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Continuous cuffless blood 
pressure monitoring using 
photoplethysmography‑based 
PPG2BP‑net for high intrasubject 
blood pressure variations
Jingon Joung 1*, Chul‑Woo Jung 2, Hyung‑Chul Lee 2, Moon‑Jung Chae 3, Hae‑Sung Kim 3, 
Jonghun Park 3, Won‑Yong Shin 4,5, Changhyun Kim 6, Minhyung Lee 6 & Changwoo Choi 6*

Continuous, comfortable, convenient (C3), and accurate blood pressure (BP) measurement and 
monitoring are needed for early diagnosis of various cardiovascular diseases. To supplement the 
limited C3 BP measurement of existing cuff‑based BP technologies, though they may achieve reliable 
accuracy, cuffless BP measurement technologies, such as pulse transit/arrival time, pulse wave 
analysis, and image processing, have been studied to obtain C3 BP measurement. One of the recent 
cuffless BP measurement technologies, innovative machine‑learning and artificial intelligence‑based 
technologies that can estimate BP by extracting BP‑related features from photoplethysmography 
(PPG)‑based waveforms have attracted interdisciplinary attention of the medical and computer 
scientists owing to their handiness and effectiveness for both C3 and accurate, i.e., C3A, BP 
measurement. However, C3A BP measurement remains still unattainable because the accuracy of 
the existing PPG‑based BP methods was not sufficiently justified for subject-independent and highly 
varying BP, which is a typical case in practice. To circumvent this issue, a novel convolutional neural 
network(CNN)‑ and calibration‑based model (PPG2BP‑Net) was designed by using a comparative 
paired one‑dimensional CNN structure to estimate highly varying intrasubject BP. To this end, 
approximately 70% , 20% , and 10% of 4185 cleaned, independent subjects from 25,779 surgical cases 
were used for training, validating, and testing the proposed PPG2BP‑Net, respectively and exclusively 
(i.e., subject‑independent modelling). For quantifying the intrasubject BP variation from an initial 
calibration BP, a novel ‘standard deviation of subject‑calibration centring (SDS)’ metric is proposed 
wherein high SDS represents high intrasubject BP variation from the calibration BP and vice versa. 
PPG2BP‑Net achieved accurately estimated systolic and diastolic BP values despite high intrasubject 
variability. In 629‑subject data acquired after 20 minutes following the A‑line (arterial line) insertion, 
low error mean and standard deviation of 0.209± 7.509 and 0.150± 4.549 mmHg for highly varying 
A‑line systolic and diastolic BP values, respectively, where their SDSs are 15.375 and 8.745. This study 
moves one step forward in developing the C3A cuffless BP estimation devices that enable the push and 
agile pull services.

Accurate and continuous self-monitoring of blood pressure (BP) is essential for healthy living, and cuff-based 
manometry has been widely employed to monitor cardiovascular status. However, cuff-based BP measurement 
could be inaccurate even in the clinic owing to sporadic phenomena (e.g., white-coat hypertension [hyperten-
sion only at office], masked hypertension [no hypertension at office]). The cuff-based BP measurements are 
widely used (e.g., office, home, and ambulatory BP measurements), but typically measure discontinuous BP 
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accurately only when the BP is stable, and are sensitive to the cuff size and position. Patients desire continuous, 
comfortable, convenient (C3), and accurate (C3A) methods to measure and monitor their BP for early diagnosis 
of various cardiovascular diseases. Thus, a noninvasive technique to capture BP-related bio-waveforms seemed 
desirable, and motivated the rapid development of cuffless BP estimation and monitoring systems. Since 1896, 
enormous home healthcare applications have emerged from the ‘Riva Rocci mercury sphygmomanometer’ to 
the cuffless BP measurement systems, using ‘smart’ devices, such as a  phone1,  watch2, and wristlet,3,4; however, 
sufficient accuracy is not  guaranteed1,3, and comfortable and convenient measurement is restricted owing to the 
18 required  sensors4. Thus, continuous and accurate self-measurement of existing BP (cuffless and noninvasive) 
remains a challenging  task2.

From the seminal  work5 in 2003, the potential capability of photoplethysmography (PPG)-based BP estima-
tion has been increasingly revealed. As one of the pulse wave analysis methods, since a PPG signal can be readily 
obtained from a single light portable and wearable body sensor, e.g., a  ring6,7, the PPG-based method is relevant 
for C3 BP measurement compared to the pulse transit/arrival time-based methods that typically require multiple 
electrocardiogram (ECG) and/or PPG  sensors8. The PPG signals were successfully used to estimate systolic BP 
(SBP) of patients undergoing surgery (i.e., relaxed C3 conditions) along with the ECG signals based on the pulse 
arrival  time9,10. Curve-fitting BP model parameters from PPG-extracted variables were initially used to estimate 
BP,3 and the feasibility was verified based on morphologic correlation between BP and PPG  waveforms11–13.

Moreover, PPG waveforms have been successfully used to detect atrial  fibrillation6,7. However, direct estima-
tion of the BP from volatile PPG waveforms that are vulnerable to various interventions, such as physical exercise, 
posture, Valsalva manoeuvre, cold pressure, mental arithmetic, relaxation, amyl nitrate, anaesthesia, isometric 
exercise, and sustained  handgrip14, remains a considerable task. Various non-parametric learning methods have 
been extensively applied to PPG-based BP  estimation15. A plethora of innovative machine learning and artificial 
intelligence technologies can extract BP-related features from PPG  waveforms8,16, e.g., deep belief network-
restricted Boltzmann machines (DBN-RBM)17, artificial neural networks (ANN)18, support vector regression 
(SVR)19–25, decision tree regression (DTR)23,24, random forest regression (RFR)24–26, adaptive boosting regression 
(AdaboostR)24, convolutional neural network (CNN)27, CNN long short-term memory (CNN-LSTM)28, long-
term recurrent convolutional network (LRCN)29, receptive field parallel attention shrinkage network (RFPASN)30, 
and concatenated CNN (Concat-CNN)31. The  part18,19,27–31 of them fulfills the Association for the Advance of 
Medical Instrumentation (AAMI) standard successfully. However, since the previous  methods22,23,25,28–31 were 
modeled and evaluated ‘subject-dependently,’ C3A BP measurement may not be guaranteed for highly variable 
inter-subject BP. Furthermore, the  study27 was validated with relatively low intrasubject BP deviation, and some 
 studies17–20,22–26,28,31 used insufficient training and validation subjects which may mislead the BP estimation, 
resulting in nonfulfillment of the  AAMI17,20,22,24,26 (please refer to Table 3 for the details).

This study was conducted to evaluate a learning-based cuffless BP estimation system with calibration in chal-
lenging circumstances (i.e., highly varying intrasubject BP; Fig. 1). Here, we design a novel one-dimensional CNN 
(1D-CNN)-based network (‘PPG2BP-Net’) that can efficiently extract BP from PPG signals using a compara-
tive paired 1D-CNN structure with calibration. Here, the calibration is required to improve the BP estimation 
 accuracy8. To effectively train the designed PPG2BP-Net, the modelling data were preprocessed through: (i) 
abnormal surgical case elimination, (ii) downsampling and segmentation, (iii) abnormal segment elimination, 
(iv) normalization, and (v) balancing the number of segments. Throughout the preprocessing, 4185 clean sub-
jects of the 4221 clean cases were obtained from 25, 779 surgical cases. From the 4185 clean subjects with A-line 
(arterial line) BP (ABP) waveforms, 2987 training ( ∼ 70% ) and 410 validation ( ∼ 10% ) subjects are randomly 
selected for the designed PPG2BP-Net to estimate the SBP and diastolic BP (DBP). From training and validation 
sets with a sufficient number of subjects, the PPG2BP-Net can overcome the limitation of possible misleading 
BP estimation. For the holdout validation, the PPG2BP-Net used the exclusively separated 797 test subjects 
( ∼ 20% ) from the 4185 subjects. The comparative study with subject-independent modelling verified that the 

Figure 1.  The proposed data preprocessing and PPG2BP-Net models for cuffless BP estimation.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8605  | https://doi.org/10.1038/s41598-023-35492-y

www.nature.com/scientificreports/

proposed PPG2BP-Net cuffless BP estimation system achieves considerably accurate SBP and DBP estimated 
values that completely fulfil the AAMI standard and attain Grade A British Hypertension Society (BHS) standard. 
For example, by testing 629 test subjects acquired after 20 minutes from the A-line insertion, the obtained mean 
error (ME) and standard deviation (SD) of estimated BP error are 0.209± 7.509 and 0.150± 4.549 mmHg for 
highly varying A-line SBP and DBP, respectively. From the observation that the conventional SD metric is relevant 
merely for calibration-free BP estimator’s performance evaluation, a novel ‘SD of subject-calibration centring 
(SDS)’ metric was proposed to quantify the intrasubject BP variation from an initially calibrated BP. Using the 
novel SDS metric, we can circumvent two potential practical issues in the design of calibration-based BP estima-
tor: a nonregenerative issue, wherein a well-designed calibration-based BP estimator for high SD BP does not 
guarantee high performance for estimating high SDS BP with high intrasubject variability; and an overqualified 
issue, wherein the BP estimation performance is overqualified owing to the ambiguity of the conventional SD 
metric that does not clearly capture the intrasubject BP deviation.

In summary, the proposed PPG2BP-Net is modelled and evaluated with data from a sufficient sample (4185 
subjects) with highly varying intrasubject BP and fulfils the AAMI and BHS standards. We surmise that the 
cuffless BP monitor based on the proposed PPG2BP-Net can provide a robust solution to measure varying BP 
accurately in new daily users as the proposed subject-independent approach is regenerative for a new subject. The 
cuffless BP measurement is tractable and enables 24-hour continuous measurement, BP variability assessment, 
and nocturnal BP monitoring during sleep. Therefore, the proposed PPG2BP-Net-based cuffless BP measurement 
has high potential to improve hypertension awareness, treatment, and management to enable early prediction 
of cardiovascular events. This study provides a prospect of the C3A cuffless BP estimation devices and their 
potential services.

Results
Characteristics of dataset. Raw, vital waveforms of 25,  779 surgical cases were acquired intraopera-
tively from Seoul National University Hospital (SNUH) between 2016 and 2019 for 4  years32 and included adult 
patients (age 18–90 years) for whom ABP was monitored intraoperatively. Among them, 4185 clean, independ-
ent subjects of the cleaned 4221 cases were enrolled (Fig. 1) through raw data preprocessing: (i) abnormal surgi-
cal case elimination, (ii) downsampling and segmentation, (iii) abnormal segment elimination, (iv) normaliza-
tion, and (v) balancing the number of segments. These 4185 clean subjects were stratified as 2978, 410, and 797 
subjects for training, validation, and test (approximately 70% , 10% , and 20% of the 4185 subjects), respectively.

The characteristics of the cleaned subjects are summarized in Table 1. The mean and SD of the A-line SBP 
and DBP of 2987, 410, and 797 training, validation, and test subjects were 111.84± 17.68 and 61.61± 11.04 , 
111.55± 17.31 and 61.76± 10.80 , 112.07± 17.18 and 61.72± 10.92 mmHg , respectively. Three subsets of a 
‘Whole’ set (the whole 797 test subjects) were constructed for a reliable test. The first subset (‘ABP-20m’) includes 
subjects with more than ten segments collected after 20 minutes from A-line insertion based on the rationale that 
ABP waveforms are probably unreliable for approximately 20 minutes following A-line insertion and ABP meas-
urement. The second subset (‘NIBP-c’) accepts only segments with an average A-line SBP/DBP and noninvasive 
BP (NIBP) difference of ≤ 10 mmHg in 45 seconds (considering the cuff-measurement time) to eliminate abnor-
mal test subjects with segments that had deteriorated by intra-measurement zeroing and transducer issues. The 
third subset (‘ABP &NIBP’) is an intersection of ABP-20m and NIBP-c. The ABP-20m, NIBP-c, and ABP &NIBP 
subsets included 629, 104, and 86 subjects, respectively (mean±SD values: 110.94± 16.26 , 108.67± 14.74 , and 
108.22± 14.70 mmHg for SBP and 60.65± 10.14 , 59.70± 9.45 , and 58.45± 8.10 mmHg for DBP, respectively). 
The age distributions of training, validation, Whole, ABP-20m, NIBP-c, and ABP &NIBP sets are 53.35± 14.86 , 
53.99± 14.57 , 54.33± 14.31 , 54.67± 14.74 , 54.33± 14.72 , and 54.71± 15.45 years, respectively.

Table 1.  Characteristics of the subject data that were analyzed in this study. ‘Whole set’ includes whole 797 
test subjects; ‘ABP-20m set’ includes subjects with more than ten segments collected after 20 minutes from 
A-line insertion; ‘NIBP-c set’ accepts only segments with an average A-line SBP/DBP and noninvasive BP 
(NIBP) difference of ≤ 10 mmHg in 45 seconds; and ‘ABP &NIBP set’ is an intersection of ABP-20m and 
NIBP-c sets.

Characteristics of dataset

Total number of subjects used in this study: 4185

Training set Validation set

Test sets

Whole set ABP-20m set NIBP-c set ABP &NIBP set

Number of surgical cases 3014 410 797 629 104 86

Number of subjects 2978 410 797 629 104 86

Number of segments 229, 323 31, 152 60, 060 29, 338 7748 3712

SBP
mean±SDmmHg 111.84± 17.68 111.55± 17.31 112.07± 17.18 110.94± 16.26 108.67± 14.74 108.22± 14.70

SDSmmHg 19.750 19.157 19.807 15.375 19.577 15.107

DBP
mean±SDmmHg 61.61± 11.04 61.76± 10.80 61.72± 10.92 60.65± 10.14 59.70± 9.45 58.45± 8.10

SDSmmHg 11.748 12.126 11.627 8.745 10.566 7.831

Age (mean±SDyears) 53.35± 14.86 53.99± 14.57 54.33± 14.31 54.67± 14.69 54.33± 14.72 54.71± 15.45

Gender (Male/Female) 1410/1604 178/232 367/430 293/336 51/53 44/42
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A novel metric, an SD of subject-calibration centring (SDS), was defined and measured to capture the intrasu-
bject ABP variation level. The SDS is the SD of the ABP after the person-mean centring  procedure33, where an 
initial ‘calibration’ value for each subject is used instead of the ‘mean’ value and can capture the intra-individual 
deviation. Therefore, this new metric can be interpreted as a design difficulty level of a calibration-based cuf-
fless BP estimation model. The SDSs of the training SBP and DBP used in the experiment are 19.750 and 
11.748 mmHg , respectively, indicating high intrasubject BP variation from an initial BP calibration. From the 
high SDS values of the validation SBP and DBP (19.157 and 12.126 mmHg , respectively), there is clearly high 
intrasubject BP variability from an initial BP calibration. In the test set, A-line SBP and DBP waveforms showed 
high intrasubject variation as verified by the high SDS values (19.807 and 11.627 mmHg for SBP and DBP, respec-
tively). The SDS values of the ABP-20m, NIBP-c, and ABP &NIBP subsets were 15.375, 19.577, and 15.107 mmHg 
for SBP and 8.745, 10.667, and 7.831 mmHg for DBP, respectively. Thus, the SDS values in our results are large 
enough to validate the accuracy of PPG2BP-Net with high intrasubject BP variability.

Performance of the proposed PPG2BP‑Net‑based cuffless BP estimation. The PPG2BP-Net 
modelled by a subject-independent method was trained with 2987 subjects. A sufficient number of training 
and test subjects can circumvent misleading results in the holdout validation. After training completion, the 
estimation accuracies of the ME, SD of error, and mean absolute error (MAE) off 797 Whole, 629 ABP-20m, 104 
NIBP-c, and 86 ABP &NIBP test subjects were evaluated (Table 2). Compared to the AAMI standard, the test 
subsets fulfil all requirements (i.e., the test sample size needs to be ≥ 85 ; ME should be ≤ ±5 mmHg ; and SD 
of error should be ≤ 8 mmHg ), except for Whole and NIBP-c sets whose SDs of estimated SBP error are 10.263 
and 9.807 mmHg , respectively. The results with test subjects acquired after 20 minutes from A-line insertion 
and ABP monitoring (ABP-20m and ABP &NIBP sets) revealed that PPG2BP-Net performance thoroughly met 
the AAMI standard. The ME and SD of error (ME±SD) between the ground-truth A-line SBP and its estimated 
values obtained via the proposed PPG2BP-Net with ABP-20m and ABP &NIBP test subjects are 0.209± 7.509 
and 0.977± 6.969 mmHg , respectively, and the estimated DBP are 0.150± 4.549 and 0.519± 4.379 mmHg , 
respectively. Of note, the PPG2BP-Net tested with an ABP &NIBP set achieved Grade A BHS standard for all 
categories with complete agreement with the AAMI standard. The grades based on the BHS standard based on 
the error percentage are as follows: if 60% , 50% , and 40% of errors ≤ 5 mmHg , then grades A, B, and C are given, 
respectively; if 85% , 75% , and 65% of errors ≤ 10 mmHg , then grades A, B, and C, are given, respectively; and 
if 95% , 90% , and 85% of errors ≤ 15 mmHg , then grades A, B, and C, are given, respectively. Noting that the 
SDS values of the Whole and NIBP-c sets are excessively larger than others (Table 1), we discern the rationale 
of SBP’s higher SD of error than that of DBP and that SBP estimation is more challenging than DBP estimation, 
which was further verified from the BHS standard, where grade A is obtained for whole DBP error distribution, 
but only for parts of the SBP error categories. From tables 1 and 2, we surmise that the proposed PPG2BP-Net 
would be a guideline for designing the C3A cuffless BP-estimation devices for accurate BP estimation from 
newly measured actual PPG data.

Comparative study. In Table  3, the various PPG-based BP estimation systems were compared to the 
proposed PPG2BP-Net. The table includes the learning models, experimental methods, data source, number 
of subjects in training and validation(test) sets, and the BP-estimation accuracy. As shown in Table 3, earlier 
 studies17,24,26 did not fulfil the AAMI requirements. Some  studies18,19 in 2016 met AAMI standard, yet similar 
performance was doubtable for exclusively acquired actual PPG data of a new subject because the number of 

Table 2.  BP estimation accuracy of the proposed PPG2BP-Net. Estimation was based on i) AAMI standard: 
The number of test subjects needs to be ≥ 85 , the ME should be ≤ ±5 mmHg , and the SD of error should 
be ≤ 8 mmHg ; and ii) BHS standard: The grades based on the BHS standard are given based on the error 
percentage as follows: if 60% , 50% , and 40% of errors ≤ 5 mmHg , then grades A, B, and C are given, 
respectively; if 85% , 75% , and 65% of errors ≤ 10 mmHg , then grades A, B, and C, are given, respectively; if 
95% , 90% , and 85% of errors ≤ 15 mmHg , then grades A, B, and C, are given, respectively.

Error AAMI and BHS standards Whole set (797 subjects) ABP-20m set (629 subjects) NIBP-c set (104 subjects)
ABP &NIBP set (86 
subjects)

SBP error

ME −0.231 0.209 −0.415 0.977

SD of error 10.263 7.509 9.807 6.969

MAE 7.991 5.525 7.752 5.238

≤ 5 mmHg 39.2% [D] 57.8% [B] 39.5% [D] 60.0% [A]

≤ 10 mmHg 69.4% [C] 84.2% [B] 70.5% [C] 85.9% [A]

≤ 15 mmHg 86.4% [C] 94.6% [B] 88.2% [C] 95.6% [A]

DBP error

ME 0.062 0.150 0.699 0.519

SD of error 6.252 4.549 5.662 4.379

MAE 4.789 3.282 4.361 3.183

≤ 5 mmHg 61.7% [A] 78.7% [A] 65.8% [A] 78.0% [A]

≤ 10 mmHg 89.3% [A] 95.4% [A] 91.3% [A] 96.6% [A]

≤ 15 mmHg 97.6% [A] 99.1% [A] 98.3% [A] 99.2% [A]
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subjects involved in the training and validation was the minimal number ( < 100 ) of subjects. Recent  studies29,30, 
between 2021 and 2022, used approximately 1600 subjects, but do not guarantee satisfactory performance with 
the exclusively measured actual PPG data as the learning systems were modelled and validated through a sub-
ject-dependent method. Other recent BP estimation  systems28,31 were verified by the holdout validation and 
fulfilled the AAMI requirements, yet accurate BP estimation from exclusively measured actual PPG data would 
not be guaranteed owing to the lack of subjects used in the training and validation (i.e., 140 and 20 subjects, 
respectively). A CNN-based  scheme27 with 1620 subjects from Multiparameter Intelligent Monitoring in Inten-
sive Care (MIMIC) II dataset with subject-independent modelling and experiment is comparable to our scheme, 
though their estimation performance was slightly worse than ours despite a smaller sample. Furthermore, the 

Table 3.  Performance comparison among various learning- and PPG-based cuffless BP estimation systems 
based on the AAMI standard. The highlights in bold represent a subject-dependent modeling and the violation 
of the AAMI standard.

Learning 
algorithms for 
BP estimation

Modeling & 
experiment Data Source

Number of 
training subjects Number of validation / test subjects SBP error ( mmHg) DBP error ( mmHg)

Subject exclusive from training subjects ME SD of error ME SD of error

13’DBN-RBM17 Subject-inde-
pendent In-house 525 0 / 47 (holdout) −2.98 19.35 −3.65 8.69

16’ANN18 Subject-
dependent MIMIC II 70% of 69 15% / 15% of 69 (holdout) 0.06 7.08 0.01 4.66

16’SVR19 Subject-
dependent In-house 32 10-fold validation 4.77 7.68 3.67 5.69

16’SVR20 Subject-
dependent In-house 65 10-fold validation 5.1 4.3 4.6 4.3

19’DTR24

Subject-
dependent MIMIC II at least 441 10-fold validation

0.021 18.543 −0.247 6.736

19’SVR24 −0.903 16.717 −0.655 7.506

19’RFR24 0.155 10.683 0.196 4.731

19’AdaboostR24 −0.050 8.901 0.187 4.173

19’RFR26 Subject-inde-
pendent In-house

< 50 yr

418 SBP< 120 mmHg

leave one out 
validation

6.3 7.2 3.6 6.7

257 120 ≤ SBP ≤ 139 mmHg −3.9 7.2 −2.4 7.3

64 SBP≥ 140 mmHg −20.2 14.2 −10 11.7

≥ 50 yr

364 SBP< 120 mmHg 12.8 9 4.2 7.0

574 120 ≤ SBP ≤ 139 mmHg 0.5 8.2 0.5 7.8

402 SBP≥ 140 mmHg −14.6 11.5 −2.9 8.9

20’CNN-LSTM28 Subject-
dependent MIMIC II 140 20 / 40 (holdout) 1.91 5.55 0.67 2.84

20’LRCN29 Subject-
dependent UCI DB 1557 10-fold validation 1.55 5.41 −1.25 5.65

21’CNN27 Subject-inde-
pendent UCI DB 1620 10-fold validation 1.64 7.42 −0.28 5.81

22’RFPASN30 Subject-
dependent MIMIC II 1562 10-fold validation 0.0086 3.2865 −0.0492 2.4002

22’Concat-
CNN31

Subject-
dependent MIMIC-II 140 20 / 40 (holdout) −0.15 5.26 −0.29 2.60

CNN-based 
PPG2BP-Net 
(Proposed)

Subject-inde-
pendent

In-house (opera-
tion room) 2987

410 / 797 (whole: holdout) −0.231 10.263 0.062 6.252

410 / 629 (ABP-20m: holdout) 0.209 7.509 0.150 4.549

410 / 104 (NIBP-c: holdout) −0.415 9.807 0.699 5.662

410 / 86 (ABP &NIBP: holdout) 0.977 6.969 0.519 4.379

Table 4.  Characteristics of the subject data in the UCI DB from the MIMIC II dataset (i.e., dataset used in 
21’CNN27) after the preprocessing shown in Fig. 1.

Characteristics of dataset UCI DB from MIMIC II

Number of surgical cases 2958

Number of subjects 2958

Number of segments 77,418

SBP
mean ± SDmmHg 128.61± 20.3

SDSmmHg 7.509

DBP
mean ± SDmmHg 66.16± 10.1

SDSmmHg 4.127
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intrasubject ABP deviation is relatively low (Table 4). The SDS values of University of California, Irvine (UCI) 
database (DB) from MIMIC II dataset are analysed after the same data preprocessing as that in this study. When 
compared to the SDS values of the dataset used in this study ( 19.750 mmHg and 11.748 mmHg for SBP and DBP, 
respectively; Table 1), the SDS values of UCI DB from the MIMIC II dataset are considerably low (i.e., 7.509 
and 4.127 mmHg ). The low SDS values represent the low variation of BP within a subject, which may cause a 
nonregenerative issue for estimating highly varying intrasubject BP, and because the SD of error becomes iden-
tical to the SDS value if the estimated BPs are intentionally/accidently set to the calibration BP without actual 
estimation, then the AAMI standard (SD of error ≤ 8 mmHg ) is always fulfilled if the SDS ≤ 8 mmHg , i.e., an 
overqualified issue.

Discussion
To precisely design a learning-based BP estimation model such that its estimation accuracy obtained during the 
test is sustained after being built upon a practical cuffless BP monitoring system (i.e., for the model-generation 
capability), the following delicate yet realistic experimental principles are applicable: i) the number of subjects 
should be sufficiently large, ii) subject independent training and test datasets are required, and iii) the intrasubject 
BP variation should be carefully scrutinized in the model design.

First, for a new subject, the PPG-based BP estimation accuracy can be improved as the number of subjects 
used in the modelling increases, because the model can learn PPG features that dynamically change according 
to the BP variation. In many previous studies on learning-based cuffless BP estimation, the PPG waveforms 
were acquired from the MIMIC II  database18,21,24,27–31. Recently, the training subject number has increased to 
≥ 1000 (e.g., 1557, 1562, and 1620 in the training of  LRCN29,  RFPASN30, and  CNN27, respectively). Conversely, 
the datasets can be acquired for specific studies of the learning systems (e.g., the Critical Care Department and 
the Post-Anesthesia Care Unit of Vall d’Hebron University Hospital in Barcelona,  Spain17, the University of 
Queensland Vital Signs  Dataset19, the Tsinghua  University20, Royal Adelaide  Hospital22,23, and Suzhou Hospital 
of Nanjing Medical  University26). However, the number of subjects in the in-house dataset was generally smaller 
(i.e., < 1000 ) than that acquired from MIMIC II. In this study, we used 2987 subjects, cleaned from the raw, vital 
waveforms of 25, 779 surgical cases acquired by  SNUH32.

Second, if the PPG samples from an identical subject are used for both the training and test datasets, the model 
would be overfitted to the subject, and to prevent overfitting in the model generation, a subject-independent 
dataset is needed (i.e., the training and test datasets should be structured from different subjects). Further, a 
widely used non-exhaustive cross-validation strategy, i.e., a ‘holdout’ method, was employed for the validation 
and test, and this strategy randomly divides the original data into the training and test sets (a.k.a., a holdback 
set): commonly 80% and 20% , respectively. Contrary to a k-fold validation strategy that tests multiple times and 
averages the test results, the holdout method involves a single validation (test), which may mislead the evaluation 
result. Thus, the holdout strategy is relevant only when the samples in the training dataset is sufficient to avoid 
misleading results. Conversely, if the number of PPG datasets is sufficient, then the learning-based BP estimation 
systems tested by the fully independent validation data can accurately estimate BP from the exclusively measured 
and never-seen actual PPG data with a higher probability. Accordingly, the fidelity of the BP estimation with 
currently measured PPG can be improved by a learning-based BP estimation system certified through a ‘holdout’ 
method with the ‘sufficient number of subjects’.

Third, for a calibration-based BP estimation model, accuracy performance could be overqualified if the 
intrasubject BP variation is low. Moreover, a learning model could be nonregenerative if it is strongly biased to 
the BP calibration even when trained and validated with highly varying inter-subject BP (i.e., subject-depend-
ent). Thus, a reliable calibration-based cuffless BP estimation is not necessarily guaranteed for a new subject 
with highly varying BP. To circumvent the overqualified and nonregenerative issues, the proposed novel metric 
(i.e., SDS) can be used to validate the accuracy of a subject’s calibration-based highly varying BP estimation. 
Note that the typical SD metric can characterize cardiovascular dynamics among subjects, yet cannot capture 
the intra-individual deviation to validate the calibration-based cuffless BP estimation. In addition, there exists 
ambiguity on the subject-wise SD metric to validate the calibration-based BP estimation model. However, the 
proposed novel SDS values metaphorically represent the inter-subject ABP deviation from the initial calibration 
BP. Therefore, the high value of an SDS metric implies that the ABP estimation is more challenging because the 
initially calibrated ABP is used for the estimation of the highly varying target BP which has high discrepancy 
to the initial calibration value. Furthermore, the high deviation of ABP within a subject is implicitly dissolved 
into the SDS metric. In the final analysis, the SD metric is relevant merely for the calibration-free BP estimator’s 
performance evaluation, and not for the calibration-based BP estimator. In contrast, the proposed SDS metric 
can be used to quantify the performance of a subject’s calibration-based highly variable BP estimation.

Methods
Approval for data collection using vital recorder. The data collection of the  VitalDB34 dataset has 
been approved by the institutional review board (IRB) of SNUH (IRB no. 1408-101-605), and the construc-
tion of the data repository was registered at a publicly accessible clinical trial registration site (ClinicalTrial.
gov, NCT02914444). The retrospective analysis of the registry was approved by the SNUH IRB (no. 2004-120-
1118). We confirm that this research has been performed in accordance with the following three guidelines: i) 
STROBE(STrengthening the Reporting of OBservational studies in Epidemiology) guidelines; ii) Guidelines for 
developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view; 
and iii) Declaration of Helsinki ethical principles for medical research involving human subjects. This study was 
exempted by IRB of SNUH (IRB no. 1408-101-605) from the requirement of informed consent from the patient 
due to the retrospective study design.
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The vital waveforms to build a BP estimation system in this study include not only the ABP and PPG wave-
forms measured by TramRac-4A (GE Healthcare) but also the ABP- and NIBP-SBP/DBP waveforms measured 
by Solar 8000M (GE Healthcare). Anaesthesia-related information was collected by Primus (Dräger) 
and Orchestra (Fresenius Kabi) to extract the ABP, NIBP, and PPG data after anaesthetization and before 
the surgery. A Vital Recorder32 aggregated the measured raw data as either a waveform with a sampling 
frequency of 500 Hz or a numeric. Moreover, demographic information, such as age, height, and weight of the 
subjects in the surgical cases, was recorded to check the fidelity of the acquired data.

SDS metric calculation. There is ambiguity on the subject-wise SD metric to validate the calibration-based 
BP estimation model, as we can see by comparing the extreme cases as illustrated in Fig. 2: Case (A) represents 
high BP deviation across the subjects yet low deviation within a subject. Case (B) represents high BP deviation 
across the subjects as well as within a subject. To eliminate the ambiguity on the subject-wise SD by quantita-
tively measuring the intrasubject BP variation, a subject-calibration centring ABP was defined as follows:

where xi,n denotes the nth segment ABP of subject i and xi,c is the ABP used for the calibration of subject i. 
Comparing to a conventional SD metric, the SDS metric of ABP is then defined as follows:

where Ni is the number of segments of subject i. Here, x̄ and s̄ are the mean values of xi,n and si,n , respectively, 
for all subject i’s and segment n’s, which are obtained as follows:

Data preprocessing. The details of data preprocessing are depicted in Fig. 3.
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Figure 2.  The SD and SDS of BP dynamics. Case (A) represents high BP deviation across the subjects, but with 
low intrasubject deviation. Case (B) represents high BP deviation both across and within subjects. SD does not 
distinguish between cases (A) and (B), whereas SDS can clearly distinguish these cases.
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Abnormal surgical case elimination. During the data acquisition, the additive thermal noise was precancelled 
through a filter in the data acquisition devices introduced in ‘Approval for data collection using vital recorder’ 
subsection. However, abnormal and redundant data could be blended into the raw data (e.g., outlier data from 
subjects in exceptional conditions and almost identical ABP and PPG data). As the unreliable raw data hindered 
our PPG2BP-Net from learning effectively, the raw data cleaning-and-preprocessing procedure is essentially 
required to build an effective and efficient learning-based BP estimation system. Further, to reject the abnormal 
cases from the raw ABP and PPG datasets, as the first step, Conditions T1 and T2 for the clean (reliable) cases 
are considered as follows: 

T1: The condition of cases should be unexceptional such that 10 ≤ weight ≤ 100 kg , 100 ≤ height ≤ 200 cm , 
18 ≤ age ≤ 100 years , and nonpregnant;
T2: Essential information (e.g., operation time log, PPG, and ABP) should be included.

If any of the criteria in Conditions T1 and T2 is violated, then the corresponding case is eliminated because 
the exceptional cases, e.g., weight< 10 kg or height< 100 cm , are sparse and unreliable, resulting in inefficient 
training. Throughout this step, 469 and 8040 abnormal surgical cases were eliminated based on T1 and T2, 
respectively, and 17, 271 clean cases were obtained. Here, the T2 violation was mainly caused by null data with 
no wearing a PPG or ABP device.

Downsampling and segmentation. As the size of the data sequence increases, the training complexity also 
increases. Moreover, since the training performance depends on the training data size, an appropriate size of 
data should be designed. Thus, after the elimination of the abnormal cases, the 500 Hz-sampled ABP and PPG 
data of the remaining cleaned subjects are downsampled and segmented to train the designed PPG2BP-Net 
efficiently. Concretely, the 500 Hz-sampled data are downsampled with 50 Hz and then segmented into multiple 
segments, each comprising 500 points (i.e., the 10-second data per segment). Consider the following example: 
an 8-seconds length segment was used to design  ANN18 and LRCN,29 and a 10-seconds length segment, referred 
to as a frame, was used to design SVR.19 The non-overlapped segmentation was performed to maximize the 
information in the collected data.

Abnormal segment elimination. In this step, the abnormal PPG and ABP segments (caused by movement arti-
fact, not wearing a PPG or ABP device, and so forth) and sparse case segments (e.g., SBP> 180 mmHg ) are 
eliminated because they decrease BP estimation accuracy and make training inefficient. Segments with invalid 
pulse rate, abnormal SBP/DBP fluctuation or irregular pulse are excluded. The additional clean segment condi-
tions (i.e., Conditions T3 and T4) are as follows: 

Figure 3.  Data preparation for PPG2BP-Net training and validation. From the ABP and PPG raw data of 
25, 779 surgical cases, cleaned and independent data for 4185 subjects of 4221 surgical cases were obtained.
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T3: PPG & ABP segments should include only valid data: no null value and at least one non-zero data;
T4: ABP segments of typical SBP: 70 ≤ average SBP ≤ 180 mmHg.

If any of the criteria in Conditions T3 and T4 is violated, then the corresponding segment is eliminated from the 
subject. Similarly, the abnormal segments are eliminated from all subjects.

Normalization. The A-line SBP and DBP comprise the average values of the systolic peak pressure and end-
diastolic pressure in each A-line pulse. The SBP and DBP values are standardized with the mean and SD of the 
entire training set. This normalization step can improve the learning accuracy.

Balancing the number of segments. Normalized subjects with smaller than 50 clean segments, of which is 
13, 050 surgical cases, are discarded based on Condition T5: 

T5: The numbers of remaining clean PPG and ABP segments after an ‘abnormal segment elimination’ step 
should be greater than or equal to 50.

If a subject has more than 100 clean segments, then randomly selected 100 clean segments are retained in the 
subject. Thus, each every remaining subjects include a balanced number of normal PPG and ABP segments 
between 50 and 100, so that they can fairly affect the training and validation.

Proposed PPG2BP‑net. Subject‑wise batch construction on train. Considering the computational com-
plexity of the learning and the capability of a central processing unit in a simulation computer, a training batch 
is constructed with 64 segments (rather than 128 and 256) from the clean training sets. To learn in various cases, 
the 64 independent subjects were randomly and repetitively selected from 2987 training subjects to train the 
proposed PPG2BP-Net in various cases. The training procedure is summarized in Algorithm 1.

One segment is randomly selected from each selected subject for the target segment, (xj,sub, pj,sub) , and another 
segment, (xi,sub, pi,sub) , is selected for the calibration information. The random subject and segment selections 
are used for moderately training PPG2BP-Net with identical weights across the training subjects, which is a 
similar purpose to that of balancing the number segments. The hyperparameters, namely, the learning rate and 
the number of epochs, are stochastically determined during the learning based on the initial learning rate 0.0001 
and within the maximum number of epochs 1000.

The detailed structure of the proposed PPG2BP-Net is depicted in Fig. 4.

1D‑CNN architecture. The proposed learning system utilizes 1D-CNNs of shared network with the same struc-
ture and parameters as the main feature extraction networks (Fig. 1). The clean 1× 500 calibration PPG segment 
vectors are fed into an 1D-CNN as the input for training, and the target PPG sequences go through the other 
paired 1D-CNN as input. From the designed paired structure of two 1D-CNNs, the network can effectively learn 
the varying relationship between the target and calibration PPGs. Further, the difference between the two fea-
tures of the two 1D-CNNs is also learned in a fully connected layer (FCL). Thus, the designed 1D-CNN structure 
is called a comparative paired 1D-CNN structure.

Concretely, the proposed 1D-CNN model includes four hidden layer groups followed by an average pooling 
layer and a dropout layer. Each hidden group comprises one convolutional layer, a batch normalization layer, 
and a rectified linear unit (ReLU) layer. The hidden non-linear features can be implicitly extracted by four alter-
nating convolutional and ReLU layers. To capture the time series of features in the PPG waveforms, 1D-CNN is 
employed, and multiple filters are employed because a single one-dimensional filter is insufficient to effectively 
extract the unknown and various features from the calibration PPG waveforms. The batch normalization between 
the convolutional and ReLU layers normalizes the hidden layer input and resolves an issue caused by change in 
the input  distribution35. At the end of each hidden layer, the most widely used activation function (i.e., a ReLU) 
is  employed36 for better and faster learning.
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The waveforms after the fourth hidden layer group are sampled through an average pooling layer, which can 
reduce the network’s complexity by sustaining the essential information of the features. The 30% output data 
in the average pooling layer are dropped out (set to zero) in the dropout layer by randomly removing 30% of 
neurons during the training (i.e., hyperparameter dropout rate: 0.3). The dropout prevents a nonsensical action 
from significantly relying on a particular input and thus reduces over-fitting and enhances  generalization37. After 
the dropout layer, each batch goes through an FCL with the eight units and is normalized in a batch normaliza-
tion layer such that the mean and variance are zero and one, respectively, to improve the convergence speed and 
learning  performance35,38.

Two 1D-CNN output sequences and their absolute difference will be provided to the final FCL module 
(Fig. 4), as input, and would then be activated by a ReLU function.

Multilayer perceptron. A multilayer perceptron (MLP) is employed to assist feature extraction for the super-
vised learning from the numeric feature data, namely, the A-line SBP and DBP values. As shown in the left-hand 
bottom side of Fig. 4, the calibration SBP and DBP values are separately provided into two FCLs, and their 
features are extracted. Each FCL is followed by a batch normalization layer and a ReLU layer. The two output 
features from the independent ReLU layers are gathered and concatenated. The concatenated features are fed in 
a final FCL module as one of the four inputs to estimate the target SBP and DBP (right-bottom panel, Fig. 4).

FCL. The adaptive feature learning is completed at a final FCL (right-bottom panel, Fig. 4). The output features 
from two 1D-CNNs, the difference between them, and MLP are concatenated. The single output sequence of the 
concatenation layer is then provided to an FCL, followed by a batch normalization layer and a ReLU layer. The 
output of the ReLU layer produces the target SBP and DBP through another FCL.

Validation and test. The proposed PPG2BP-Net-based cuffless BP measurement system uses two sets of cali-
brations. In the experiment, the first and second segments of PPG, SBP, and DBP are used as the calibration seg-
ments for validating or testing the remaining independent segments. The estimated SBP and DBP of a target seg-
ment in each subject are the average values of estimated SBPs and DBPs, respectively, with the calibration PPG, 
SBP, and DBP in the first and second segments. The ground-truth SBP and DBP are the average values of the two 
calibration segments. The validation or test procedure is summarized in Algorithm 2. Here, re-calibration10 is 
not considered as for the C3 BP estimation, though it can improve the BP estimation accuracy.

Figure 4.  Proposed PPG2BP-Net that comprises a comparative paired one-dimensional CNNs, one MLP, and 
one FCL.
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Since the predictable BP range of the proposed PPG2BP-Net is restricted between 70 mmHg and 180 mmHg 
based on T4, to enlarge the predictable BP range, an additional learning process is required with sufficient and 
reliable data of BP less than 70 mmHg and greater than 180 mmHg . Further verification of the designed PPG2BP-
Net through a clinical test will enhance the fidelity of the proposed C3A cuffless BP estimation. In this case, a 
certified cuff-based BP device can be used to obtain the calibrations.

Data availibility
The part of the collected vital signs can be found in the database  VitalDB34 (https:// vital db. net/ datas et/? query= 
api). The code used in this study is a private asset (protected by intellectual property) that was developed and is 
owned by Sky Labs Inc. Thus, the code used in this study will be made partially available by the corresponding 
author C. Choi upon reasonable request.
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