features of the Random Forest model were clinical staging, in-hospital treatment, sur-
gery, presence of recurrence, and chemotherapy (Supplementary Fig. S7a). For the feature presence of recurrence, 
the conclusions are similar to the staging column, higher values have a negative impact and lower values have a 
positive impact. In the in-hospital treatment, surgery, and chemotherapy columns, we have the opposite. Regard-
ing the XGBoost model, the conclusions are similar to the features of the Random Forest model (Supplementary 
Fig. S7b), they are clinical staging, in-hospital treatment, surgery, chemotherapy, and presence of recurrence.

Three‑year survival
The Naive Bayes model had the worst performance among those used, observing the accuracy, almost all the 
predictions were for class 0, thus, the model was correct with few data from class 1 (see Supplementary Fig. S8a), 
in the ROC curve, the value was AUC = 0.756 for training and 0.743 testing (Supplementary Fig. S9). With the 
Random Forest model, the accuracy was more than 74% in both classes (see Supplementary Fig. S8b), the train-
ing and test AUC values were 0.953 and 0.823, respectively (Supplementary Fig. S9). Finally, using the XGBoost 
model, a better performance was obtained, with almost 75% accuracy in the prediction of both classes (see 
Supplementary Fig. S8c). AUC values were 0.895 for training and 0.826 for testing (Supplementary Fig. S9).

The five most important features of the Random Forest model were clinical staging, surgery, age, in-hospital 
treatment, and year of diagnosis (Supplementary Fig. S10a). For the features age and year of diagnosis, the con-
clusions are similar to those of the staging column, higher values have a negative impact and lower values have 
a positive impact. In the surgery, and in-hospital treatment columns, we have the opposite.

Regarding the XGBoost model, all of them are similar to the conclusions of the Random Forest model (Sup-
plementary Fig. S10b), they are clinical staging, year of diagnosis, surgery, age, and in-hospital treatment.

Five‑year survival
The Naive Bayes model had the worst performance among those used, the accuracy was unbalanced, with almost 
all the predictions being for class 1 (see Supplementary Fig. S11a), in the ROC curve, the value was AUC = 0.757 
for training and 0.759 for testing (Supplementary Fig. S12). With the Random Forest model, the accuracy was 
77% in both classes (see Supplementary Fig. S11b), the training and testing AUC values were 0.969 and 0.853, 
respectively (Supplementary Fig. S12). Finally, using XGBoost, the best performance was obtained, with almost 
78% accuracy in class prediction (see Supplementary Fig. S11c). AUC values were 0.882 for training and 0.858 
for testing (Supplementary Fig. S12).

The five most important features of the Random Forest model were clinical staging, year of diagnosis, sur-
gery, age, and in-hospital treatment (Supplementary Fig. S13a). For the features year of diagnosis and age, the 
conclusions are similar to those of the staging column, higher values have a negative impact and lower values 
have a positive impact. In the surgery and in-hospital treatment columns, higher values positively influence the 
prediction, contributing more to class 1, which means that the patient survived the fifth year. The lowest values 
of these features contributed more to class 0.

About the XGBoost model, all of them are similar to the conclusions of the Random Forest model (Supple-
mentary Fig. S13b), they are clinical stage, year of diagnosis, surgery, age, and in-hospital treatment.

Discussion
Our study is one of the first to predict the survival of cancer patients in a large database using AI, and to verify 
the validity of these models in Brazil. The algorithm with the best survival prediction was XGBoost, followed 
by Random Forest and Naive Bayes. In all algorithms evaluated, both for overall and specific survival, the most 
impacting variable was clinical stage. The variables that best predicted survival in the best model were clinical 
stage, surgery performed, in-hospital treatment, age, and year of diagnosis.

In all survival analyzes, the advanced clinical staging was more decisive for the death prediction, a fact 
expected in survival analyses and repeatedly reported in the scientific literature by other authors. The survival 
values found considering the total number of patients, 77%, 59%, and 53.2% for 1, 3, and 5-year survival, is a little 
lower than the survival found for tumors considered to have regional metastasis in developed countries whose 
data are available at the global cancer  observatory11. The importance of the in-hospital treatment and the year 
of diagnosis highlights the possibility of influence of contextual factors on patient survival, indicating possible 
inequalities related to the capacity of health services, available resources, and qualification of human resources 
of centers for the specific treatment of cancer.

The use of artificial intelligence to predict survival is a current topic in the scientific literature. Recently, Jiang 
et al.7 found over 90% accuracy for 5-year osteosarcoma survival in the US using the XGBoost algorithm. In our 
study, the model with the best accuracy (XGBoost) had lower sensitivity and specificity but was comparable to 
studies that used cancer registry data. Changee Lee et al.5 compared the accuracy of statistical models used for 
prediction with artificial intelligence algorithms to predict mortality from non-metastatic prostate cancer in the 
USA. Leonard et al.12 compared the survival prediction of patients with resected colon cancer using machine 
learning models and commonly used regression models. The authors verified a similarity between the accuracy 



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8874  | https://doi.org/10.1038/s41598-023-35649-9

www.nature.com/scientificreports/

of the AI prediction using only clinical and epidemiological data with that of other models considered the most 
accurate to date. In our study, we only compared AI models. This finding allows further studies comparing the 
best AI model with other statistical models.

A strength of our study is using data from almost all cancer centers of the State of São Paulo, what reduces 
the probability of selection bias. A potential limitation of our research refers to the models used, which do not 
allow the inclusion of patients lost to follow-up. However, given the low percentage of these cases (7%, 17.8%, and 
26.9% for 1, 3, and 5-year survival, respectively), it was found that there was no significant change in the results 
when not including these patients in the training of the models. The survival found in our study is also similar to 
that of other studies that used survival methods that consider the follow-up time of those lost to follow-up, such 
as the Kaplan Meier, with the advantage of the study allowing the prediction of survival from the variables found 
in the model, and not just measure it. In conditions of disruption of health services, for example, the prediction 
of survival can be very useful to estimate the potential loss of survival.

In conclusion, our results showed that AI models proved to be valid for predicting the patients’ survival with 
colorectal cancer from hospital-based cancer registry data in low and middle-income countries, with emphasis 
on XGBoost. More studies are needed to compare the performance of AI models with the most common statisti-
cal models for prediction.

Methods
Study population
Patients treated between 2000 and 2021, residing in São Paulo state, were evaluated, totaling 31,916 cases of both 
genders, diagnosed with colorectal adenocarcinoma ([topography C18-C20, morphology 8140/3]; CID-O 3ed.). 
Data were extracted from the Deputy Directorate of Information and Epidemiology of Fundação Oncocentro 
de São  Paulo13, coordinator of the RHC-SP, where we have information from more than 70 hospitals, public and 
private, from the state of São Paulo.

Selection of variables
For survival analysis (1, 3, and 5 years), patients with the time between diagnosis and last information greater or 
equal than the survival time of the analysis, or who died in the period, were eligible. For example, in the 3-year 
survival analysis, patients with at least 3 years of treatment information and who died within the first 3 years 
after diagnosis were selected.

The variables alive in the first year, alive in the third year, alive in the fifth year, death by cancer and all-cause 
mortality are the labels of the respective analyses, so only the column that is used as the output of the classifiers 

Table 3.  Description of features used in all studies.

Feature Description

IDADE Age of the patient

SEXO Gender of the patient

IBGE City code of patient’s residence according to IBGE with check digit

CATEATEND Category of care at diagnosis

DIAGPREV Previous diagnosis and treatment

EC Clinical stage

TRATHOSP Code of combination of treatments performed at the hospital

NENHUM Treatment received at the hospital = none

CIRURGIA Treatment received at the hospital = surgery

RADIO Treatment received at the hospital = radiotherapy

QUIMIO Treatment received at the hospital = chemotherapy

HORMONIO Treatment received at the hospital = hormone therapy

TMO Treatment received at the hospital = bone marrow transplant

IMUNO Treatment received at the hospital = immunotherapy

OUTROS Treatment received at the hospital = others

NENHUMANT Treatment received outside the hospital and before admission = none

CONSDIAG Difference in days between the consultation and diagnosis dates

TRATCONS Difference in days between consultation and treatment dates

DIAGT RAT Difference in days between treatment and diagnosis dates

ANODIAG Year of diagnosis

DRS Regional department of health

RRAS Regionalized healthcare networks

RECNENHUM No presence recurrence

IBGEATEN IBGE code of the healthcare institution where the patient was treated

ESCOLARI2 Code for patient’s education level, with missing values filled
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will be left. The result was twenty-five columns for features and one label in all performed analyzes, the descrip-
tion of the features is presented in the Table 3.

Statistical analysis
The chi-square test was used to obtain the p‑values for the variables used as features in the classification models. 
This test was chosen because there are no continuous columns in the dataset, so it is possible to use chi-square 
in all the features.

The p‑values corresponding to each column of the dataset are shown in Table 4. There are many null values, 
most of which are very low values approximated by zero, showing a relationship between the features and the 
labels under analysis. Bigger values (close to one), show that there is no relationship between the column and 
the analyzed label.

Construction of the models
The models were built based on the classifiers Naive Bayes14, Random Forest14 and XGBoost15. The choice of these 
three models was based on the differences between the algorithms of the models, with Naive Bayes being the 
most elementary, based solely on probabilities. The Random Forest and XGBoost algorithms, on the other hand, 
are more complex and showed good results in initial tests conducted by us. Both are based on decision tree 
concepts, with the difference that the former trains multiple trees in parallel and the latter processes in series, 
with a greater focus on correcting the wrong predictions of the previous tree.

The training is performed with the training set and the validation with the test set. The output variables were 
generated before training the models, being death by cancer (0 = survival and 1 = death by cancer), all-cause 
mortality (0 = survival and 1 = death by any reason), alive in the first year (0 = death in less than 1 year and 
1 = survival), alive in the third year (0 = death in less than 3 years and 1 = survival), and alive in the fifth year 
(0 = death in less than 5 years and 1 = survival). All categorical variables were converted to numeric values. After 
that, all variables were normalized to have mean zero and variance one.

The Naive Bayes is a statistical model based on Bayes’ Theorem and uses as a principle the independence 
between the variables of the  problem16. Random Forest uses several decision trees to perform the classification 
with the bagging method, which uses the random selection of features and voting to combine the results of the 
parallel trees and generate the  classification17. XGBoost combines the methods bagging and boosting, the latter 
uses decision tree classifiers in series, so each subsequent tree is trained using the errors of the previous one, 
ultimately forming a model stronger and more accurate for  classification18.

Table 4.  p‑values of the columns used in the models, based on the chi-square test. The independence of the 
input variables with the output of each of the studies was analyzed using the chi-squared test, and all the shown 
features were included in the analyses conducted.

p-value Cancer specific Overall One-year Three-year Five-year

IDADE 2.06 e−1 0.00 0.00 0.00 0.00

SEXO 7.10 e−6 0.00 1.85 e−2 3.36 e−9 5.77 e−9

IBGE 4.43 e−2 1.61 e−2 3.96 e−3 9.95 e−1 1.00

CATEATEND 0.00 0.00 0.00 0.00 0.00

DIAGPREV 0.00 0.00 5.36 e−8 2.21 e−1 0.00

EC 0.00 0.00 0.00 0.00 0.00

TRATHOSP 0.00 0.00 0.00 0.00 0.00

NENHUM 1.75 e−3 2.86 e−3 8.92 e−6 7.82 e−9 2.41 e−5

CIRURGIA 0.00 0.00 0.00 0.00 0.00

RADIO 0.00 0.00 0.00 0.00 2.19 e−1

QUIMIO 0.00 0.00 0.00 7.84 e−9 2.17 e−3

HORMONIO 8.09 e−1 8.64 e−1 4.11 e−9 7.35 e−10 1.77 e−7

TMO 7.05 e−1 6.41 e−1 8.29 e−1 5.12 e−1 2.53 e−1

IMUNO 7.39 e−1 9.60 e−1 6.87 e−1 1.23 e−1 3.21 e−2

OUTROS 0.00 7.38 e−1 6.25 e−6 0.00 0.00

NENHUMANT 7.48 e−1 2.77 e−1 9.62 e−1 9.53 e−1 6.53 e−1

CONSDIAG 1.00 1.00 1.00 1.00 1.00

TRATCONS 1.00 1.00 1.00 1.00 1.00

DIAGT RAT 1.00 1.00 1.00 1.00 1.00

ANODIAG 0.00 0.00 0.00 0.00 0.00

DRS 0.00 0.00 0.00 0.00 0.00

RRAS 0.00 0.00 0.00 0.00 0.00

RECNENHUM 0.00 0.00 0.00 0.00 3.45 e−6

IBGEATEN 0.00 0.00 0.00 0.00 0.00

ESCOLARI2 0.00 0.00 0.00 3.75 e−1 9.94 e−1
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The three models have a binary output, 0 and 1, which represents that the probability of survival of the patient, 
depending on the output under analysis, is lower or greater than 0.5 and were used to obtain a comparison 
between different approaches in training.

The validation was done with the confusion matrix of the test set, to verify the performance and generalization 
of the models in each prediction class. The ROC curves were constructed for the training and test sets, using the 
AUC metric to evaluate the performance of the models.

Ethical considerations
Following the Lei Geral de Proteção de Dados Pessoais (LGPD) of Law No. 13,709, August 14, 2018, Section II—
Processing of Sensitive Personal Data, as it is a search with a secondary database, of public access, not containing 
personal data of the patients, the opinion of the Research Ethics Committee was waived.

Data availability
The raw database, with all types of cancer, are available in the FOSP websi te. The datasets generated and analysed, 
and the notebooks developed during the current study are available in the GitHu b repos itory.
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