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A decision analysis model 
for material selection using simple 
ranking process
Shervin Zakeri 1*, Prasenjit Chatterjee 2, Dimitri Konstantas 1 & Fatih Ecer 3

A large number of materials and various criteria fashion material selection problems as complex multi-
criteria decision-making (MCDM) problems. This paper proposes a new decision-making method called 
the simple ranking process (SRP) to solve complex material selection problems. The accuracy of the 
criteria weights has a direct impact on the outcomes of the new method. In contrast to current MCDM 
methods, the normalization step has been eliminated from the SRP method as a potential source 
of producing incorrect results. The application of the method is appropriate for situations with high 
levels of complexity in material selection because it only considers the ranks of alternatives in each 
criterion. The first scenario of vital-immaterial mediocre method (VIMM) is used as a tool to derive 
criteria weights based on expert assessment. The result of SRP is compared with a number of MCDM 
methods. In order to evaluate the findings of analytical comparison, a novel statistical measure known 
as compromise decision index (CDI) is proposed in this paper. CDI revealed that the MCDM methods’ 
outputs for solving the material selection could not be theoretically proven and requires to be 
evaluated through practice. As a result, the dependency analysis-an additional innovative statistical 
measure is introduced to demonstrate the reliability of MCDM methods by assessing its dependency 
on criteria weights. The findings demonstrated that SRP is extremely reliant on criteria weights and 
its reliability rises with the number of criteria, making it a perfect tool for solving challenging MCDM 
problems.

Material selection problems and multi-criteria decision-making (MCDM) methods have strong relationships. 
Selecting suitable materials is the most challenging task in designing and developing new  products1. Engineering 
design revolves around the objectives of achieving high performance, minimizing costs, and being environmen-
tally conscious, which are often constrained by materials. Therefore, one of the key goals of optimal product 
design is the selection of materials that fulfill the design criteria while delivering the highest level of performance 
at the most economical  cost2,3. Material selection is a complex decision-making process that involves the selection 
of the most suitable materials from a range of available alternatives based on multiple criteria. Multi-Criteria 
Decision Making (MCDM) refers to a class of mathematical methods used to solve such complex decision-
making problems. These problems often arise in real-world situations where decision-makers has to select from 
a set of alternatives that differ across several criteria or dimensions. The goal of MCDM is to identify the best 
possible alternative or set of alternatives based on the decision-makers’ preferences and priorities. MCDM prob-
lems are typically represented in a matrix format, where each row represents an alternative and each column 
represents a criterion. The elements of the matrix correspond to the performance of each alternative on each 
criterion. The decision-makers are then asked to provide weights or priorities for each criterion, indicating the 
relative importance of each criterion in the decision-making process. Material selection problems also involve 
the evaluation and selection of the most suitable material from a set of alternatives based on multiple criteria. 
This type of problem requires a decision-maker to weigh the importance of each criterion and to evaluate the 
alternatives accordingly. Material selection decisions typically involve multiple conflicting criteria, such as cost, 
performance, durability, physical and engineering properties, environmental factors, cost, and manufacturabil-
ity, among others. These criteria may have different units of measurement, making it challenging to compare 
and evaluate alternatives using a single metric. Since the material selection could be converted into an MCDM 
problem-form problem, MCDM methods are suitable solutions to find the best material to meet the needs of 
the design and development of products. Many researchers have drawn attention to the connection between 
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MCDM methods and material selection problems. According  to4, among various methods and techniques that are 
employed to select the most suitable material for different projects, MCDM methodologies are among the most 
popular approaches.  Reference5 call material selection problems MCDM dilemmas,  and6 believe that MCDM 
methods are the only solution for the material selection problems that incorporate a large number of competing 
performance characteristics and are involved with many decision-makers. Similar to the latter  authors7, argues 
that MCDM methods are efficient tools for effectively managing material selection problems incorporating 
various material properties and varied criteria.  Reference8 also mentioned that MCDM methods aid in achiev-
ing the desired results from a product since the methods evaluate the materials’ performance under conflicting 
criteria. The use of MCDM methods in material selection problems has several advantages. First, it provides a 
systematic and objective approach to evaluate and rank materials based on multiple criteria. Second, it helps 
decision-makers to identify the critical criteria that have the most significant impact (having highest weight 
value) on the decision. Third, it enables decision-makers to evaluate and compare the performance of different 
materials under different scenarios. Finally, it provides a transparent and structured approach to the decision-
making process, which can help to build consensus and improve communication among stakeholders. MCDM 
methods are widely used in material selection problems for computing the criteria weights and determining the 
rank of materials. Different scholars have proposed various categories for these two tasks. MCDM weighting 
methods can generally be classified into two categories: subjective weighting methods and objective weighting 
methods. The subjective weighting methods rely solely on human opinions, expectations, and judgments to 
assign weights to the criteria, whereas the objective weighting methods extract the criteria weights from the 
matrix of the decision-making problem. The ranking methods are divided into four subcategories, including the 
outranking methods, compromise ranking methods, distance-based methods, and the methods that use pairwise 
comparison. The complexity of an MCDM problem is associated with:

1. The complexity of input, involving objective and subjective values,
2. Different numbers of goals involved in the evaluation process of the alternatives,
3. Confliction between the nature of the criteria in the MCDM problems with multiple layers of criteria,
4. The number of non-beneficial criteria,
5. The number of criteria.

In this case, material selection problems always involve many alternatives and criteria, where with increasing 
the number of criteria, the reliability of the MCDM methods used for ranking the material decreases. To solve 
this problem, this paper proposes new MCDM method, called simple ranking process (SRP) which is based on 
ranking the alternatives against each criterion. The precision of criteria weight estimation directly affects the 
effectiveness of SRP algorithm. The new method is designed to deal with complex decision-making problems 
using simple processes compared to the existing MCDM methods. In this paper, the new method is applied to 
solve a material selection problem. Criteria weights of the problem are reassessed by the seven experts through 
a group decision-making process, followed by the application of vital-immaterial mediocre method (VIMM) to 
provide accurate weights. VIMM, which was proposed  by9, is a subjective weighting method that was developed 
to bridge the structural and processual gaps in AHP and BWM. The paper presents several contributions centered 
around a new MCDM method that can effectively address complex decision-making problems. Reliability of the 
method is also shown to increase as the complexity of the problem increases. Additionally, the paper introduces 
two new statistical measures for validating results of MCDM methods. The paper is structured as follows: the 
second section presents the literature review, while the third section describes the proposed method and VIMM. 
The fourth section applies the methods to a real-world material selection problem. The fifth section discusses 
the results and introduces a new statistical measure to validate complex MCDM solutions. The paper concludes 
in the sixth section with a summary of the findings and suggestions for future research.

Literature review
Dissimilar mathematical treatments are employed by different MCDM methods based on the categories they 
are members of to derive the best material, consequently offering different materials as the most suitable option 
for the same problem. With an extensive literature review, this section aims to provide a scientific perspective 
for the readers regarding the MCDM methods application in material selection problems and the gaps in the 
current course of MCDM methods and material selection engagement. Specifically, this section seeks to dem-
onstrate the following:

1. The investigation of the relationship between MCDM methods in the different categories with the different 
complex material selection problems,

2. The prevalent problem of dissimilarities between the outputs of the MCDM methods in solving material 
selection problems that are revealed by different studies, which emerges as the results validation issues,

3. Solutions the studies employed to overcome the dissimilarities.

These gaps will be later addressed in the paper. To visualize the literature review section’s composition, its 
structure has been illustrated in Fig. 1.

MCDM methods for material selection problems. Appropriate material selection results in improved 
quality and enhanced product life cycle, while inaccurate selection leads to increased design cost, lack of pro-
ductivity, poor end product performance, critical component damage, and eventually untimed product  failure10. 
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Thus, it is critical to exert a method that optimizes material selection decisions and minimizes the risk of poor 
selection. This paper proposes a new MCDM method to solve this problem. So far, several MCDM methods 
for material selection problems have been developed and applied. The technique for order of preference by 
similarity to ideal solution (TOPSIS) developed by Hwang and  Yoon11, analytic hierarchy process (AHP) by 
 Saaty12, analytical network process (ANP) proposed by  Saaty13, simple additive weighted (SAW) (MacCrimmon 
& Rand.14, data envelopment analysis (DEA) proposed by  Charnes15, Vise Kriterijumska Optimizacija I Kompro-
misno Resenje (VIKOR) developed by Opricovic and  Tzeng16, decision making trial and evaluation laboratory 
(DEMATEL) developed by Fontela and  Gabus17, preference ranking organization method for enrichment evalu-
ations (PROMETHEE)18 and ELimination Et Choix Traduisant la REalité or ELimination and Choice express-
ing reality (ELECTRE) proposed and advocated by  Roy19 are some of the most popular MCDM methods for 
material selection problems. Some of the recent developments in MCDM methods are ranking based on optimal 
points multi-criteria decision-making method (RBOP) by Zakeri.20, step-wise weight assessment ratio analysis 
(SWARA) first developed by Keršulienė &  Turskis21, subjective weighting method using continuous interval 
scale by Toloie-Eshlaghy et al.22, superiority and inferiority ranking (SIR) method by  Xu23, multi-attribute evalu-
ation using imprecise weight estimates (IMP) method proposed by  Jessop24, and best–worst method (BWM) 
introduced by  Rezaei25.

In some problems, the outputs of MCDM methods are  dissimilar26,27. The comparison of MCDM methods 
and their outputs can be found in Refs.28,29. To evaluate alternative hydropower systems on the “Drina River,” 
Opricovic &  Tzeng28 compared the extended VIKOR method with TOPSIS, PROMETHEE, and ELECTRE, where 
the TOPSIS and VIKOR generated the same ranking for the two best alternatives while the ratio was different. By 
utilizing Kendall’s tau-b test and Spearman’s rho test to determine the significance of rank correlation between 
the compared methods, the sensitivity of final ranks to selected fuzziness intervals, and the sensitivity of simi-
larities and dissimilarities of different decision ranking methods to the dimensions of the decision matrix, the 
appropriate MCDM method was selected in the work of Zamani-Sabzi et al.29. They evaluated the performances 
of ten popular MCDM methods including SAW, weighted product method (WPM), compromise programming 
(CP), TOPSIS, AHP, VIKOR, and ELECTRE under a fuzzy environment. According to Ref.30, the inconsistency 
that occurred in generating dissimilar results by MCDM methods is due to four reasons:

1. The methods use weights differently in their calculations.
2. Algorithms differ in their approach to selecting the ‘best’ solution.
3. Many algorithms attempt to scale the objectives, which affects the weights already chosen.
4. Some algorithms introduce additional parameters that affect the selection of the solution.

The most important reasons that directly affect the final output of the MCDM methods are 1. Determining 
criteria weights; and 2. Policies/philosophies for evaluating alternatives. The application of these two items to 
material selection problems has been discussed in the following sections.

MCDM methods for criteria weighting. One of the main challenges in MCDM problems is to determine the 
relative importance of each criterion. Criteria weighting methods are used to assign weights to the criteria, 
reflecting their relative importance in the decision-making process. Criteria weighting methods in MCDM 
environment are mostly divided into subjective and objective methods. There is also a third type of weight-
ing method, popularly known as combinative weighting method, which utilizes hybridization or integration of 
different subjective and objective methods using multiplication and additive  synthesis31. Subjective weighting 
methods depend on DMs’ judgments, levels of knowledge, perception, and intentions,and these methods do not 
use a formal mathematical approach to determine the weights, but rather rely on the experience and expertise 

Figure 1.  The literature review structure.
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of the decision-makers. Subjective weighting methods are often used when there is a lack of data or when the 
criteria are difficult to quantify. On the other hand, objective weighting methods extract weights directly from 
decision matrix using mathematical algorithms without considering human judgments to avoid inaccuracies 
and imprecisions. In order to reduce errors and ambiguities in the decision-making process, hybrid weighting 
methods (subjective and objective methods) have also been developed. Some of the most popular subjective 
methods are Digital Logic and Modified Digital Logic  methods32, Pairwise Comparison (e.g. AHP), Best–worst 
Method, Ratio  method33

, Swing  method34, Simple multi-attribute ranking technique (SMART) and SIMOS 
 method35. Some of the most popular objective weighting methods are Shannon’s  entropy36 and CRITIC (The 
CRiteria Importance Through Intercriteria Correlation)  methods37. An overview of MCDM weighting methods 
for material selection problems has been presented briefly in the following sections.

Subjective weighting methods in materials selection. Some examples of the subjective weighting methods in 
the complex material selection problems to evaluate the importance of the selected criteria are shown in Table 1. 
AHP and BWM methods are observed to be very popular methods for criteria weighting in material selec-
tion problems. AHP provides a systematic and structured approach to decision-making and helps to organize 
complex decision problems in a hierarchical structure, making it easier for decision-makers to understand the 
problem and the relationships between the criteria. On the other hand, BWM is a straightforward method that 
requires decision-makers to select the best and worst criteria from a set of options, making it easy to understand 
and apply.

Objective weighting methods in materials selection. Shannon’s entropy method is one of the most popular 
objective methods for computing criteria weights for material selection applications. Compared to other objec-
tive weighting methods, most studies employed Shannon’s entropy to compute the criteria weights in this cat-
egory. Apart from Entropy method, there are other recently developed objective weighting methods like method 
based on the removal effects of criteria (MEREC) and logarithmic percentage change driven objective weighting 
(LOPCOW). Table 2 shows instances of using objective weighting methods in material selection problems.

MCDM methods for ranking alternatives. MCDM methods are generally developed for ranking alternatives 
based on four main concepts:

Table 1.  Subjective weighting methods and their applications in materials selection.

Author(s) Case application Criteria Subjective weighting method

Das et al.38 Material selection case study of spur gear reduction unit 1. The pressure angle, 2. Module, 3. Number of teeth to 
avoid interference, 4. Gear width, and 5. Gear material AHP

Mahmoudkelaye et al.39 To select sustainable materials for building enclosures Economic, technical, environmental, and socio-cultural 
and their corresponding sub-criteria ANP

Patnaik et al.10 To select the best composite materials for wear-resistant 
applications

1. Physical properties, 2. Mechanical properties, 3. Slurry 
abrasion, 4. Wear properties AHP

Prasad et al.40 Coating material for magnesium alloy

1. Density, 2. Thermal conductivity, 3. Thermal expansion 
coefficient hardness, 4. Young’s modulus elastic recovery, 
5. Critical load, 6. Yield stress, 7. Melting temperature, 8. 
H/E ratio H3/E2 ratio, 10. Wear resistance, 11. Coefficient 
of friction, 12. Radiation sensitivity, 13. Workability, 14. 
Appearance, 15. Oxidation resistance, 16. Oxidation rate 
constant, 17. Impact resistance, 18. The possibility of 
surface treatment material, 19. Manufacturing, 20. Avail-
ability, 13. Accessibility, 14. Toxicity, 15. Adhesion to the 
substrate, 16. Bond strength, 17. Durability, 18. Brittleness, 
19. Compatibility of the material, 20. Matrix, 21. Framed, 
22. Mixed, 23. The aging tendency, 24. Porosity, 25. Geo-
graphical location, 26/political stability & foreign policy, 
27. Exchange rate & economic position

Fuzzy AHP

Palanisamy et al.41 Additive manufacturing machine and materials
1. Cost, 2. Visual and aesthetic modeling, 3. Tensile 
strength, 4. Shore hardness, 5. Mixing number, 6. Number 
of digital materials, 7. Frequent order, and 8. Elongation 
at break

BWM

Maghsoodi et al.42 Phase change material selection for interior building 
surface application

1. Melting temperature, 2. Latent heat storage capacity, 3. 
Thermal conductivity, 4. Specific heat capacity, 5. Energy 
density and 6. Cost

BWM

Yang et al.43 Phase change material selection for solar domestic hot 
water system

1. Latent heat, 2. Density, 3. Specific heat for solid, 4. Spe-
cific heat for liquid, 5. Thermal conductivity and 6. Cost AHP

Kumar et al.44 Coating material selection in tooling industries
1. Indentation hardness, 2. Young’s modulus, 3. Wear 
resistance, 4. Plastic Deformation, 5. Strain hardening 
exponent, 6. Coefficient of thermal expansion, 7. Surface 
roughness, 8. Coefficient of friction 9. Wear rate

BWM

Aksakal et al.4 Thermal insulation material selection
1. Thermal conductivity, 2. Periodic thermal transmittance, 
3. Specific heat, 4. Density, 5. Decrement factor, 6. Surface 
mass, 7. Thermal transmittance, 8. Thermal wave shift

Fuzzy BWM

Grachev et al.45 Dental material selection in manufacturing removable 
dentures

1. Mechanical properties, 2. Biological properties, 3. Tribo-
logical properties, 4. Technological properties and 5. Cost AHP
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1.  Outranking methods such as ELECTRE, PROMETHEE, and GLDS (Gain and Lost Dominance Score).
2.  Compromise ranking policies such as VIKOR, GRA.
3.  Distance-based methods such as TOPSIS, Evaluation based on Distance from Average Solution (EDAS), 

Multi-Attributive Border Approximation Area Comparison (MABAC) and Combinative Distance-based 
Assessment Method (CODAS).

4.  Pairwise comparison such as AHP and ANP.

There are other categorizations suggested by scholars, e.g. the classification of the MCDM methods into five 
 classes52, including the quantitative methods, qualitative methods, mixed techniques, heuristics, and metaheuris-
tics, and simulation,or categorizing them into the three main  groups53 including the utility value-based methods, 
the outranking methods, preference ordering based methods. Except for the pairwise comparison methods, 
which have been discussed earlier, in the following sections, the application of MCDM methods to material 
selection problems has been briefly reviewed based on the three MCDM categories comprising outranking, 
compromise ranking, and distance-based ranking methods.

Material selection using outranking methods. Different forms of ELECTRE method have been applied to 
material selection problems. Using a hybrid method and the opinions of four experts in a group decision-making 
 framework54, employed ELECTRE III to solve the office flooring selection problem, in which the ease of cleaning 
and maintenance, durability, quietness, style and comfort, sustainability, and cost-effectiveness have been used 
as criteria. Singh et al.55 employed a hybrid model of ELECTRE II and entropy to solve the friction composite 
selection problem consisting of seven attributes and nine alternatives. ELECTRE and PROMETHEE methods 
have also been used to solve material selection problems. Gul et al.56 proposed a solution for an automotive 
instrument panel material selection problem using fuzzy PROMETHEE method while considering Styrene 
Maleic Anhydride, Polycarbonate, Polypropylene, and Acrylonitrile Butadiene Styrene as the potential material 
alternatives, and maximum temperature limit, recyclability, elongation, weight, thermal conductivity, tensile 
strength, cost, and toxicity level as the criteria. Using six criteria containing creep strength, resistance to oxida-
tion, thermal expansion coefficient, yield strength, limit strain, and toughness against five alternatives, Zindani 
&  Kumar57 designed a PROMETHEE-GAIA method to find the best material suitable for the labyrinth seal 
strips. Exconde et al.58 focused on the selection of materials for use in 3D printer filaments using ELECTRE 
method. Singh et al.55 employed a hybrid ELECTRE II-entropy model for selecting natural fibers for use in brake 
friction composites. The results revealed that 10 wt% banana fiber emerged as the best alternative among all 
fibers that were considered. Mahajan et al.48 investigated the selection process of natural fibers for sustainable 
composites. They proposed a hybrid MCDM model that utilized the Entropy and CRITIC methods to calcu-
late the criteria weights, and the PROMETHEE II, TOPSIS, and VIKOR methods to rank the materials under 
consideration. Bhaskar and  Khan1 evaluated seven materials based on ten material selection criteria to identify 
the best polymer-based biomaterial for dental applications using ELECTRE, PROMTHEE, VIKOR, TOPSIS, 
and MOORA methods. Ranjith and Vimalkumar (2022) developed a hybrid MCDM method that integrated 
ELECTRE and MOORA methods for selecting the best electrode material from five available alternatives for 
electrical discharge machining of magnesium composites. Kirişci et  al.59 extended the ELECTRE I model to 
the Fermatean fuzzy ELECTRE I model for group decision-making using Fermatean fuzzy human assessments 
for material selection of the femoral component of the hip joint prosthesis.  Zhou60 adopted ELECTRE method 
to select an optimal recycled material for 3D printer filament from a waste plastic stream containing a mixture 

Table 2.  Objective weighting methods and their applications in materials selection.

Author(s) Case application Criteria Objective weighting method

Bhowmik et al.46 Energy-efficient materials
1. Density, 2. Bulk Modulus, 3. Compressive Strength, 4. Ther-
mal Conductivity, 5. Thermal Expansion, 6. Resistivity, 7. Cost, 
8. Energy Production, and 9.  CO2 Emission

Entropy

Oluah et al.47 Latent heat storage materials for optimal performance of a 
Trombe wall

1. Heat of Fusion, 2. Thermal Conductivity, 3. Density, and 4. 
Cost Entropy

Aksakal et al.4 Thermal insulation material
1. Thermal Conductivity, 2. Periodic Thermal Transmittance, 
3. Specific Heat, 4. Density, 5. Decrement Factor, 6. Surface 
Mass, 7. Thermal Transmittance, and 8. Thermal Wave Shift

CRITIC

Mahajan et al.48 Natural Fiber for Sustainable Composite 1. Aspect Ratio, 2. Strain at break, 3. Specific strength, 4. Spe-
cific modulus, 5. Moisture Absorption, and 6. Cost Entropy and CRITIC

Akgün et al.49 Selection of most appropriate carbon-based nanomaterials
1. Melting Point Temperature Change, 2. Latent Heat 
Change, 3. Thermal Conductivity Enhancement, 4. Leakage, 5. 
Greenhouse Gas, 6. Cost, and 7. Agglomeration

Entropy

Haq et al.50 Material selection for wing-spar of human-powered aircraft
1. Price, 2. Tensile Strength, 3. Young’s Modulus, 4. Density, 
5. Compressive Strength, 6. Creep Resistance, 7. Fatigue 
Resistance, 8. Machinability, 9. Recyclability and 10. Carbon 
Footprint During Manufacture

Entropy

Ulutaş et al.51 Building insulation material selection
1. vapour diffusion resistance factor, 2. sound absorption 
coefficient, 3. embodied carbon, 4. embodied energy, 5. cost, 6. 
reaction to fire, 7. specific heat capacity, 8. thermal conductiv-
ity, and 9. density

MEREC and LOPCOW
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of polymers. The results indicated that recycled polyethylene terephthalate outperformed all other considered 
plastic materials.

Material selection using compromise ranking methods. The literature suggests that GRA and VIKOR are the 
most widely used compromise ranking methods for material selection applications. Jayakrishna and  Vinodh61 
proposed an integrated approach that employed GRA to rank materials based on cost, material properties, and 
environmental impact. Zhang et al.62 used GRA in combination with other methods, such as DEMATEL, ANP, 
and TOPSIS, to select the optimal green material for sustainable rubbish bins based on multiple criteria. Sang-
hvi et al.63 adopted a combined framework of GRA and fuzzy logic to leverage the benefits of both methods for 
bone staples material selection problem. Similarly, Wang &  Li64 employed GRA in conjunction with a hybrid 
weighting method that integrated AHP, Fuzzy AHP, and quality function deployment (QFD) methods to solve 
the lightweight automotive body material selection problem. Dwivedi &  Sharma65 applied an integrated entropy-
CoCoSo method to identify the most suitable sustainable material for an engineering application. Maidin et al.66 
developed a systematic evaluation framework using GRA to rank natural fiber materials as reinforcement com-
posites for cyclist helmets, with pineapple identified as the most suitable candidate for optimal safety. In another 
study, Maidin et al.67 applied 6 Sigma and GRA methods to select the most suitable thermoplastic matrix for 
natural fiber composites in cyclist helmets, integrating qualitative and quantitative approaches to identify ther-
moplastic polyethylene as the ideal matrix.

Ishak et al.68 applied fuzzy VIKOR method to select the optimal natural fiber type for fiber-reinforced com-
posites to be utilized in the manufacture of a fiber-metal laminate for car front hoods. The objective of this 
analysis was to achieve a reduction in transportation weight, which is crucial for improving fuel efficiency 
and reducing environmental impact. Dev et al.69 utilized an Entropy-VIKOR model to determine the optimal 
composite material for an automobile piston application case study. Entropy method was applied to compute 
the relative weights of various evaluation criteria, while VIKOR method was employed to rank the composite 
materials under consideration. The approach ensured a comprehensive and objective evaluation of the available 
alternative materials, leading to a well-informed decision regarding the most suitable composite material for the 
intended application. Gadhave et al.70 conducted a study on the selection of phase change material using three 
MCDM methods and utilized AHP—entropy methods to determine the criteria weights. VIKOR, TOPSIS and 
EXPROM2 methods were used to rank the alternative materials. The ranking was based on the compromised 
weight obtained through AHP and entropy methods. Bhaskar &  Khan1 showcased the effectiveness of five dif-
ferent hybrid MCDM methods in identifying the optimal polymer-based biomaterial for use in dentistry. They 
evaluated seven materials based on ten criteria and utilized AHP to determine criteria weights. The materials were 
ranked using AHP-VIKOR, AHP-TOPSIS, AHP-MOORA, AHP-ELECTRE, and AHP-PROMTHEE methods. 
Grachev et al.45 developed a formalized method for selecting dental materials in the production of removable 
dentures. Their approach combined AHP-Extended VIKOR method and involved analyzing interval quantita-
tive estimations. Bhuiyan &  Hammad71 developed a decision support system to assist with selecting the most 
sustainable structural material using a hybrid MCDM method that combined AHP, TOPSIS, and VIKOR in a 
fuzzy environment.

Material selection using distance-based methods. Applications of distance-based MCDM methods are well 
popular in solving material selection problems. Xue et al.72 introduced a new method based on interval-val-
ued intuitionistic fuzzy sets and MABAC to address the issue of incomplete weight information in automotive 
instrument panel material selection problems. Tian et al.73 proposed a hybrid MCDM approach that combined 
AHP and grey correlation TOPSIS (GC-TOPSIS) methods to select the optimal green decoration materials 
from a pool of 10 different types of solid woods. Ahmed et al.74 proposed a decision support framework taking 
into account technical, environmental, social, and economic criteria for ranking concrete materials. The frame-
work comprised of an optimal scoring method (OSM) that shortlisted the materials, followed determination 
of ranking orders using AHP-TOPSIS method. Deshmukh & Angira.75, used VIKOR and TOPSIS to solve the 
material selection problem for radio-frequency microelectromechanical system (RF-MEMS) shunt capacitive 
switches considering Young’s Modulus, Electrical resistivity, Thermal conductivity, Fracture strength as the cri-
teria. Maghsoodi et al.76 addressed a material selection problem in the context of dam construction projects by 
proposing a hybrid decision-making approach that combined SWARA and CODAS methods. The proposed 
approach considered target-based attributes to facilitate the evaluation process. Roy et al.77 developed an evalu-
ation framework for solving sustainable material selection problems in construction projects with incomplete 
weight information. The approach extended CODAS method by incorporating interval-valued intuitionistic 
fuzzy numbers. Yadav et al.78 proposed a novel MCDM approach based on TOPSIS-PSI for choosing the best 
alternative material in marine conditions. Dhanalakshmi et  al.79 employed a comprehensive MCDM-based 
approach, combining Fuzzy AHP, TOPSIS, and EDAS methods, for the selection of pyrolysis materials. The 
criteria were defined based on the objective of achieving maximum bio-oil yield during pyrolysis. Kar &  Jha80 
proposed a novel approach that integrates material management with construction schedule to prioritize con-
struction materials using ANP-TOPSIS method. The criteria weights were determined using ANP, while TOPSIS 
was used to calculate material criticality of the alternative materials. The result of the study showed that struc-
tural steel was the best material. Another hybrid method of VIKOR and TOPSIS could be found in Ref.81, where 
it is used to select the best dielectric material for RF-MEMS switches with low power consumption. Yang et al.82 
developed a method for selecting an appropriate normalization method in TOPSIS when choosing the optimal 
tribological coating material. They also introduced entropy-based and variation coefficient-based performance 
scores to evaluate the effectiveness of the normalization method. Kumar et  al.83 applied TOPSIS method to 
optimize the selection of glazing materials for solar thermal applications with multiple response characteristics. 
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The study considered seven alternative materials and six criteria for material selection in the optimal design. The 
results showed that Polysulfone material was the best choice for solar thermal applications. Aires &  Ferreira84 
developed a decision-making framework for selecting the most suitable thermal insulation material for enhanc-
ing energy efficiency, by integrating Fuzzy BWM, CRITIC, and Mixed Aggregation by Comprehensive Nor-
malization Technique (MACONT). Among the considered alternatives, Polyisocyanurate was identified as the 
optimal material based on the defined criteria. Abishini &  Karthikeyan85 investigated the use of AHP, TOPSIS, 
EDAS, VIKOR, and Taguchi-based super ranking concepts to select the optimal aluminum alloy material for the 
sheet metal forming process. The study revealed that AA2024 aluminum was the best-ranked material among 
the alternatives considered. Kazemian et al.86 conducted a comprehensive evaluation of ten different materials 
used for intraoral stents in head and neck cancer patients. The study aimed to identify the most suitable material 
using the TOPSIS method, and the results showed that Ethylene Vinyl Acetate was the best material. Sharma 
et al.87 investigated the optimal material selection problem for railway wagons using VIKOR, TOPSIS, PROM-
ETTHEE, and WASPAS methods and also compared the relative performances. The study revealed aluminum 
alloy Al 6005-T6 as the most suitable material. Remadi &  Frikha88 proposed a model for ranking green materials 
using CODAS method and utilized intuitionistic fuzzy sets within an uncertain group decision-making environ-
ment. Wankhede et al.89 focused on selection of natural fiber for long lasting composites using CODAS method. 
Basalt was found as the best natural for long lasting composites followed by flax and Kenaf respectively. Rank-
ing performance of CODAS was also compared with MOORA method. Table 3 summarizes the distance-based 
studies which used the aforementioned methods. Based on the literature review as presented above, a number of 
MCDM methods have been employed to solve material selection problems. This leads us to the next part of the 
literature review, which focuses on the differences between the results of different MCDM methods. This section 
poses the question: "Which MCDM method is most suitable for solving complex material selection problems 
with a large number of alternatives and criteria?".

Dissimilarities in ranking results for material selection problems. This section discusses the appli-
cation of various MCDM methods to the same material selection problems, which reveal that decision-makers 
may have different rankings using different methods. For instance, Singh et al.55 used ELECTRE II to select the 
best material and compared the rankings derived using COPRAS, TOPSIS, VIKOR, SAW, MOORA, and PSI to 
validate the outputs. While all the methods identified a similar alternative as the best, the rankings were slightly 
different. Similarly, Hafezalkotob &  Hafezalkotob91 compared the rankings produced by Target-based MULTI-
MOORA method with two different modes and their aggregate ranking of with other methods including Target-
based TOPSIS, Target-based VIKOR and Interval target-based VIKOR methods. Despite generating different 
rankings, all methods, except for Target-based MULTIMOORA with an integrated significant coefficient (Mode 
2), suggested the same material for the considered problem. However, the aggregate ranking methodology pro-
posed two materials as the best. To analyze the similarity of MCDM outputs, Spearman rank correlation coef-
ficient was also used which revealed differences in the obtained rankings. Mousavi-Nasab & Sotoudeh-Anvari92 
presented five material selection examples and compared the rankings using DEA, VIKOR, TOPSIS, ELECTRE 
II, and COPRAS methods. In the first example, a significant difference in material ranking between DEA and 
other methods was observed, while in the second example, the results were more similar. Although the same 
material was selected by most methods, the rankings of the remaining materials varied significantly. The authors 
also concluded that for material selection problems, it is more reliable to use multiple MCDM methods instead 

Table 3.  Distance-based MCDM methods in materials selection.

Author Case application Distance-based MCDM method

Xue et al.72 Automotive instrument panel Interval-valued intuitionistic fuzzy MABAC

Tian et al.73 Building decoration material selection (Solid wood) Grey correlation-TOPSIS

Ahmed et al.74 Ranking concrete supplementary material TOPSIS

Deshmukh &  Angira75 Material selection problem for the bridge of RF-MEMS shunt capacitive switches TOPSIS

Maghsoodi et al.76 Dam construction material selection CODAS

Roy et al.77 Sustainable material selection in construction projects Interval-valued intuitionistic fuzzy CODAS

Yadav et al.78 Material selection in marine applications TOPSIS-PSI

Zhang et al.90 Bone transplant replacement material selection TOPSIS

Dhanalakshmi et al.79 Pyrolysis material selection TOPSIS and EDAS

Kar &  Jha80 Construction material selection TOPSIS

Yang et al.82 Tribological coating material selection TOPSIS

Kumar et al.83 Glazing material for solar thermal application TOPSIS

Aires &  Ferreira84 Flywheel material selection R-TOPSIS

Abishini &  Karthikeyan85 Aluminum alloy material selection for sheet metal forming process EDAS

Kazemian et al.86 Material selection of intraoral stents TOPSIS

Sharma et al.87 Lightweight material for railway vehicles TOPSIS

Remadi &  Frikha88 Green material selection Intuitionistic fuzzy CODAS

Wankhede et al.89 Selection of natural fiber for long lasting composites CODAS
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of relying on a single technique. In example 3, differences were observed in the generated rankings and the 
selected materials. Similarly, the application of MCDM methods in the subsequent two examples demonstrated 
different ranking results and slight differences in the selected materials. The authors concluded that TOPSIS and 
COPRAS are more consistent, but using multiple MCDM methods to solve material selection problems is pref-
erable. Another attempt to optimize decision-making in material selection problems can be found in the work of 
Zhang et al.93, where they proposed a new MCDM method. It was evident that changes in methods for comput-
ing a component of the decision-making process, such as criteria weights, could significantly impact the final 
results. Fuzzy BWM and fuzzy G-VIKOR methods were employed by Zhang et al.94 to solve a material selection 
problem. To validate the results, a sensitivity analysis was conducted to explore the influence of criteria weights 
on the final ranking.  In54 study, a sustainable building material selection problem was solved using ELECTRE 
III. The results obtained from ELECTRE III were compared with SAW, TOPSIS, COPRAS, and MULTIMOORA. 
Additionally, sensitivity analysis was performed to demonstrate the superior performance of ELECTRE III com-
pared to other MCDM methods. Consequently, if other MCDM methods are utilized by DMs for any reason, 
a poor material selection result might have been obtained. Another significant difference between the rank-
ings of materials generated by different MCDM methods is highlighted in the work conducted by Chatterjee 
et al.95. COPRAS and EVAMIX methods were employed for solving material selection problems, and the results 
obtained from these methods were compared with TOPSIS, VIKOR, and AHP in terms of calculation time, 
simplicity, transparency, possibility of graphical interpretation, and information type, instead of using sensitivity 
analysis or Spearman’s rank correlation coefficient. Through two examples, it was concluded that COPRAS and 
EVAMIX methods are applicable, capable, and accurate for solving material selection problems.

Research methodology
The research methodology is constructed on three main procedures, 1. Computing the criteria weights; 2. Select-
ing the best material; and 3. Validating the obtained results. The methodological process and the tools used in 
this paper are shown in Fig. 2.
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Group decision-

making

Identifying the 

Vital, Immaterial 

and Mediocre 

criteria

Computing the 

criteria weights 

using VIMM

End

Validation

Start

Computing the 
criteria weights Material selection

Ranking the materials

Selecting the best 

material

Performance 

analysis

Measuring similarity 

with other MCDM 

methods 

Compromise 

decision 

index

Dependency 

analysis

Rank 

reversal 

paradox

Zakeri-

Konstantas 

Performance 

Correlation 

Coefficient

Manhattan 

distance

Canberra 

distance

Chi-square 

distance

Squared 

Euclidean 

distance

Total 

similarity

Figure 2.  The methodological workflow.
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Research tools. This section presents two main tools used to solve the material selection problem. It is 
divided into two sub-sections that address the issues mentioned previously. The first sub-section presents the 
new MCDM method called SRP. The second sub-section presents VIMM, which is a subjective weighting 
method used in the first scenario algorithm.

SRP. SRP method is a novel approach developed to solve MCDM problems. It is based on the ranks of alterna-
tives in each criterion, which allows it to provide accurate and reliable outputs while avoiding the complexities 
of existing MCDM methods. Unlike other methods, SRP does not require a normalization process as it directly 
works with criteria weights. SRP has the following simple steps:

Step 1 Defining criteria for the evaluation of the alternatives where Ai signifies the alternatives, cj states the 
criteria, and i = {1, . . . ,m} and j = {1, . . . , n}.

Step 2 Establishing the decision matrix, where Xij denote the decision matrix and rij expresses the score of 
i th alternative against j th criterion.

Step 3 Determining the ranks of alternatives in each criterion where the ranking process is based on the higher 
value of rij in the beneficial criteria ( max

1≤i≤m
rij ) and lower value of rij in the non-beneficial criteria ( min

1≤i≤m
rij ). The 

following equation Eq. (2) demonstrates the new ranking matrix where X ′

ij is the ranking matrix and Rj
i is the 

rank of i th alternative against j th criterion.

Step 4 The fourth step is the construction of the weighted ranking matrix according to Eq. (3), where Wj stands 
for the importance wrights of criteria and X"

ij shows the weighted ranking matrix.

Step 5 Computing the total ranking score of the alternatives as follows:

Step 6 Finally, prioritizing alternatives based on the higher value of Ri , where m is the number of alternatives.

VIMM: first scenario algorithm. VIMM is a subjective weighting method that is developed to use less pair-
wise comparison and also distance-based computations to extract the most accurate weights from the decision-
makers’ opinions and judgments. VIMM is designed based on three main elements called vital, immaterial, and 
mediocre criteria. The vital criterion plays the role of the most important criterion, which has the most impact in 
achieving the decision-making’s goal(s). It receives the highest value through computation. On the other hand, 
the immaterial criterion plays the opposite role and has the lowest impact on reaching the goal(s). The first vital 
and immaterial criteria select by the decision-maker(s), while the algorithm determines the following vital and 
immaterial criteria. There exists a third criterion, called the mediocre criterion. It refers to a criterion that affects 
reaching the decision-making goal to a lesser extent than the vital criteria and higher than the immaterial crite-
rion. VIMM generates high-accuracy results and is more reliable than the popular MCDM weighting methods 
such as AHP.

The following phases are proposed by Zakeri et al.9 for the classic VIMM: the first scenario to calculate the 
weights of criteria in a one-goal decision-making problem.

Step 1  The algorithm begins with determining the vital, immaterial, and mediocre criteria by the 
decision-makers.

Step 2 After selecting the vital and immaterial criteria, the second step is to allocate five and one as the cor-
responding values for the vital and immaterial criteria, respectively.

Step 3 Comparing the remaining criteria against the vital and immaterial criteria following the numerical-
linguistic scale. To conduct the comparison, VIMM uses a scale to convert decision-makers’ subjective opinions 

(1)Xij = rij .

(2)X
′

ij = R
j
i ,

(3)X"
ij = WjR

j
i ,

(4)SRi =

n
∑

j=1

WjR
j
i ,

(5)Ri = m− SRi .

Less 

importance

Equal 

importance

More 
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Figure 3.  The linguistic/numeric variables scale.
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into numbers within an interval of [2, 5, 9] , in which decision-maker is able to select any rational number between 
these three numbers. The scale is illustrated in Fig. 3.

Step 4 Establishing the distance matrix by calculating the distances between each criterion and the vital and 
immaterial criteria according to the linguistic/numeric scale in (Fig. 2) is the fourth step of the VIMM algorithm. 
This step includes two steps:

Step 4.1 Normalizing the distance matrix by following Eqs. (6), (7), where d+xy and d−xy stand for distances 
between the y th criterion in the x th comparison, and the immaterial and vital criteria respectively, x states the 
number of comparison process, and y stands for the number of criteria.

Step 4.2 Computing the first score Eq. (8), where Sxy denotes the score of the y th criterion in the x th 
comparison.

Phase 5 Re-executing steps 3 and 4 until the number of remaining criteria reaches 2 for an even number of 
criteria or 1 for an odd number of criteria.

Phase 6 Computing the weights of criteria according to Eqs. (9), (10), where ( 
∑n

j=1 Wj = 1)

Material selection via SRP and VIMM: the first scenario methods
This section is divided into four sub-sections. In this first sub-section, the case study and the information on 
the materials, their properties, and the weights of the criteria for the evaluation of the materials are represented. 
In the second section, a group decision-making process conducted by seven experts is represented to select the 
vital and material criteria as the input for the VIMM method. VIMM method is applied to the case to compute 
the weights of criteria in the third section. The evaluation process of the material is represented in the fourth 
sub-section, in which the SRP method is applied to select the best material.

Case study. A case  study96 has been adopted in this paper to select the best phase change material to be used 
to store solar energy. Criteria taken in consideration are Latent Heat J/Kg (c1) , Density Kg/m3 (c2) , Specific Heat 
kJ/kg K (c3) , Specific Heat kJ/kg K (c4) , Thermal Conductivity W/m K (c5) and Cost (c6) . Among all the crite-
rion Latent Heat, Density, Specific Heat (solid), Specific Heat (liquid) and Thermal Conductivity are beneficial 
criterion i.e. higher the value better the alternative. Cost is non-beneficial criterion i.e. lower the value better the 
alternative. Nine alternatives are considered as the phase change material such as Calcium chloride hexa-hydrate 
(A1), Stearic acid (A2), p116 (A3), RT 60 (A4), Paraffin wax RT 30 (A5), n-Docosane (A6), n-Octadecane (A7), 
n-Nonadecane (A8) and n-Eicosane (A9). The information on the properties of the materials and the material 

(6)d+xy
′

= cy/max
y∈j

d+xy
, y ∈ j,

(7)d−xy
′

= min
y∈j

d−
xy/d−xy

, y ∈ j,

(8)Sxy = d+xy
′

+ d−xy
′

.

(9)Sj =

x
∑

y∈j

Sxy ,

(10)Wj =

y
∑

j=1

Sjy ∈ j.

Table 4.  Properties of PCMs for solar energy devices.

Phase change material 
(PCM)

Material selection criteria

Latent heat J/Kg (c1) Density Kg/m3 (c2)
Specific heat kJ/kg K 
(Cp(s))(c3)

Specific heat kJ/kg K 
(Cp(l))(c4)

Thermal conductivity W/m 
K (c5) Cost (c6)

Calcium chloride hexahy-
drate (A1) 169.98 1560.0 1.4600 2.1300 1.0900 Very low

Stearic acid (A2) 186.50 903.00 2.8300 2.3800 0.1800 Very high

p116 (A3) 190.00 830.00 2.1000 2.1000 0.2100 Low

RT 60 (A4) 214.40 850.00 0.9000 0.9000 0.2000 Very low

Paraffin wax RT 30 (A5) 206.00 789.00 1.8000 2.4000 0.1800 Low

n-Docosane (A6) 194.60 785.00 1.9300 2.3800 0.2200 Low

n-Octadecane (A7) 245.00 773.22 0.3767 2.2670 0.1400 Low

n-Nonadecane (A8) 222.00 775.80 1.7189 1.9210 0.1420 High

n-Eicosane (A9) 247.00 776.33 0.7467 2.3770 0.1380 Low
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selection’s decision matrix, including the materials and the criteria for the evaluation, is demonstrated in Tables 4 
and 5 respectively. The weights of the criteria are also illustrated in Table 6.

The group decision-making process. In this section, in order to determine the vital and immaterial cri-
teria as the main elements of VIMM algorithm, seven experts are employed to re-evaluate the material selection 
criteria weights. The original criteria weights are exhibited in Table 6.

The number of pairwise comparisons in VIMM for the even number of criteria is (n/2), where n is the number 
of criteria. Therefore, in this case, there are two comparison processes. The seven experts are asked to select three 
criteria as the vital and immaterial criterion for each comparison based on the criteria priority of being the best 
choice to meet the properties of the vital or immaterial criteria. Table 7 demonstrates expert responses, where 
Z
y
αx and Zy

βx
 represent different choice of decision-makers in the selection of vital and immaterial criteria in each 

comparison, y shows the priority of the selected criterion, x indicates the number of comparison process, N is 
the set of natural numbers, and ψ

Z
y
αx

 and ψ
Z
y
βx

 are the cardinal numbers, representing the frequency of the criteria 
that decision-makers selected as the vital and immaterial criteria respectively see Eqs. (11) and (12).

Table 8 shows the response distribution, where Fcj denotes the frequency of the criterion in each choice for 
the selection of the vital and immaterial criterion in the comparison processes. According to the distribution 
of responses of DMs (Table 8), the vital and immaterial selected by DMs criteria are shown in Tables 9 and 10.

(11)ψZ1
αx

≤ ψZ2
αx

≤ ψZ3
αx
, 1 ≤ y ≤ 3, y ∈ N, x = n/2, (n− 1)/2, n ∈ j,

(12)ψ
Z
1
βx

≤ ψ
Z
2
βx

≤ ψ
Z
3
βx
, 1 ≤ y ≤ 3, y ∈ N, x = n/2, (n− 1)/2, n ∈ j.

Table 5.  Material selection decision matrix.

PCM

Material selection criteria

c1 c2 c3 c4 c5 c6

A1 169.98 1560.0 1.4600 2.1300 1.0900 0.2550

A2 186.50 903.00 2.8300 2.3800 0.1800 0.7450

A3 190.00 830.00 2.1000 2.1000 0.2100 0.3350

A4 214.40 850.00 0.9000 0.9000 0.2000 0.2550

A5 206.00 789.00 1.8000 2.4000 0.1800 0.3350

A6 194.60 785.00 1.9300 2.3800 0.2200 0.3350

A7 245.00 773.22 0.3767 2.2670 0.1400 0.3350

A8 222.00 775.80 1.7189 1.9210 0.1420 0.6650

A9 247.00 776.33 0.7467 2.3770 0.1380 0.3350

Table 6.  Criteria weights for the considered material selection case study.

Criteria c1 c2 c3 c4 c5 c6

Weight 0.4901 0.1674 0.0528 0.0528 0.2109 0.0261

Table 7.  Responses of decision-makers for selection of vital and immaterial criteria in the two comparison 
processes.

α1 β1 α2 β2

Expert Z
1
α1

Z
2
α1

Z
3
α1

Z
1

β1
Z
2

β1
Z
3

β1
Z
1
α2

Z
2
α2

Z
3
α2

Z
1

β2
Z
2

β2
Z
3

β2

1 c1 c1 c1 c6 c6 c6 c5 c2 c2 c4 c4 c3

2 c1 c1 c5 c6 c3 c4 c5 c5 c2 c3 c4 c6

3 c5 c5 c1 c4 c6 c6 c1 c2 c5 c6 c4 c4

4 c1 c1 c2 c3 c6 c4 c2 c5 c5 c6 c4 c3

5 c1 c5 c2 c6 c6 c6 c1 c5 c5 c3 c4 c4

6 c1 c1 c5 c6 c6 c3 c5 c5 c5 c3 c3 c6

7 c1 c1 c1 c4 c6 c6 c5 c5 c5 c4 c3 c6
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Determining the vital and immaterial criteria. The collected data in the previous section are evaluated in this 
section to determine the vital and immaterial criteria. The evaluation comprises two steps as follows:

Step 1 The first step of the evaluation process of decision-makers’ opinions is to compute the value of fre-
quency of vital and immaterial criteria. The step is conducted using Eqs. (13), (14), (15), (16) and (17).

where the values of ξ , µ , and ν are determined by decision-makers.
Step 2 The second step is to determine the vital and immaterial criteria in each comparison which is computed 

with the selection of the maximum value of Eqs. (13), (14), where.max
1≤j≤6

Vαx
Fcj

 and max
1≤j≤6

V
βx
Fcj

 are the vital and imma-
terial in x th comparison.

(13)Vαx
Fcj

=
(

y ± ξ
)

ψZ1
αx

+
((

y − 1
)

± µ
)

ψZ2
αx

+
((

y − 2
)

± ν
)

ψZ3
αx
;

(14)V
βx
Fcj

=
(

y ± ξ
)

ψ
Z
1
β1

+
((

y − 1
)

± µ
)

ψ
Z
2
β1

+
((

y − 2
)

± ν
)

ψ
Z
3
β1

;

(15)ξ =

{

0 ≤ ξ ≤ y, y + ξ
0 < ξ , y − ξ

;

(16)µ =

{

0 ≤ µ ≤ y,
(

y − 1
)

− µ

y > µ+ 1,
(

y − 1
)

− µ
;

(17)ν =

{

0 ≤ ν ≤ y,
(

y − 2
)

+ ν

y > ν + 2,
(

y − 2
)

− ν
;

Table 8.  Distribution of decision-makers’ responses.

Criteria

Fcj

ψ
Z
1
α1

ψ
Z
2
α1

ψ
Z
3
α1

ψ
Z
1

β1

ψ
Z
2

β1

ψ
Z
3

β1

ψ
Z
1
α2

ψ
Z
2
α2

ψ
Z
3
α2

ψ
Z
1

β2

ψ
Z
2

β2

ψ
Z
3

β2

c1 6 5 3 0 0 0 2 0 0 0 0 0

c2 0 0 2 0 0 0 1 2 2 0 0 0

c3 0 0 0 1 1 1 0 0 0 3 2 2

c4 0 0 0 2 0 2 0 0 0 2 5 2

c5 1 2 2 0 0 0 4 5 5 0 0 0

c6 0 0 0 4 6 4 0 0 0 2 0 3

Table 9.  Distribution of decision-makers’ responses regarding the vital criterion.

Criteria ψ
Z
1
α1

ψ
Z
2
α1

ψ
Z
3
α1

ψ
Z
1
α2

ψ
Z
2
α2

ψ
Z
3
α2

c1 6 5 3 2 0 0

c2 0 0 2 1 2 2

c3 0 0 0 0 0 0

c4 0 0 0 0 0 0

c5 1 2 2 4 5 5

c6 0 0 4 0 0 0

Table 10.  Distribution of decision-makers’ responses regarding the immaterial criterion.

Criteria ψ
Z
1

β1

ψ
Z
2

β1

ψ
Z
3

β1

ψ
Z
1

β2

ψ
Z
2

β2

ψ
Z
3

β2

c1 0 0 0 0 0 0

c2 0 0 0 0 0 0

c3 1 1 1 3 2 2

c4 2 0 2 2 5 2

c5 0 0 0 0 0 0

c6 4 6 4 2 0 3
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In this case, we consider ξ ,µ, ν = 0 for the selection of the immaterial and vital criteria. According to Eqs. 
(13) and (14), results of the evaluation of the decision-makers’ opinions are demonstrated in Tables 11 and 12 
where c1 (Latent Heat) is determined as the vital in the first comparison, and c5 (Thermal Conductivity) is deter-
mined as the second vital criterion in the second comparison. Criterion c6 (Cost) plays the immaterial criterion 
role and c4 (Specific Heat) is selected by the experts to affect the criteria weighting process as the second immate-
rial criterion in the second comparison, as shown in Table 12 of the first comparison.

Computing weights of criteria. The prerequisite of VIMM algorithm is the goal definition, where if there 
is one goal for the decision-making problem, the first scenario ought to be employed; otherwise, VIMM: the 
second scenario must be used. This paper’s case follows one goal: selecting the most proper phase change mate-
rial to store solar energy.

Since the weights were computed  in96 work, in contrast to the classic VIMM and instead of using the algorithm 
for the computation of the vital and immaterial criteria, we relied on the experts’ opinions and the vital and 
immaterial criteria in the second comparison are selected by them. In our case, there are no mediocre criteria 
selected by decision-makers.

The first step of computing weights of criteria is to allocate 5 and 1 to the first selected vital and immaterial 
criteria which are c1 , the Latent Heat, and c6 , the Cost, then:

The seven experts are asked to give their expert opinions to run the comparison. The first two comparisons 
of the remaining criteria and the selected vital and immaterial are shown in Tables 13 and 14, where the scale as 

c1 = 5

c6 = 1

Table 11.  The vital criteria selection for two comparison processes based on expert opinions.

Table 12.  The immaterial criteria selection for two comparison processes based on the experts’ opinion.

Table 13.  Comparison of latent heat (vital criterion) with other criteria.

Criteria c2 c3 c4 c5

c1 6.166 3.882 3.827 7.053
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illustrated in Fig. 2 is used to conduct the comparison. The next phase is to compute the distances between all 
criteria, and the vital and immaterial criteria are shown in Table 15, where d+ stands for the distance between 
the criteria and the immaterial criterion, while d− displays the distance between the criteria and the vital crite-
rion. To display the computation of d+ and d− , the following examples are provided. The normalized distance 
matrix, as shown in Table 16, is derived using Eqs. 6, and 7, where d+′ and d−′ indicate the normalized distances.

The next step is to compute the first criteria’ scores and identify the second vital and immaterial using the 
VIMM algorithm’s “step no 4.2” and Eq. (8).

Similar to what have been selected by decision-makers (shown in Tables 11 and 12), as displayed in Table 17, 
Specific Heat and Thermal Conductivity are calculated as the immaterial and vital criteria, respectively. In the 
next step, the remaining criteria are compared with the second vital and immaterial criteria, the Thermal Con-
ductivity and the Specific Heat. The comparisons are conducted by decision-makers as presented in Tables 16 

d+Density = 6.414− 1

d−Density = 10− 6.166

Table 14.  Comparison of cost (immaterial criterion) against other criteria.

Criteria c2 c3 c4 c5

c6 6.414 2.126 2.023 8.080

Table 15.  Distances between the criteria and first vital and immaterial criteria.

Criteria d+′ d−′

c2 5.414 3.834

c3 1.126 6.118

c4 1.023 6.173

c5 7.080 2.947

Max 7.080

Min 6.173

Table 16.  Normalized distance matrix.

Criteria d+ d−

c2 0.765 1.610

c3 0.159 1.009

c4 0.144 1.000

c5 1.000 2.095

Table 17.  The first scores, and the second vital and immaterial criteria.

Table 18.  Comparison of the vital criterion c5(thermal conductivity) with the remaining criteria.

Criteria c2 c3

c5 0.1674 0.0555



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8631  | https://doi.org/10.1038/s41598-023-35405-z

www.nature.com/scientificreports/

and 17, and the corresponding scores are given in Tables 18 and 19, and the normalized distance matrix is 
illustrated in Table 20.

The final phase is the computation of the weights, which are extracted from the scores. To do that, first, the 
scores need to be calculated. The final comparison is shown in (Table 21) in which Density is the final vital 
criterion and the Specific Heat (Cp(s)) is the last immaterial criterion. The scoring continues until all criteria 
received their final 5 and 1 values. The allocation of value to the vital criteria continues to the last comparison, 
while the immaterial criteria receive merely one time their corresponding value. The criteria weights as derived 
using Eqs. (9) and (10) are the displayed in Table 22.

Table 19.  Comparison of the immaterial criterion, c4(specific heat, (Cp(l)), against the remaining criteria.

Criteria c2 c3

c4 0.1674 0.0555

Table 20.  Normalized distance matrix and second scores of criteria.

Criteria + − + −

2 2.170 2.063 1 1 2.000

3 0.051 7.368 0.024 0.280 0.303

Max 2.170

Min 2.063

′ ′

Table 21.  Final comparison process. Significant values are in bold.

Criteria 1 2 3 Vital Immaterial

1 5 5 5

2 2.374 2.000 5
3 1.168 0.303 1
4 1.144 1 0

5 3.095 5 5

6 1 0 0

The immaterial criterion 

extracted from 2

The vital criterion 

extracted from 2

Table 22.  Derived criteria weights.
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Ranking materials. The final step in evaluating the materials is to derive the ranking orders of the alterna-
tives using SRP which is based on ranking each alternative in relation to each criterion. The weighted ranking 
matrix, obtained from the material evaluation decision matrix of Table 5 using Eqs. (2) and (3), is shown in 
Table 23. The ranking order, as presented in Table 24, is determined using the total ranking scores of the alterna-
tives, calculated in the fifth stage of SRP method using Eq. (4). The ranks of the materials are finally shown in 
the same table employing Eq. (6) which indicates RT 60 (A4) as the best material to choose for the considered 
application.

Discussion
This paper introduced SRP to solve material selection problems. In this new method, the importance weights 
of criteria play the leading role in evaluating the decision-making problems’ alternatives. Since the new method 
algorithm’s process is mainly grounded on the ranks of each alternative against each criterion, it heavily relies 
on the weights of each criterion.

SRP is applied to a material selection problem to evaluate a set of materials used to store solar energy. 
Although the criteria weights have already been determined by Rathod and  Kanzaria96, yet we asked seven 
experts to re-evaluate the criteria. VIMM, a reliable MCDM subjective weighting method, is used for extracting 
opinions of the decision-makers. The original criteria weights, as determined by Rathod and  Kanzaria96, are also 
utilized to compare the differences between the produced results in order to show how sensitive the SRP is to 
the criteria weights (see Table 25).

The difference between the two rankings is illustrated in Fig. 4. To better understand the sensitivity of SRP 
to criteria weights, different weight sets computed by two most popular MCDM objective weighting methods 
namely Shannon’s entropy and CRITIC are considered here. The set of weights computed by Entropy and CRITIC 
methods are as follows:

Figure 5 shows considerable differences between the ranks of the results affected by distinctive weights 
derived by different MCDM weighting methods, including objective and subjective approaches. This figure also 
demonstrates high sensitivity of SRP to criteria weighting. Reliability of SRP is directly related to the reliability 

W
entropy
j = {0.012, 0.050, 0.194, 0.046, 0.571, 0.128},

WCRITIC
j = {0.227, 0.134, 0.176, 0.151, 0.131, 0.180}.

Table 23.  Weighted ranking matrix using group decision-making and VIMM: the first scenario.

Wj 0.348 0.218 0.057 0.050 0.304 0.023

PCM c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

A1 9 1 6 5 1 1 3.132 0.218 0.342 0.25 0.304 0.023

A2 8 2 1 2 5 5 2.784 0.436 0.057 0.1 1.52 0.115

A3 7 4 2 6 3 2 2.436 0.872 0.114 0.3 0.912 0.046

A4 4 3 7 8 4 1 1.392 0.654 0.399 0.4 1.216 0.023

A5 5 5 4 1 5 2 1.74 1.09 0.228 0.05 1.52 0.046

A6 6 6 3 2 2 2 2.088 1.308 0.171 0.1 0.608 0.046

A7 2 9 9 4 7 2 0.696 1.962 0.513 0.2 2.128 0.046

A8 3 8 5 7 6 4 1.044 1.744 0.285 0.35 1.824 0.092

A9 1 7 8 3 8 3 0.348 1.526 0.456 0.15 2.432 0.069

Table 24.  Total ranking scores of materials along with derived ranking.

PCM SRi Ri Rank by SRP

A1 4.269 4.731 2

A2 5.012 3.988 7

A3 4.68 4.32 5

A4 4.084 4.916 1

A5 4.674 4.326 4

A6 4.321 4.679 3

A7 5.545 3.455 9

A8 5.339 3.661 8

A9 4.981 4.019 6
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of weighting method used to assess the criteria under investigation. In this paper, VIMM method is used as a 
subjective weighting tool to derive criteria weights from decision-makers’ opinions. This goal-oriented MCDM 
weighting method is more reliable than classic forms of BWM and AHP. According to Zakeri et al.9, there are 
three main advantages of VIMM over the mentioned weighting methods including fewer number pairwise com-
parison, where n(n− 1)/2 and 2n− 3 number of comparisons are required for AHP and BWM respectively, while 
VIMM needs merely (n− 1)/2 and n/2 number of comparisons for even and odd numbers of criteria in the evalu-
ation process. In contrast to AHP method, VIMM is not limited to the number of criteria since it re-evaluates the 
criteria in every process. VIMM is designed to consider the decision-making goal(s) by proposing two scenarios, 
where the first scenario is developed to evaluate the weights of criteria in a decision-making problem with one 
goal, and the second scenario is developed to consider more than one goal in its process of the computation 
of the criteria weights. Thus, it is a proper pair for SRP in ranking alternatives to a decision-making problem.

Four MCDM methods, including WPM, VIKOR, and TOPSIS have also been applied to compare the results 
obtained from SRP. The difference between rankings is pictured in Fig. 6.

Figure 6 demonstrates that there is no compromise in ranking among the four methods. Thus, the comparison 
of MCDM results in the previous section cannot be used to validate the findings, leading to the next section.

The compromise decision index (CDI). In complex MCDM problems with several alternatives and cri-
teria, irregularity in the result of comparing the generated rankings is inevitable. As shown in the previous 

Table 25.  New ranking orders obtained using the original weights, estimated by Rathod and  Kanzaria96.

Wj 0.4901 0.1674 0.0528 0.0528 0.2109 0.0261 SRP calculations

PCM c1 c2 c3 c4 c5 c6 SRi Ri Ranking

A1 9 1 6 5 1 1 5.3961 3.6039 9

A2 8 2 1 2 5 5 5.599 3.401 8

A3 7 4 2 6 3 2 5.2076 3.7924 7

A4 4 3 7 8 4 1 4.1243 4.8757 2

A5 5 5 4 1 5 2 4.6582 4.3418 3

A6 6 6 3 2 2 2 4.683 4.317 4

A7 2 9 9 4 7 2 4.7017 4.2983 5

A8 3 8 5 7 6 4 4.8129 4.1871 6

A9 1 7 8 3 8 3 4.0082 4.9918 1

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Ranking with VIMM weights Ranking with original weights

Figure 4.  Comparative analysis of rankings affected by the criteria weights computed by the VIMM method 
and the original criteria weights.
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0 1 2 3 4 5 6 7 8 9 10

Ranking with the VIMM weights Ranking with the original weights

Ranking with the CRITIC weights Ranking with the Entropy weights

Figure 5.  Comparative analysis of rankings affected by different weights computed by VIMM, CRITIC, 
Entropy, and original methods.
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section, there is an irregularity in the rankings generated by the MCDM methods; therefore, for these types of 
situations, we have proposed an index called CDI to interpret the comparison between the outputs of MCDM 
methods in the processes that at least four MCDM methods are applied to solve an MCDM problem ( K ≥ 4 ), 
where K denotes the number of MCDM methods, the number of alternatives equals m ≥ 2K , and the number 
of criteria equals n ≥ (2k − 2) , which is the limitation of AHP in the evaluation of criteria where it is restricted 
to seven (+ ⁄– 2)  criteria9.

The following steps shows the computation process of CDI.
Step 1 Computing the performance of each alternative in accordance with Eqs. (18) and (19) respectively, 

where δi is the performance of i th alternative, ζR denotes weight of each rank, R stands for each rank, and Ai 
states the i th alternative.

Step 2 Ranking alternatives according to the higher value of δi.
Step 3 Calculating the deviation of each ranking fashioned by each MCDM method to the performance of 

alternative, according to (Eq. (20)).

Step 4 The final step is the computation of CDI values using Eq. (21).

CDI puts the results of MCDM methods in four types of compromises: Pragmatic compromise, Rational com-
promise, Fair compromise, and Rotten compromise. The results are interpreted concerning these compromises 
according to the defined categories provided by  Wendt97.

The pragmatic compromise. When there is a pragmatic reason for compromise, the pragmatic compromise 
makes. When CDI shows the ranks have pragmatic compromise, results of the MCDM method are considered 
to be reliable.

The rational compromise. According to Wendt.97, a compromise is rational when it is rational for all parties to 
agree on the compromise. When CDI interprets the comparison of ranks as the rational compromise, ranking 
produced by the MCDM method is reliable to some extent. However, it is better to add another MCDM method 
to reach a pragmatic compromise.

The fair compromise. When a fair compromise is made in the comparison analysis, decision-makers could 
decide whether to consider the compromise as a rational compromise or rely on the practical results.

The rotten compromise. According to Wendt.97, the purpose of introducing the concept of a "rotten compro-
mise" is to have a term that signifies compromises that are morally dubious or unethical. When CDI interprets 
the results as a rotten compromise, it means that the results of MCDM methods cannot be validated theoreti-
cally, and practical results must be evaluated and validated.

(18)δi = ζRi F
Ri
Ai
, i = {1, 2, . . . ,m}, FRi

Ai
≤ K,

(19)ζRi =

(

∑

ζRi

)−1
(m− Ri + 1),

(20)σi =

√

√

√

√

z
∑

K=1

(

Xi − YK
i

)2
,K = {1, .., z}, i = {1, . . . ,m},

(21)CDI = 1/100

m
∑

i=1

σi .

0
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TOPSIS WPM VIKOR SRP

Figure 6.  Comparison between rankings generated by four MCDM methods.
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To interpret the results in accordance with the categories, first the maximum deviation needs to be computed. 
The minimum deviation equals to zero, where all the applied MCDM methods generated the same results. The 
interpretation of the results is based on Fig. 7, where

To interpret the obtained results from the comparison between the MCDM results with CDI, the distribution 
of the materials’ rankings generated by the four MCDM methods needs to be calculated (see Fig. 8). According 
to Eqs. (18) and (19), performance of the materials is shown in Table 26. According to Eqs. (20), (21), CDI = 
0.430705. According to Eqs. (22), (23), (24), the interpretation of CDI is the fair compromise (see Fig. 9), where 
max
1≤i≤m

σi = 0.64.

(22)CDI1 = max
1≤i≤m

σi/4,

(23)CDI2 = max
1≤i≤m

σi/2,

(24)CDI3 = max
1≤i≤m

σi .

CDI1 = 0.16

0 1

The Pragmatic 
compromise

The Rational 
compromise The Fair compromise The Rotten 

compromise

Figure 7.  Interpretation of the MCDM results comparison based on the CDI.
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Figure 8.  Distribution of each material rank according to the MCDM methods.
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The comparative rankings analysis -the performance analysis. Similar to SRP, AHP is also highly 
sensitive to criteria weights. This section uses the Zakeri–Konstantas performance correlation coefficient and 
the dependency analysis to evaluate the SRP performance. ARAS and COPRAS (see Goswami et al.6 are also 
added to the list for the similarity evaluation. The rankings generated by the mentioned methods are illustrated 
in Fig. 10. The Zakeri-Konstantas performance correlation coefficient has been employed to execute the com-
parative performance analysis of the MCDM methods, and the dependency analysis is used to validate the new 
MCDM method.

CDI2 = 0.32

CDI3 = 0.64

Table 26.  Performance of materials.

ζRi

R1 R2 R3 R4 R5 R6 R7 R8 R9

δi Rank

0.200 0.178 0.156 0.133 0.111 0.089 0.067 0.044 0.022

PCM F
R1

A1
F
R2

A2
F
R3

A3
F
R4

A4
F
R5

A5
F
R6

A6
F
R7

A7
F
R8

A8
F
R9

A9

A1 2 1 0 0 1 0 0 0 0 0.689 1

A2 1 0 0 2 0 0 1 0 0 0.533 2

A3 0 0 2 0 1 1 0 0 0 0.511 3

A4 1 0 0 0 0 2 1 0 0 0.444 4

A5 0 0 0 2 1 0 0 0 1 0.400 5

A6 0 1 1 0 1 0 1 0 0 0.511 3

A7 0 1 0 0 0 0 1 2 0.244 8

A8 0 1 0 0 0 0 0 3 0 0.311 7

A9 0 1 0 0 0 1 1 0 1 0.356 6

0 1

3 = 0.642 = 0.321 = 0.16

The Pragmatic 
compromise

The Rational 
compromise

The Fair compromise

The Rotten 
compromise

=

Figure 9.  The fair compromise of CDI for the material selection problem.
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Figure 10.  Ranking of alternative materials using different MCDM methods.
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Zakeri‑Konstantas performance correlation coefficient. Zakeri-Konstantas performance correlation coefficient 
a new tool to evaluate the similarities of the outputs of the MCDM methods. Introduced  by98, Zakeri–Konstan-
tas performance correlation coefficient is a new nonparametric measure of rank correlation that measures the 
similarities between the rankings generated by different MCDM methods. In order to provide the similarity 
degree of the two MCDM methods, the new coefficient computes each decision option’s performance based on 
its corresponding rank in the data sets generated by the two MCDM methods. Equations (24) and (25) depict 
the computation of similarity conducted by Zakeri-Konstantas performance correlation coefficient, where ZK 
stands for the Zakeri-Konstantas performance correlation coefficient, N denotes the natural numbers, and  Rl

i 
and Rh

i  show the rank of i th alternative generated by l  th MCDM algorithm and the rank of i th alternative gener-
ated by h th MCDM algorithm respectively. Zakeri-Konstantas performance correlation coefficient is architected 
on two main bases, 1. significance of each option using Eqs. (26),and (2). performance of each option in each 
rank using Eq. (27), and the total performance using Eq. (28). The performance analysis results are exhibited 
in Fig. 11, where COPRAS showed the most similar results to SRP, and ARAS has the slightest similarity in the 
performance according to the results obtained from the Zakeri-Konstantas performance correlation coefficient. 
The results also show that AHP and SRP are different in generating results.

where

The dependency analysis. The comparison process was conducted in the previous section to determine how 
dependent each method is on the weights of criteria. As a result, a new statistical measure called dependency 
analysis was proposed instead of using sensitivity analysis. The dependency analysis measures the dependency 
of a ranking on the information embedded in a criterion’s corresponding data set. Greater dependency leads to 
an increased sensitivity of the method to changes in criteria weights, which in turn results in greater reliability. 
The dependency analysis is grounded on three central concepts: fair vital importance, real importance, and fair 
feeble importance. It measures changes in a ranking based on the impact of the mentioned concepts to estimate 
the dependency of a ranking on each criterion. The following equations show its process, where θ cxj  , �cxj  , βcx

j  , and 
wcF
j  stand for the real importance, the fair vital importance, fair feeble importance of x th criteria, and weights 

of the rest criteria, respectively. The constant values of �cxj  , βcx
j  , and wcF

j  have been provided in Tables 27 and 28.

In Eqs. (33) and (34), R
β
cx
j

Ai
 , R

�
cx
j

Ai
 , and R

θ
cx
j

Ai
 denote the rank i th alternative ( Ai ), affected by the fair vital impor-

tance, fair feeble importance, and the real importance. �cx also demonstrates the overall dependency of the rank 
generated by an MCDM method to a criterion. � stands for the dependency of a ranking to the criteria, where  
� ≤ 0.5 expresses the reliability of the generator, in our case an MCDM method. In fact, in a comparison process 
of the generators, MCDM methods, the one that its corresponding � is closer to 1 shows the more reliability 

(25)ZK(l:h) =
100

m

m
∑

i=1

min
1≤i≤m

(

m2+m−mRli
Rli

∑m
i=1 i

;
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Rhi
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i=1 i

)
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i=1 i
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i

)2
�
0.5

= m2

2 ,m = 2κ , κ ∈ N , κ �= 0, 1

0,
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(
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)2
�
0.5
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2 ,m = 2κ + 1, κ ∈ N , κ �= 0

,

(27)UF
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(

(m+ 1)− RF
i

)

m
∑

i=1

i

−1

, i = {1, . . . ,m},

(28)ŴF
i = RF

i �
(

(m+ 1)− RF
i

)

m
∑

i=1

i

−1

�, i = {1, . . . ,m},

(29)ZKt
(l:h) = ZK(l:h)(m− 1)−1, i = {1, . . . ,m},
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Figure 11.  Performance similarity evaluation of ARPAS, COPRAS, and AHP with SRP using Zakeri-
Konstantas performance correlation coefficient.
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and the more dependency to the criteria. In contrast,  � ≥ 0.5 portrays the unreliability of the generator, or the 
MCDM method in the evaluation of the alternatives.

Proof:

Figure 12 depict the changes in each material’s rank caused by applying each criterion’s corresponding fair 
vital importance and fair feeble importance compared to the original ranking associated with the criteria’s real 
importance. Compared to the changes in overall ranks affected by fair vital importance in overall rankings, 
almost no changes were detected in the rankings affected by the feeble fair criteria, which indicates that the 
SRP becomes more sensitive to weight changes by increasing the number of criteria. Figure 13, developed using 
Eq. (33), displays the dependency of the ranking generated by SRP on each criterion.

By applying Eq. (35), it has been found that the overall dependency of SRP method is 0.513, which indicates 
a value of Ω ≤ 0.50, slightly exceeding the limit established for an MCDM method’s reliability. This indicates that 
SRP method is reliable in analyzing problems with six criteria. Since SRP method employs the ranks of each 
alternative in each criterion, and the criteria weight plays a critical role in determining the generated rankings, 

(30)θ
cx
j = wx , j = {1, . . . , n}, x ∈ j, x ≤ n,

(31)�
cx
j =















n−1(n− 1)
�

wj , j = {1, . . . , n}, x ∈ j, x ≤ n, n ≤ 6

�n−1(n− 1)
�

wj� − ς , j = {1, . . . , n}, x ∈ j, x ≤ n, 7 ≤ n ≤ 9, 0.01 ≤ ς ≤ 0.05

�n−1(n− 1)
�

wj� − ς , j = {1, . . . , n}, x ∈ j, x ≤ n, 10 ≤ n ≤ 15, 0.06 ≤ ς ≤ 0.09
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Table 27.  Constant values of the fair vital importance based on the number of criteria, 20 criteria, max
1≤j≤n

j = 20.

n

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

�
cx
j 0.800 0.833 0.857 0.875 0.889 0.900 0.909 0.917 0.923 0.929 0.933 0.938 0.941 0.944 0.947 0.950

w
cF
j 0.050 0.033 0.024 0.018 0.014 0.011 0.009 0.008 0.006 0.005 0.005 0.004 0.004 0.003 0.003 0.003

ς 0.01 ≤ ς ≤ 0.05 0.05 ≤ ς ≤ 0.1 0.06 ≤ ς ≤ 0.11

Table 28.  Constant values of the fair feeble importance based on the number of criteria, 20 criteria, 
max
1≤j≤n

j = 20.

n

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β
cx
j 0.250 0.217 0.193 0.175 0.161 0.150 0.081 0.073 0.067 0.061 0.057 0.053 0.049 0.046 0.043 0.040

w
cF
j 0.188 0.157 0.135 0.118 0.105 0.094 0.092 0.084 0.078 0.072 0.067 0.063 0.059 0.056 0.053 0.051

ξ 0 < ξ ≤ 0.05 0 < ξ ≤ 0.025
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Figure 12.  (a) Changes in ranking, affected by the vital and feeble fair importance values, associated with 
weight of c1 . (b) Changes in ranking, affected by the vital and feeble fair importance values, associated with 
weight of c2 criterion. (c) Changes in ranking, affected by the vital and feeble fair importance values, associated 
with weight of c3 criterion. (d) Changes in ranking, affected by the vital and feeble fair importance values, 
associated with weight of c4 criterion. (e) Changes in ranking, affected by the vital and feeble fair importance 
values, associated with weight of c5 criterion. (f)Changes in ranking, affected by the vital and feeble fair 
importance values, associated with weight of c6 criterion.
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reliability of the method improves with increasing criteria, making it an effective tool for solving complex 
MCDM problems.

The comparative rankings analysis—Similarity measures. In this section, the obtained ranks from 
different MCDM methods have been evaluated through six similarity measures, including Manhattan distance 
and total similarity Eqs. (36) and (37), Canberra distance and total similarity Eqs. (38) and (39), Chi-square dis-
tance and total similarity Eqs. (40) and (41), and Squared Euclidean distance and total similarity Eqs. (42) and 
(43), in order to conclude the similarities between SRP and other MCDM methods Eq. (44). In the equations, 
Rx , Ry , Rx

i  , and Ry
i  represent the output of x th MCDM method, y th MCDM method, i th alternative’s rank in 

x th MCDM method, and the same alternative’s rank in y th MCDM method, respectively. Td(Rx ,RV ) denote the 
total similarity between x th MCDM method and yth MCDM method, in which ℵ signifies the total number of 
MCDM methods that have been used for similarity evaluation.
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Figure 12.  (continued)
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Manhattan distance. Using Manhattan distance to evaluate the similarities between SRP and VIKOR, WPM, 
TOPSIS, ARAS, COPRAS, and AHP showed that VIKOR has the most resemblance in evaluating materials with 
SRP. The results of using Manhattan distance are illustrated in Fig. 14.

Canberra distance. Similar to the Manhattan distance, the Canberra distance puts VIKOR most resembling 
SRP. Applying the Canberra distance puts AHP higher than TOPSIS as the second most resemblance method 
to the SRP in solving the material selection problem. In contrast, the Manhattan distance considers TOPSIS the 
second most resemblance method to the SRP with a slightly higher score (see Table 29). The results of the Can-
berra distance application are pictured in Fig. 15.
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Figure 14.  Comparative analysis of the similarity between SRP and other MCDM methods using Manhattan 
distance.
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Chi‑square distance. The Chi-square distance analysis reveals that AHP is the second most similar MCDM 
method to SRP, while WPM is the least similar. In comparison to Manhattan and Canberra distances, where 
COPRAS and WPM have almost equal scores, Chi-square distance gives WPM the lowest similarity score and 
the farthest distance from the COPRAS method. The results of this comparison are shown in Fig. 16.

Squared Euclidean distance. Except for VIKOR which has been placed by Squared Euclidean distance as the 
most similar method to SRP dominantly, TOPSIS is the second MCDM method that shows similarity to SRP in 
ranking the materials. The results of Squared Euclidean distance application are portrayed in Fig. 17.

Total similarity. "Total similarity" as computed using Eq. (44), has generated almost identical rankings of simi-
larity, where VIKOR, TOPSIS, and AHP, with a considerable distance, are the most similar methods to the SRP 
method, respectively. On the other hand, ARAS, COPRAS, and WPM showed the most dissimilarity compared 
to SRP. The results are demonstrated in Table 29 and Fig. 18.

The rank reversal phenomenon: A comparison between SRP and other rank reversal free 
MCDM methods. The rank reversal phenomenon refers to the occurrence of changes in the relative rank-
ings of alternatives when additional alternatives are introduced or existing alternatives are removed from a set 
being evaluated in MCDM  environment99. This phenomenon can lead to inconsistent decisions and can make 

Table 29.  Results of each similarity measure method.

Distance AHP COPRAS ARAS TOPSIS WPM VIKOR

Manhattan distance 27.4509 13.7255 15.6860 27.4510 13.725 29.4117

Canberra distance 17.6120 15.5224 15.8209 17.6119 15.5223 17.9104

Chi-square distance 21.8610 11.2600 11.2470 21.2340 9.0500 25.3480

Hamming distance 22.3048 10.0371 10.7806 23.7918 7.8066 25.2788

SRP 

14 14.5 15 15.5 16 16.5 17 17.5 18 18.5

VIKOR WPM TOPSIS ARAS COPRAS AHP

Figure 15.  Comparative analysis of the similarity between SRP and other MCDM methods using Canberra 
distance.

SRP 

0 5 10 15 20 25 30

VIKOR WPM TOPSIS ARAS COPRAS AHP

Figure 16.  Comparative analysis of the similarity between SRP and other MCDM methods using Chi-square 
distance.
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it challenging to compare and evaluate alternatives across different decision problems. Several MCDM methods 
have been proven to be rank reversal-free, including Characteristic Objects Method (COMET) proposed by 
Piegat & Sałabun100 and Sałabun101, Stable Preference Ordering Towards Ideal Solution (SPOTIS) developed by 
 Dezert102, Ranking of Alternatives through Functional mapping of criterion sub-intervals into a Single Inter-
val (RAFSI) proposed by Žižović et  al.103, and the Sequential Interactive Model of Urban Systems (SIMUS) 
developed by  Munier104. Among these methods, COMET method is the first MCDM method that is completely 
immune to the rank reversal paradox. COMET method considers the correlations between the criteria, and 
provides ranking by considering the characteristic objects and fuzzy  rules101. COMET method has proven to 
be robust and effective in avoiding the rank reversal paradox in various applications, such as those described in 
Wątróbski et al.105, Shekhovtsov et al.106, Faizi et al.107, and Palczewski & Sałabun108. To test the rank reversal para-
dox of SRP, three examples are provided including a material selection case and two other numerical examples.

The material selection case. A new alternative is added to the original material selection decision matrix 
(Table  5), in which A∗

4 stands for the new alternative and its performance is equal to A4 . The new decision 
matrix and the corresponding ranks given by SRP are shown in Table 30. In order to demonstrate the correlation 
between the original ranking and the obtained ranking, Fig. 19 is presented, where a correlation of 1 is indicated, 
suggesting that SRP is a rank reversal free MCDM method.

The first numerical example. A numerical example is presented in Table 31, comprising of eleven alter-
natives and fifteen criteria. All the criteria are beneficial, having equal weights. The ranking of alternatives is 
shown in Table 32, where A6 is assigned the first rank. In the case of adding a new alternative with the same 
performance as A6, no changes have been observed in the ranks, and the correlation between the two rankings 
is one, as shown in Table 33 and Fig. 20.

Second numerical example. An additional example is presented to represent a more complex MCDM 
problem with a larger number of alternatives and fewer criteria. This example includes twenty alternatives and 
four criteria, each with equal weights, as shown in Table 33. To illustrate the robustness of SRP, a new alternative 
with the same performance as the original top-ranked alternative (A15) is added, resulting in no changes in the 

SRP 

0 5 10 15 20 25 30

VIKOR WPM TOPSIS ARAS COPRAS AHP

Figure 17.  Comparative analysis of the similarity between SRP and other MCDM methods using Squared 
Euclidean distance.
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Figure 18.  Total similarity of each MCDM method to SRP.
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ranking and a correlation coefficient of one, as shown in Fig. 21. This provides further evidence that SRP is a 
rank reversal-free MCDM method.

The above examples revealed that the SRP method is utterly immune to the rank reversal paradox. As men-
tioned earlier, SPOTIS, COMET, and SIMUS are also rank reversal-free MCDM methods. The complexity of any 
MCDM method can lead to less transparency and uncertainty in its outcomes, especially in complex systems 
with many interacting parts and variables. Increased complexity of an MCDM method also hinders the ability 

Table 30.  New ranking given by SRP after adding the new alternative.

PCM c1 c2 c3 c4 c5 c6 SRi Ri Original rank New rank

A1 169.98 1560 1.46 2.13 1.09 0.255 4.269 4.731 2 2

A2 186.5 903 2.83 2.38 0.18 0.745 5.012 3.988 7 7

A3 190 830 2.1 2.1 0.21 0.335 4.68 4.32 5 5

A4 214.4 850 0.9 0.9 0.2 0.255 4.084 4.916 1 1

A5 206 789 1.8 2.4 0.18 0.335 4.674 4.326 4 4

A6 194.6 785 1.93 2.38 0.22 0.335 4.321 4.679 3 3

A7 245 773.22 0.3767 2.267 0.14 0.335 5.545 3.455 9 9

A8 222 775.8 1.7189 1.921 0.142 0.665 5.339 3.661 8 8

A9 247 776.33 0.7467 2.377 0.138 0.336 4.981 4.019 6 6

A4* 214.4 850 0.9 0.9 0.2 0.255

 

 

Figure 19.  The correlation between two ranks to assess the rank reversal incident.

Table 31.  Decision matrix of the first numerical example.

Weight 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067

Alternative C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

A1 0.087 0.046 3.252 0.737 0.092 1.318 2.912 0.074 0.054 0.067 1.505 1.599 1.219 0.056 0.031

A2 0.002 0.094 0.732 3.564 2.545 2.059 1.860 0.056 0.070 0.085 1.265 0.116 0.783 0.080 0.005

A3 0.047 0.052 2.485 1.599 3.900 0.267 1.477 0.089 0.067 0.096 0.898 1.037 0.821 0.028 0.088

A4 0.093 0.011 1.336 1.788 1.804 3.879 2.650 0.001 0.041 0.050 0.023 0.976 1.057 0.002 0.010

A5 0.058 0.084 2.777 3.025 0.814 1.256 1.136 0.034 0.054 0.078 0.606 1.650 0.805 0.013 0.032

A6 0.017 0.032 3.353 2.240 3.840 2.005 2.250 0.030 0.099 0.080 0.578 1.660 0.669 0.030 0.083

A7 0.075 0.050 0.467 0.681 0.960 1.986 1.998 0.002 0.096 0.084 0.660 0.800 1.673 0.089 0.002

A8 0.011 0.051 2.966 0.639 0.959 3.116 0.424 0.097 0.089 0.089 0.438 0.944 0.544 0.041 0.080

A9 0.080 0.096 3.819 3.948 2.994 3.610 1.725 0.001 0.017 0.030 0.221 1.516 0.755 0.064 0.017

A10 0.002 0.035 2.546 0.787 3.038 0.552 1.946 0.002 0.007 0.050 0.068 0.397 0.127 0.029 0.002

A11 0.048 0.011 1.675 3.243 0.306 1.696 1.732 0.081 0.068 0.059 0.334 0.342 0.348 0.038 0.031
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to track and identify errors in the algorithmic output. Complex systems, such as those with numerous pairwise 
comparisons or different normalization approaches, are more likely to produce uncertain outcomes due to the 
complex interplay between variables. One of the major benefits of SRP in this context is its simplicity which helps 
to avoid those issues and provides reliable results when the problem becomes more complex.

Conclusions and future research
Material selection problems are complex MCDM problems that comprise many options and criteria. To solve 
material selection problems, a new simple MCDM method called SRP is proposed in this paper. The new method 
functions based on the different ranks of the material in each criterion to generate reliable outputs in solving 
MCDM problems. One of the sources of anomalies in comparison processes of the generated results of MCDM 
methods is the different normalization strategies employed by different MCDM methods. To enhance the reli-
ability of results in complex MCDM problems, SRP method avoids the normalization process of the decision 
matrix and operates solely with the ranks of alternatives, enabling a comparison of scores with the same unit. In 
a material selection problem that involved selecting a suitable phase change material to store solar energy, SRP 
method was employed. However, since SRP relies heavily on the criteria weights in generating rankings, it is 
essential to have a dependable method for determining these weights. In this study, VIMM method was utilized 
to extract the criteria weights through a decision-making process involving seven experts. By utilizing the newly 

Table 32.  The different alternatives’ rankings to test the rank reversal paradox.

Alternative SRi Ri SRi2 Ri2 Original rank New rank

A1 5.0000 6.0000 5.5333 6.4667 2 2

A2 5.4000 5.6000 5.8667 6.1333 4 4

A3 5.1333 5.8666 5.6000 6.4000 3 3

A4 6.9333 4.0666 7.6667 4.3333 9 9

A5 6.0666 4.9333 6.6667 5.3333 8 8

A6 4.7333 6.2666 4.7333 7.2667 1 1

A7 5.7333 5.2666 6.3333 5.6667 6 6

A8 5.8666 5.1333 6.5333 5.4667 7 7

A9 5.4666 5.5333 6.0000 6.0000 5 5

A10 8.600 2.40000 9.5333 2.4667 11 11

A11 7.0666 3.9333 7.8000 4.2000 10 10

Table 33.  Two obtained rankings from SRP application for the second numerical example.

Weight 0.25 0.25 0.25 0.25

Alternative C1 C2 C3 C4 SRi Ri SRi2 Ri2 Original rank New rank

A1 912.4845 0.3018 206.4309 0.1221 12.75 7.25 13.5 7.5 14 14

A2 517.0006 0.1986 616.1050 0.0945 13.5 6.5 14.5 6.5 16 16

A3 19.61708 0.6361 348.3409 0.1985 14.5 5.5 15.5 5.5 17 17

A4 1069.093 0.9259 918.6073 0.0005 8.25 11.75 9 12 5 5

A5 151.0204 0.0969 376.8284 0.2074 15.25 4.75 16.25 4.75 19 19

A6 1022.647 0.2007 430.3449 0.3781 9 11 9.75 11.25 6 6

A7 944.3263 1.2419 443.6463 0.2520 6.75 13.25 7.5 13.5 4 4

A8 974.168 0.2407 978.1523 0.0137 10.25 9.75 10.75 10.25 9 9

A9 504.9541 1.2165 176.6877 0.3398 10 10 11 10 8 8

A10 549.4893 0.2430 645.7940 0.2352 10.5 9.5 11.5 9.5 10 10

A11 319.5062 1.1863 57.60621 0.3537 11 9 12 9 12 12

A12 86.49311 0.6288 258.042 0.0811 15.5 4.5 16.5 4.5 20 20

A13 991.6532 0.6623 962.0012 0.3963 4 16 4.25 16.75 2 2

A14 279.4132 1.0169 688.305 0.0302 11.5 8.5 12.5 8.5 13 13

A15 787.9316 2.1867 926.4695 0.3922 3.75 16.25 3.75 17.25 1 1

A16 866.5065 1.0388 1044.6860 0.2068 6 14 6.5 14.5 3 3

A17 580.661 0.3445 430.0089 0.0343 13.25 6.75 14.25 6.75 15 15

A18 407.2574 0.5822 659.9484 0.3830 9 11 10 11 6 6

A19 460.7242 0.0873 491.7818 0.1171 14.5 5.5 15.5 5.5 17 17

A20 45.74425 0.7103 643.1528 0.2860 10.75 9.25 11.75 9.25 11 11
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proposed method to validate MCDM methods based on the analysis of their dependency on criteria weights, it 
was found that the SRP method is sensitive to changes in the criteria weights. Even slight changes in the weights 
can significantly affect the ranks of materials obtained by the SRP method. We also compared the results obtained 
from the application of other MCDM methods and found significant differences between the generated results. In 
this paper, CDI has been introduced as a new statistical measure to validate the results. CDI is used to interpret 
the results of MCDM methods in four categories, namely pragmatic compromise, rational compromise, fair 
compromise, and rotten compromise. The most reliable results were placed under the pragmatic compromise 
category. On the other hand, undependable results were interpreted according to the fair compromise and 
the rotten compromise situations, and their comparison needed to be executed in the real world to determine 
which method was better, while the mathematical proof was enough in the first category. The comparison results 
were put under the fair compromise category by the results of CDI. The new measure will decrease the cost of 
wrong material selection. The obtained ranking from SRP is also compared with other MCDM methods using 
Zakeri-Konstantas Performance Correlation Coefficient, which showed that the new method is more similar to 
the COPRAS than AHP and ARAS. Four different similarity measures are also applied to evaluate the similarity 
between other MCDM methods to SRP which has some salient advantages to make it an ideal MCDM method 
for solving complex problems. Overall, with the employed comparison processes, it is concluded that:

1.  SRP produces more reliable products since it does not execute the normalization process.

 

 

Figure 20.  Correlation between two obtained rankings for the first numerical example.

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
a
n
k
 2

Rank 1

Figure 21.  The correlation between two obtained rankings from the second numerical example.
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2.  SRP is a reliable MCDM method since the analytical processes showed that it is sensitive to changes in the 
criteria weights.

3.  SRP is designed to generate ranking in a less complex analysis which correlates to less uncertainty in the 
final results.

4.  The algorithm of SRP is easy to reverse track by decision-makers to identify possible errors.
5.  The reliability of SRP increases by increasing the number of criteria, making it ideal for solving complex 

decision-making problems involving a large number of criteria and alternatives.
6.  According to the results obtained from evaluation of the similarities between other MCDM methods and 

SRP, it is observed that SRP behaves similar to distance-based methods, e.g. VIKOR and TOPSIS, and also 
shows a resemblance to AHP in some results.

The results also revealed a limitation of SRP. The obtained results are not potentially reliable for those MCDM 
problems where the number of criteria is less than six, which makes it an ideal method for solving complex 
MCDM problems involving higher number of criteria. Future research would be interesting in assessing the 
applicability and validation of the new method. Application and validation of the results of SRP for solving other 
material selection problems is the second suggestion for future research. Validation of the interpretation of CDI 
by simulation is a very interesting future study work. Other intriguing ideas for future research include compar-
ing the interpretation with other statistical techniques and CDI to validate the outcomes. Integrating criteria 
weights from different weighting methods, including both subjective and objective methods, with dependency 
analysis to evaluate and validate the result is another exciting suggestion for future research. This paper used 
VIMM: the first scenario as a weighting method because of its reliability. It is also suggested to use AHP and 
BWM in conjunction with SRP to comparing the results as future research scope. Development of extensions of 
SRP for resolving different types of MCDM problems with multiple-layer criteria is the concluding suggestion 
for further research. 
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