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Stochastic optimization 
of a uranium oxide reaction 
mechanism using plasma flow 
reactor measurements
Mikhail Finko 1*, Batikan Koroglu 1, Kate E. Rodriguez 1, Timothy P. Rose 1, 
Jonathan C. Crowhurst 1, Davide Curreli 2, Harry B. Radousky 1 & Kim B. Knight 1

In this work, a coupled Monte Carlo Genetic Algorithm (MCGA) approach is used to optimize a gas 
phase uranium oxide reaction mechanism based on plasma flow reactor (PFR) measurements. The 
PFR produces a steady Ar plasma containing U, O, H, and N species with high temperature regions 
(3000–5000 K) relevant to observing UO formation via optical emission spectroscopy. A global kinetic 
treatment is used to model the chemical evolution in the PFR and to produce synthetic emission 
signals for direct comparison with experiments. The parameter space of a uranium oxide reaction 
mechanism is then explored via Monte Carlo sampling using objective functions to quantify the 
model-experiment agreement. The Monte Carlo results are subsequently refined using a genetic 
algorithm to obtain an experimentally corroborated set of reaction pathways and rate coefficients. 
Out of 12 reaction channels targeted for optimization, four channels are found to be well constrained 
across all optimization runs while another three channels are constrained in select cases. The 
optimized channels highlight the importance of the OH radical in oxidizing uranium in the PFR. This 
study comprises a first step toward producing a comprehensive experimentally validated reaction 
mechanism for gas phase uranium molecular species formation.

The reaction kinetics of gas phase metal oxides are of broad relevance to many research fields, including astro-
physics, combustion science, nuclear engineering, and material chemistry in extreme environments. In recent 
years, the latter field has produced numerous experimental and computational works on uranium oxide ( UOx ) 
vapor chemistry1. Gas phase products of refractory oxides, like UOx , have historically been challenging to 
produce due to the high vaporization temperatures of the parent oxides. More recently, thermal plasma sys-
tems have provided an avenue for readily producing gas phase metals and studying their chemistry in reactive 
environments. However, the rapid quenching times, presence of background radicals, and formation of volatile 
intermediate oxides in such systems make it difficult to isolate specific reaction channels for study. Similar 
problems arise in other reactive high temperature systems like metal combustion fuels. As a result, gas phase 
metal oxidation mechanisms are often based on sparse experimental data and first-order theoretical estimates, 
as for aluminum oxide formation2–4. Likewise, a UOx reaction mechanism was constructed using a comparable 
methodology in our previous work5. Although such mechanisms produce qualitatively reasonable results that 
may align with some experimental observables, detailed experimental validation is difficult to achieve. This 
validation step is crucial for ensuring that the chemical kinetic mechanism can be used in a predictive manner 
to inform subsequent models. Here, we explore a method of inferring rate coefficients of uranium oxide ( UOx ) 
based on experimental measurements from a thermal plasma system.

Due to the strongly coupled and non-linear nature of chemical kinetics in uranium plasmas, extracting 
reaction rate information necessitates solving an optimization problem. In this problem, the underlying model 
parameters (rate coefficients) are determined based on observed outputs (i.e. spectroscopic information). Solving 
such a problem by deterministic gradient-based methods is difficult due to the potentially complex parameter 
space with numerous local minima. In this case, one must instead utilize an optimization method capable of 
continuously exploring the entire parameter space while locating the global minimum. One such method previ-
ously used for chemical kinetics problems is the Monte Carlo genetic algorithm (MCGA)6. This technique is well 
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suited for the current problem due to its effectiveness in avoiding convergence on local minima and its ease of 
implementation. Regardless of methodology, solving an optimization problem requires repeated evaluations of 
the associated model, often numbering in the thousands to millions of runs. While reasonable computational 
times are achieved when solving for the chemical kinetics in a spatially uniform system, the problem quickly 
becomes unfeasible when the chemistry is coupled with complex fluid transport. This consideration becomes 
important when choosing an experimental system for informing the optimization problem.

Experimental systems suitable for informing the uranium-oxygen reaction mechanism optimization at atmos-
pheric pressure include laser ablation systems7–14 and a plasma flow reactor (PFR)15,16. Laser ablation systems 
utilize a high-intensity pulsed laser to volatilize metal samples, producing rapidly expanding reactive plasma 
plumes. If performed by a sufficiently powerful laser in atmospheric conditions, the ablation is accompanied by 
a shock wave at the plume-ambient interface reminiscent of a fireball blast wave. The chemical composition of 
the plume as a function of time can then be measured using optical spectroscopy. The plasma flow reactor, on the 
other hand, produces a uranium plasma using an inductively coupled plasma (ICP) torch attached to a quartz 
tube. While the RF plasma is generated by an argon flow, an aqueous uranium solution is introduced into the 
torch, producing a uranium bearing plasma that cools as it flows downstream. Optical spectroscopy is used to 
measure the chemical evolution of select species in the plasma at various points along the tube.

Although both experimental systems could theoretically be used for optimizing a reaction mechanism, a 
major advantage of using the plasma flow reactor is that the species residence time can be correlated with the 
distance along the reactor. That is, if we follow a parcel of fluid with a known starting chemical composition 
through the reactor, its chemical composition at a given position can be related to its residence time via the flow 
rate. This Lagrangian approach allows the chemical evolution in a plasma flow reactor to be approximated using 
a purely transient model, such as a global kinetic model15. In contrast, the complex transport behavior of a laser 
ablation plume requires employing a more computationally expensive model, such as a reactive compressible fluid 
model17. Based on our previous experience with the above simulations, a global kinetic model of the flow reactor 
completes in a matter of seconds, whereas a fluid laser ablation model might take hours or longer to complete. The 
significant reduction in computational effort required to model the plasma flow reactor is critical for optimiza-
tion and motivates the use of the system in this work. Below, we outline how the PFR experiments, modeling, 
and MCGA optimization are carried out to produce an experimentally constrained UOx reaction mechanism.

Methodology
System description.  The PFR is a commercially available ICP system that was modified18 to study gas 
phase chemical kinetics and nanoparticle formation and growth. A diagram of the PFR used in this work is 
shown in Fig. 1. The inlet region of the PFR consists of three concentric annular flow channels, each with a 
separate flow rate and composition. An aqueous uranyl nitrate solution ( UO2(NO3)2 · 6H2O ) is nebulized into 
liquid droplets and introduced via the innermost channel (marked in red) using a carrier gas (argon). For a typi-
cal argon gas flow rate of 1 L/min, the uranium is about four orders of magnitude less abundant than argon in the 
innermost flow (i.e. ∼100 ppm). To enhance oxidation kinetics, oxygen gas can be added through this channel, 
with typical flow rates of 10–50 mL/min. In addition, the outermost channel (marked in blue) provides an added 
12–14.4 L/min of argon gas flow to sustain the plasma and to cool the outer quartz wall. The central channel 
(marked in green) is not used in these experiments. Based on the above flow rates, analyte concentrations are on 
the order of 10 to 100 ppm in the downstream flow, depending on the extent of radial mixing and diffusion. The 

Figure 1.   Diagram of the plasma flow reactor. Sub-figure (a) shows the upstream nozzle injector region, 
plasma location, and downstream quartz tube. Sub-figure (b) highlights the three concentric annular inlet flow 
channels, the location of the inductively coupled plasma (ICP) coil, and the optional ring flow injector of the 
inlet region.
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number densities, flow rates, and composition of the fluid components prior to entering the plasma are listed in 
Table 1, with uranium nitrate split into its component molecules for convenience.

A 40 MHz RF plasma is generated downstream of the inlet channels using an inductive coil surrounding the 
outer quartz tube. Since the majority of the inlet flow is argon and the plasma is generated at atmospheric pres-
sure, the thermodynamic and transport properties of the plasma can be closely approximated as that of an LTE 
argon plasma19,20. The plasma and downstream flow temperatures can be modified by adjusting the outermost 
argon flow rate and the power provided by the power supply. Lastly, an optional ring flow injector can be used 
to introduce additional argon flow further downstream of the RF coil, although this feature was not utilized in 
this work. Alternatively, a constant diameter quartz tube extension can be connected to the torch when the ring 
flow injector is not needed.

Optical emission spectroscopy (OES) is used to track the evolution of U and UO in the PFR. Light emitted 
by the plasma is routed to a spectrometer using a fiber optic cable positioned at various axial locations along the 
flow reactor. A motorized linear translation stage is used to move the fiber optic cable along the x-axis denoted 
in Fig. 1, keeping the fiber at a fixed radial distance away from the reactor center. The end of the RF coil is used 
as the reference x = 0 axial location for all measurements (as shown in Fig. 1).

Both the ring flow and constant diameter configurations described above feature optically opaque regions 
where the flow emission is obscured. These regions cover 0–3 cm and 3–5 cm from the RF coil for the constant 
diameter extension and the ring flow injector, respectively. Furthermore, as the fiber optic tip is conductive and 
was not insulated, the minimum axial distance from the RF coil was kept to 1 cm to prevent arcing. Since the 
flow characteristics in the torch region should be identical for both configurations, the observation limitations 
are overcome by combining upstream and downstream data taken with the ring flow and constant diameter 
configurations, respectively.

Monte Carlo genetic algorithm.  Calibrating a reaction mechanism with respect to experimentally meas-
ured quantities is an example of an inverse problem, that is, one where the governing equations and solution are 
known, but the input parameters are not. This type of problem typically does not admit a unique solution and is 
instead posed as an optimization problem where the suitability of a solution is dictated by an objective function. 
The objective function quantifies the statistical deviation of the calculated solution from the true solution. For 
example, a common objective function is the sum of the squares of the solution residuals:

where k is a vector containing the reaction rate coefficients and nexpi  and ncalci (k) are the measured and calculated 
species number densities at time point i, respectively. The optimization problem is solved by employing an itera-
tive procedure that finds an optimal parameter set k that minimizes the objective function φ . In the context of the 
current problem, an optimized k value would represent a set of rate coefficients that closely match the uranium 
oxide formation rates observed in the laser ablation or PFR experiments. Typically, deterministic nonlinear least 
squares methods, such as the Gauss-Newton or Levenberg-Marquadt methods21–23, are employed for such opti-
mization problems. Modern computational techniques, such as neural networks24, can also be used to this end.

Due to the large parameter space of the UOx reaction mechanism optimization problem, the solution space 
may be complex and may contain numerous local minima. Conventional deterministic optimization methods 
struggle with locating a global minimum for such a problem, instead converging to local minima adjacent to the 
initialization point. Exhaustive search methods are similarly ineffective due to the computational demand of map-
ping out a large parameter space. To avoid these issues, we employ a Monte Carlo Genetic Algorithm (MCGA) 
approach6 to optimize the UOx reaction mechanism. This approach combines the Monte Carlo and genetic 
algorithm stochastic optimization methods to achieve global optimization for problems with large parameter 
spaces. The Monte Carlo portion of the approach uses random sampling of reaction rate parameters to locate 
regions of good fitness within the solution space. The genetic algorithm then optimizes these regions to find the 
global minimum by using evolutionary processes of migration, selection, mating, and mutation. The stochastic 
nature of these processes maintains diversity among the optimized parameter sets, thereby avoiding convergence 
to local minima. Thus, the MCGA approach enables global optimization by searching the entire solution space 
using Monte Carlo sampling coupled with the parametric diversity inherent in genetic algorithm optimization. 
Furthermore, MCGA can be easily adapted to different experimental systems, since the governing equations of 
the modeled system need not be reformulated as an inverse problem. Lastly, MCGA is easy to parallelize: the 
objective function for each parameter set can be evaluated independently, so the evaluation process can be freely 

(1)φ(k) =

time
∑

i

[

n
exp
i − n
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i (k)

]2

Table 1.   Number densities, flow rates, and composition of the inlet flow components in the PFR.

Analyte Added oxygen Carrier gas

UO2 H2O NO3 O2 Ar

n (cm−3) 3.48× 1022 2.45× 1019 2.45× 1019

V̇  (L/min) 2.52× 10−5 0–0.05 1–15.4

Species fraction 4.31× 10−3 9.87× 10−1 8.62× 10−3 1 1

Ṅ (molecules/min) 3.78× 1018 8.65× 1020 7.56× 1018 0–1.22× 1021 (0.25–3.77)× 1023
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split between processors. The robustness, flexibility, and speed of the MCGA approach makes it an excellent tool 
for producing an experimentally calibrated reaction mechanism for uranium oxide formation.

A diagram outlining the MCGA approach is shown in Fig. 2. Following the diagram, the Monte Carlo process 
can be separated into several key tasks: reaction mechanism generation, rate coefficient modification, model 
evaluation, and fit assessment. Each of these tasks, and how they fit into the Monte Carlo portion of the algorithm, 
are detailed below in correspondingly named subsections. All but the first of these tasks are also present in the 
genetic algorithm, as discussed in the last subsection here.

Reaction mechanism generation.  The first step of the MCGA process is to specify the set of reaction 
channels (a reaction mechanism) that will be used for evaluating the chemical behavior of the system. The reac-
tion mechanism consists of two parts: a set of uranium reaction channels that are the target of the optimization 
and a set of supporting reaction channels responsible for the background chemistry. Due to the uranyl nitrate 
solution used in the PFR, the latter mechanism consists of various gas-phase25–27 and plasma-phase25,28–30 reac-
tion channels that detail the chemical behavior of an O-H-N plasma. To reduce the computational cost of evalu-
ating the background chemistry, a reaction mechanism reduction step is performed on this O-H-N mechanism. 
The reduction is performed by excluding molecules for which formation is unfavorable in the conditions of 
interest (2000–5000 K), as well as eliminating extensive reaction networks that track excited atomic and molecu-
lar states of minor species. For example, since nitrogen is present in small quantities, reactions involving it are 
reduced considerably, minimally affecting the calculation results while reducing computational time apprecia-
bly. Each step of the reduction was checked by running a test 0D simulation and verifying that formation of UOx 
species was minimally affected. Furthermore, the reduced mechanism was verified after each MCGA optimiza-
tion by testing the resulting U-O mechanisms with both the reduced and full O-H-N mechanisms, finding good 
agreement. The final reduced O-H-N mechanism consists of 44 species and 166 reaction channels, compared to 
81 species and 796 reaction channels for the full mechanism.

The uranium reaction channels targeted for optimization are listed in Table 2. Only reactions that are con-
strained by available experimental data and system conditions are included to avoid possible over-fitting from 
poorly constrained reactions. For example, since the reactive species are dilute in the flow, three-body reactions 
with a non-Ar third body will be infrequent and can be excluded. Furthermore, since the system pressure is kept 
constant, reaction pressure dependence is unconstrained. Therefore, the list of possible reactions is limited to 
bimolecular reactions, dramatically reducing the number of potential pathways. Furthermore, since the emis-
sion measurements comprising the datasets are limited to U and UO, the chemistry of higher uranium oxides 
is not well constrained. While the measurements provide some constraints on the formation of UO2 via the 
UO consumption rate, they contain no information regarding the UO2 consumption and UO3 formation rates. 
Therefore, only reactions involving either U or UO in the exothermic direction are considered for optimization. 
Note that Table 2 also includes two associative ionization reactions from our previously constructed reaction 
mechanism5. These reactions have a large impact on the uranium plasma chemistry due to the nearly hard sphere 
reaction rate for the U+O associative ionization channel31. However, to our knowledge, this behavior is not well 
validated. Therefore, we include these channels in the optimization to determine the importance of associative 
ionization pathways for UOx formation. Although UO+ and UO+

2  are not directly measured here, these reactions 
are partially constrained by the available U and UO data.
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Figure 2.   Diagram of the Monte Carlo (left of dashed line) and genetic algorithm (right of dashed line) 
portions of the Monte Carlo Genetic Algorithm (MCGA). The set of reaction mechanisms produced by the 
Monte Carlo process serves as the starting population for the genetic algorithm, where each mate is a reaction 
mechanism. The genetic operations responsible for producing subsequent generations are detailed further below 
in Fig. 4.
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The starting rate coefficients ( kest ) for each reaction in Table 2 are estimated using various first order 
approximations32 expressed in a modified Arrhenius type-form:

where A is the collision frequency, T is the gas temperature, n is a temperature power constant, EA is the activation 
energy, and R is the gas constant. The Simple Collision Theory (SCT) and Simplified Model of Triple Collisions 
(SMTC) methods are used for calculating binary and three-body rate coefficients, respectively. The collision 
cross sections for molecules are estimated from the bond lengths and combined Van der Waals volumes of the 
constituent atoms. These estimates provide an upper bound on the collision frequency A and a temperature 
power constant n = 0.5 due to a thermal velocity contribution. No a priori estimates are made for the activation 
energy EA ; all reaction channels are initially assumed to be barrierless. The reaction channels are expressed in 
the exothermic direction to avoid unphysically high reverse reaction rates. Note also that bimolecular association 
reactions are formulated in the high-pressure limit to provide an upper bound rate estimate as the starting point.

In addition to the UOx reaction channels subject to optimization by the MCGA, we also consider several 
supplementary uranium reaction pathways that are not adjusted by the algorithm. These reaction channels are 
shown in Table 3 and consist mainly of plasma chemical reactions (ionization, recombination, charge exchange) 
as well as reactions between UO2 and UO3 . The reaction rates of these channels are kept fixed due to a lack of 
constraining experimental data. Nevertheless, these reactions provide pathways for uranium plasma chemistry 
and higher oxide formation within the model.

Rate coefficient modification.  Once the target U-O reaction mechanism is generated, the main Monte 
Carlo loop begins. Each iteration of this loop is independent and consists of evaluating and assessing a modi-
fied version of the generated U-O reaction mechanism. Each modified mechanism is produced by adjusting the 
Arrhenius parameters of the original mechanism as follows:

where f is a factor between 10−4 and 100 randomly sampled from a base 10 log uniform distribution, m is a fac-
tor between −3 and 0 randomly sampled from a uniform distribution, and e is a factor between 100 and 104.6 
randomly sampled from a base 10 log uniform distribution. The bounds of these factors are chosen so as not 
to exceed the physical upper limit provided by the initial hard sphere rate estimates. Thus, the kest and kmod,min 
values shown in Table 2 represent the upper and lower bounds of the modified rates, respectively. The factor f is 
intended to compensate for the overestimation of the collision frequency A provided by the initial hard sphere 
rate estimate kest . The factor m represents a change to the temperature dependence n of the modified Arrhenius 
form. The factor e represents an adjustment to the activation energy EA/R . The upper bound value of e = 104.6 
is chosen so that the exponential part of Eq. (3) reduces the reaction rate by four orders of magnitude at the peak 
plasma temperature of ∼ 4500 K. Therefore, if the maximum value of the activation energy is used, the reaction 
channel is effectively removed from the reaction mechanism, indicating that the activation energy is too high 
for the reaction to occur in the current system. Conversely, an activation energy of 100 indicates that virtually 
no activation barrier is present for the reaction, and the exponential term in Eq. (3) will have little effect on the 
reaction rate.

(2)kest = ATn exp

(

−
EA

RT

)

(3)kmod = kest fT
m exp(−e/T)

Table 2.   U-O reaction channels targeted for optimization and initial estimated and minimum modified rate 
coefficients.

No. Reaction �rH298.15K (kJ/mol)

kest kmod,min

A (cm3/s) n (–) EA/R (K) A (cm3/s) n (–) EA/R (K)

1 U+O ⇋ UO − 758.237 2.093× 10−11 0.5 0.0 2.093× 10−15 − 2.5 104.6

2 U+O2 ⇋ UO2 − 1011.363 1.707× 10−11 0.5 0.0 1.707× 10−15 − 2.5 104.6

3 U+O2 ⇋ UO+O − 259.889 1.707× 10−11 0.5 0.0 1.707× 10−15 − 2.5 104.6

4 U+OH ⇋ UO+H − 328.366 2.114× 10−11 0.5 0.0 2.114× 10−15 − 2.5 104.6

5 U+H2O ⇋ UO+H2 − 267.238 2.130× 10−11 0.5 0.0 2.130× 10−15 − 2.5 104.6

6 UO+O ⇋ UO2 − 751.474 2.116× 10−11 0.5 0.0 2.116× 10−15 − 2.5 104.6

7 UO+O2 ⇋ UO3 − 823.213 1.722× 10−11 0.5 0.0 1.722× 10−15 − 2.5 104.6

8 UO+O2 ⇋ UO2 +O − 253.126 1.722× 10−11 0.5 0.0 1.722× 10−15 − 2.5 104.6

9 UO+OH ⇋ UO2 +H − 321.603 2.136× 10−11 0.5 0.0 2.136× 10−15 − 2.5 104.6

10 UO+H2O ⇋ UO2 +H2 − 260.475 2.152× 10−11 0.5 0.0 2.152× 10−15 − 2.5 104.6

11 U+O → UO+ + e− − 201.098 2.093× 10−11 0.5 0.0 2.093× 10−15 − 2.5 104.6

12 U+O2 → UO
+
2
+ e− − 475.259 1.707× 10−11 0.5 0.0 1.707× 10−15 − 2.5 104.6
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Kinetic model evaluation.  The modified reaction mechanism is evaluated using a global kinetic model 
in order to calculate the chemical evolution inside the plasma flow reactor. The model solves for the transient 
chemical balance of a closed (adiabatic) spatially uniform (0D) system. The model consists of a system of strongly 
coupled ordinary differential equations, each governing the concentration of a particular chemical species:

where ni is the number density of species i and Ṡij is a source term describing the contribution of an elementary 
reaction j to the production or consumption of species i. Ṡij is given by:

where �cij is the net stoichiometric coefficient for species i in reaction j, Ṙj is the reaction rate for reaction j, kj is 
the rate coefficient for reaction j, and c is the stoichiometric coefficient of reactant s in reaction j. If a reaction is 
reversible, the forward and backward reaction rates ( k+ and k− , respectively) are determined using the principle 
of detailed balance via an equilibrium coefficient Keq = k+/k− . The equilibrium coefficient is determined by the 
thermodynamic properties of the species participating in the reaction5.

Typically, the system of species balance equations is supplemented by a heat balance equation that accounts 
for Ohmic heating, chemical energy release, and convective/conductive/radiative cooling in the plasma flow. 
Here, we instead interpolate the plasma temperature at each time step based on an experimentally calibrated 
temperature profile. Doing so both lowers the model’s computational complexity and improves consistency 
between the modeled and experimental temperature conditions. A previously developed CFD model18 is used 
to track the temperature in the PFR along a Lagrangian streamline. The Lagrangian fluid parcel trace provides 
both a temperature profile and a time/distance correlation for expressing the time-dependent 0D concentrations 
in terms of axial location. Figure 3 compares this Lagrangian temperature profile against available experimental 
temperature measurements. The experimental temperatures are extracted from the relative intensities of atomic 
Fe lines (using an iron nitrate analyte) and the corresponding line transition probabilities using the Boltzmann 
plot method18. Note that this method of temperature determination was previously found to yield consistent 

(4)
dni

dt
=

reactions
∑

j

Ṡij

(5)Ṡij = �cijṘj = �cijkj

(

reactants
∏

s

(ns)
c

)

j

Table 3.   U-O reaction channels from previously constructed reaction mechanism5 that are included in the 0D 
model but are not optimized due to a lack of constraining data. a Units m is the reaction order (i.e. 1/s, cm3/s, 
cm6 /s for 1st, 2nd, 3rd order reactions). b 0 < x < 2. c Varies depending on the value of x.

No. Reaction �rH298.15K (kJ/mol)

k

A (cm3(m−1)/s)a n (–) EA/R (K)

13 UO2 +O2 ⇋ UO3 +O − 74.129 1.17× 10−11 0.5 8915.7

14 UO3 ⇋ UO2 +O 570.083 1.00× 10+15 0.0 73300.3

15 e− + U → U+ + 2e− 604.421 1.000× 10−4 − 0.721 80587.0

16 e− + UO → UO+ + 2e− 550.956 1.715× 10−10 0.634 84323.0

17 e− + UO2 → UO
+
2
+ 2e− 529.925 9.452× 10−9 0.256 84862.0

18 U+O3 → UO
+
2
+O+ e− − 367.889 7.750× 10−13 0.5 0.0

19 U+O3 → UO+ +O2 + e− − 93.728 7.750× 10−13 0.5 0.0

20 U+ +O2 ⇋ UO+ +O − 313.358 3.978× 10−10 0.0 0.0

21 UO+ +O2 ⇋ UO
+
2
+O − 274.161 2.477× 10−10 0.0 0.0

22 UO
−
2
+O2 ⇋ UO

−
3
+O − 182.126 1.481× 10−10 0.0 0.0

23  UO+O−
⇋ UO

−
2

 − 699.408
3.037× 10−9 0.0 0.0

1.379× 10−8 − 0.5 0.0

 24  UO+O
−
2
⇋ UO

−
2
+O  − 300.364

1.105× 10−9 0.0 0.0

5.016× 10−9 − 0.5 0.0

 25  UO+O
−
3
⇋ UO

−
2
+O2  − 530.513

9.272× 10−10 0.0 0.0

4.209× 10−9 − 0.5 0.0

26 UO2 +O−
⇋ UO

−
3

− 628.404 3.056× 10−9 0.0 0.0

27 UO2 +O
−
2
⇋ UO

−
3
+O − 229.360 1.110× 10−9 0.0 0.0

28 UO2 +O
−
3
⇋ UO

−
3
+O2 − 459.509 9.302× 10−10 0.0 0.0

29b
UO+

x +e− + e− → UOx+e− N/Ac
9.821× 10−9 − 9/2 0.0

30b
UO+

x +e− +M → UOx+M N/Ac
3.118× 10−23 − 3/2 0.0
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values within measurement uncertainty for iron, aluminum, and cerium nitrates15,33, indicating insensitivity to 
the analyte used.

A modified version of the ZDPlasKin package34 is used to integrate the above ODEs. The 0D system follows 
an ideal gas fluid parcel under atmospheric pressure, where the ideal gas law is enforced by adjusting the total 
number density according to the temperature profile. The initial condition corresponds to a location inside the 
analyte flow channel upstream of the ICP coil, where the flow is at room temperature and the analyte molecules 
are not dissociated. The initial species concentrations are calculated using the experimental molecular flow rates 
Ṅ given in Table 1 as:

where n0,i is the initial number density of molecule i, P0 = 1 atm, and T0 = 300 K. An analyte channel Ar flow 
rate of 1 L/min is used for this calculation. We assume that the representative Lagrangian streamline experiences 
limited mixing with Ar flow from the outer channel, such that the Ar to analyte mixing ratio remains constant 
throughout the simulation.

Fit assessment.  Lastly, the modeled chemical evolution is compared with the experimentally observed 
evolution to assess the agreement of the modified reaction mechanism. This comparison requires converting 
number density outputs from the evaluation step to corresponding emission intensity signals. Here, we employ 
the simplifying assumption that the PFR plasma is optically thin and self-absorption effects can be neglected. 
The synthetic intensity (in units of power per volume) due to an electronic de-excitation from an upper state 2 
to a lower state 1 is calculated as:

where h is the Planck constant, c is the speed of light, � is the line wavelength, n2 is the excited state population, 
and A21 is the transition probability. For an atomic transition, the number density of atoms for electronic level 
e is expressed in terms of the total species number density n as35:

where gel,e and �Ee0 are the statistical weight and the energy with respect to the ground state of level e, respec-
tively, kB is the Boltzmann constant and qel is the electronic partition function:

which is a weighted sum of populations across all electronic states. The electronic partition function for the 
uranium atom is calculated using energy levels from atomic spectroscopy databases36–38. Uranium has a strong 
atomic emission line at 591.5 nm, that is used for experimental comparisons in this study.
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Figure 3.   Lagrangian temperature history produced by a CFD model of the PFR18 (solid line) vs experimental 
temperature values obtained from previous Fe atomic line measurements via the Boltzmann plot method 
(points).
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For a hetero-nuclear diatomic molecular transition, the number density of particles at a given level is cal-
culated as:

where the excited level is described by the electronic, rotational, and vibrational quantum numbers e, J, and v, 
respectively. Here, an approximate expression is used for the total internal partition function qint across these 
states:

where the rigid rotor and harmonic oscillator terms qrot,rr and qvib,ho are given by:

where Be is the rotational constant and ωe is the harmonic vibrational frequency, both expressed in units of 
energy. The approximate first order correction term qcorr35,39 accounts for anharmonic non-rigid motion and 
rovibrational coupling as:

where De is the centrifugal distortion constant, αe is the rotational-vibrational coupling constant, and χe is the 
anharmonicity constant. In the above expression, De , αe , and ωeχe are formulated in units of energy. Owing 
to the complexity of the crowded UO emission spectrum, only the ground state spectroscopic constants have 
been previously estimated in literature40–44. The spectroscopic constants and energy levels estimated by Konings 
et al.44 will be used here to estimate the emission intensity of the 593.55 nm UO band. This band is assumed to 
be dominated by the [16.845]5–X(1)4 transition (a 0–0 transition) observed by Kaledin et al.43. Although many 
closely spaced rovibrational lines14 also contribute to this band, they are not treated in the current work due to 
both a lack of spectroscopic constants and the limited resolution of the spectrometer used.

In theory, Eq. (7) could be used to relate measured emission intensities to absolute number densities using 
a well-known reference signal (i.e. strong Ar line). However, the transition probabilities of UOx species have 
uncertainties as high as 50%45, which prohibits an accurate determination of emission-based number densities. 
To circumvent this limitation, we instead normalize both the experimental and modeled emission intensity 
profiles such that the objective function minimizes the difference in the shapes, rather than magnitudes, of the 
two profiles. The strongest (most upstream) emission signal is used as the normalization point such that the 
experimental and modeled emission curves are scaled to have the same magnitude at the strongest emission 
point. Unphysically low values of the synthetic U emission signals (i.e. too low to produce a detectable signal) 
are avoided by including a penalty term in the objective function that checks the maximum ratio of synthetic 
emission intensities IU/UO = IU/IUO . As the name implies, the penalty term mathematically penalizes solutions 
that fall outside the desired range of IU/UO values and is given further below. Based on the above considerations, 
the following root mean square error (RMSE) objective function ( φ ) is formulated:

where φp is the penalty function and R2
lin,c and R2

log ,c are the weighted linear and logarithmic coefficients of 
determination for emission curve c given by:

where wi = Wi/
∑N

i Wi is a normalized statistical weight, Ī explin =
∑N

i wiI
exp
i  and Ī explog =

∑N
i wi log(I

exp
i ) are the 

weighted linear and logarithmic means of measured normalized emission intensities, respectively, and Iexpi  and 
Icalci (k) are the measured and calculated normalized emission intensities at time i, respectively. N represents the 
number of experimental data points comprising emission curve c, and C represents the total number of emis-
sion curves used. The use of both linear and logarithmic coefficients here is intended to ensure that both large 
amplitude changes (which dominate the linear fit) and small amplitude changes (which dominate the log fit) in 
the emission signals are well fitted. The former is constrained by the rapid emission drop-off near the RF coil 
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and the latter by the more gradual emission decay further downstream. The statistical weight Wi of each data 
point is given by:

where Sbckj  and Smol
l  are the background and molecular emission signals consisting of B and M experimental data 

points, respectively. This weighting quantifies the strength of a given emission line relative to the strength of 
the background. Therefore, weakly emitting lines on the order of the background will be weighted lighter when 
evaluating the objective function compared to strong emission lines.

Due to the inverse correlation between IU/UO and nUO/nU , the following penalty term is used:

where ĪU/UO = 11 and Imin
U/UO = 1 . The function most strongly discourages solutions where nUO/nU ≫ 10 to 

prevent locating solutions with good fitness but unreasonably low U densities. The transition probability values 
used to calculate IU and IUO are AU ,21 = 3.15× 106 s −1 for the 591.54 nm U line46 and AUO,21 = 3.8× 109 s −1 
for the 0–0 head of the 593.55 nm UO band47, respectively. A worst-case scenario uncertainty of ±50%45 is 
assumed for both of these values. From experimental maximum IU/UO values between 3 and 7, a rough range of 
1 < IU/UO < 21 for the modeled ratio is obtained. Calculating the species number densities corresponding to 
the lower bound IU/UO = 1 , we find nUO/nU ≈ 120 . Accordingly, the mean and max values of IU/UO = 11 and 
IU/UO = 21 yield nUO/nU ≈ 11 and nUO/nU ≈ 5.5 , respectively.

The final part of the Monte Carlo loop consists of deciding whether to retain or discard the candidate reac-
tion mechanism based on the fitness of the solution. This step builds up the set of reaction mechanisms that will 
be passed to the genetic algorithm for further optimization. The criteria for keeping candidate solutions can be 
adjusted as needed, but are typically based on exceeding a threshold value for one or more of the fitness metrics 
calculated above. For example, a simple criterion such as R2

lin > 0.5 for all solution curves can be used. If a solu-
tion is retained, then the statistical values calculated as part of Eq. (14) and the corresponding sets of modified 
rate parameters from Eq. (3) are stored. It is preferable to have a lax selection criterion at this stage in order to 
build up a sizable number of candidate mechanisms. The mechanisms passed to the genetic algorithm are then 
selected from these candidates based on the fitness metric used by the algorithm.

Genetic algorithm details.  The genetic algorithm (GA) implementation used here employs a mix of 
operations and ideas from several previously published approaches6,48,49. As is often the case, the choice of GA 
parameters is largely heuristic based on the observed rates of convergence, fitness improvement, and solution 
variability. Therefore, while the GA implementation employed herein is not necessarily optimal, it nevertheless 
performs sufficiently well to reliably improve population fitness while maintaining a baseline level of diversity.

In the GA, the population of each new generation is created by performing several genetic operations on the 
current population, as illustrated in Fig. 4. Here, a population refers to a set of individuals, each of which is a 
reaction mechanism with rate coefficients modified via Eq. (3). Each mechanism contains a number of parameters 
equal to the number of reactions times the number of Arrhenius coefficients (i.e. 3 parameters per reaction). 
The new generation begins by directly transferring a select number of the fittest mechanisms (elites) from the 
current generation to the new one. Here, we select a number of elites equal to 5% of the total population. Next, 
mate selection is performed using a k-tournament of size k = 2 with a 80% probability of selecting the fittest 
mechanism in the tournament. That is, each tournament randomly picks 2 mechanisms from the current popula-
tion, and the fittest of the two is selected with 80% probability (otherwise the other mechanism is selected). The 
entire population participates in the selection process, including elites. Each pair of distinct mates picked in this 
way then has a chance to reproduce and/or mutate before being added to the new population. The mates may 
be converted into offspring through uniform crossover, wherein each parameter (rate coefficient) is switched 
between the two mates with equal probability, resulting in two offspring mechanisms. In this work, the probability 
of crossover reproduction for a given mate pair is 65%. Regardless of whether reproduction takes place, the two 
mechanisms may then also undergo mutation. In this operation, each parameter (rate coefficient) of a mechanism 
is randomized within previously specified bounds with 0.8% probability. The probability of mutation is kept low 
since even a single re-randomization operation may produce a drastic change in the mechanism behavior. Since 
both the reproduction and mutation operations may or may not occur for a given mate pair, it is possible for a 
given pair to simply pass on to the next generation (i.e. survive). This does not remove them from the selection 
pool, so mate pairs can both survive and reproduce/mutate. However, each mechanism in the new population 
must be unique, so duplicate mechanisms are checked and discarded as needed. The above operations of selec-
tion, reproduction, and mutation are repeated until a new population of the same size as the original is generated.

Since the fitness of the elites is already known, only 95% of each new generation must be evaluated. There are 
various methods for parallelizing this process50, some of which involve creating sub-populations either to allow 
for non-synchronized evaluation or to allow for additional evolutionary operations (i.e. migration). Here, we use 
a simple controller-worker parallelization wherein only the task of evaluation (which is the most computation-
ally demanding task) is split between the number of available processors. Note that, for added genetic diversity, 
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the first generation is constructed by supplementing the initial population (the fittest Monte Carlo generated 
mechanisms) with an equal number of mechanisms with randomized rate coefficients (within allowed bounds)6.

Results
Experimental emission spectra datasets.  Several uranium optical emission datasets were collected 
from the PFR to inform the optimization. Parameters varied between datasets included the regions of observa-
tion, the flow temperature (varied via flow rates and RF power), and the oxygen concentration in the analyte 
flow, as summarized in Table 4. Examples of uranium and background emission spectra collected 3 and 8 cm 
away from the RF coil are shown in Fig. 5. The background (labeled “AR”) spectra were measured with only 
argon and nebulized water flowing through the analyte channel. Therefore, the measured background includes 
emission due to de-excitation of background species, continuum (thermal) radiation, inherent instrument noise, 
and any other stray background light. The uranium spectra show significant background signals even when cor-
rected for the measured background, as observed in previous uranium spectroscopy studies1. This ‘excess’ back-
ground likely occurs due to the multitude of closely spaced uranium emission lines in the visible spectrum com-
bined with the limited resolution of typical spectrometers. As such, extracting the emission intensity of a given 
uranium line or band requires first subtracting out this additional background signal. Doing so accurately would 
either require using a much higher resolution spectrometer or attempting to deconvolve the peaks of interest 
using a complete uranium oxide spectral model, both of which lie outside the scope of this work. Instead, we 
assume that the background peaks are both much weaker and more numerous than the bands of interest, such 
that a simple offset can be used to approximately separate one from the other. It is difficult to assess the uncer-
tainty introduced by this assumption without a full spectral model of uranium oxide emission. Qualitatively, it 
should have a greater impact on the 593.55 nm UO band than the atomic 591.5 nm U line, as the former signal is 
typically weaker than the latter. Furthermore, the UO band consists of several closely spaced rovibrational lines 
that require a much higher spectral resolution (order of 0.004 nm14) to properly resolve. Lastly, the UO partition 
function calculation is approximate due to the limited information on the internal states of the system44. There-

vsvs

Selection Crossover Mutation

Figure 4.   Diagram illustrating the tournament selection, uniform crossover, and mutation operations of the 
genetic algorithm portion of the Monte Carlo Genetic Algorithm (MCGA). In this example, each “individual” 
or “chromosome” (reaction mechanism) is composed of 18 “genes” (6 reaction channels with 3 rate coefficients 
each).

Table 4.   Summary of experimental parameters used for each dataset.

Position range (cm)
Position increment 
(cm)

Outer Ar flow rate (L/
min) RF power (W)

Added O2 flow rate 
(mL/min)

Number of acquisitions 
(–) Exposure time (s)

Dataset 1 3–8 0.1 12 784 0, 10, 20 1 10

Dataset 2 3–8 0.1 10 840 0 1 10

Dataset 3 1–2.5 0.1 10 840 0 10 1
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fore, likely the greatest uncertainty in the current optimization procedure lies with measuring and calculating 
the signal due to the 0–0 head of the 593.55 nm UO band.

The measured argon and water background is negligible compared to the uranium background for most 
locations, such that correcting for it has no noticeable impact on the results. Even for downstream locations 
where the argon and water background was on the same order of magnitude as the uranium background, the 
contribution of the argon and water background in the spectral regions of interest was minimal. Therefore, 
background measurements were not performed for subsequent datasets, and instead a constant offset based on 
the total uranium background was applied. This is accomplished by selecting a wavelength range (586 to 586.5 
nm) as a reference background region (due to lack of visible peaks across all locations) and using the mean signal 
in this range as the offset value. After applying this offset, the intensities of the 591.5 nm U line and 593.55 nm 
UO band are calculated by integrating over the corresponding peaks.

Figure 6 shows examples of uranium spectra from each dataset along with the corresponding integrated 
background subtracted intensity values for U and UO over all measured locations. The integrated intensity plots 
show both the U and UO signal monotonically decreasing over the entire observation range. This holds true 
even when accounting for the decrease in emission intensity due to the temperature decline over this distance. 
Since the temperatures in the upstream (1 cm) region are expected to be high enough ( ∼4500 to 5000 K) to at 
least partially dissociate UO, the UO concentration and emission intensity is expected to initially increase mov-
ing downstream. The observed UO trend, however, suggests that UO formation instead happens even further 
upstream of the first observation point here (i.e. in the coil region). The origin of this behavior can be explained 
by modeling the species profiles in the flow, as shown in Fig. 7. At first, the analyte flow consists purely of the 
constituent reactive molecules UO2 , H2 O, NO3 (not pictured) and the Ar carrier gas at room temperature. Moving 
downstream, the flow encounters a sharp temperature gradient at −2 cm that decreases the gas number density 
(via the ideal gas law) and produces rapid dissociation, excitation, and ionization of the analyte molecules. Note 
that the uranium ionization in this case is almost entirely due to the U+O associative ionization channel of the 
unoptimized mechanism. While H2 O and NO3 are effectively fully dissociated into their atomic components, 
the flow passes through the plasma region too quickly to fully dissociate uranium oxide molecules. As a result, 
we see two UO peaks appear; the first due to the initial temperature gradient breaking apart UO2 in the analyte 
and the second due to the downstream cooling allowing U+O reactions and electron recombination of UO+ to 
take place. After this point, gradual cooling induces formation of higher uranium oxides ( UO2 and UO3 ) which 
eventually deplete the previously formed UO molecules. The monotonic decrease in UO signal observed in the 
above datasets corresponds to this last regime. Note also that due to the availability of free oxygen from the dis-
sociation of H2 O and NO3 , uranium saturates toward a higher oxide ( UO3 ) than its initial analyte form ( UO2).

Comparisons of synthetic emission profiles and measured emission data are shown in Fig. 8. The synthetic 
UO emission profile (2a) shows surprisingly close agreement with the experimental data. However, the model 
slightly underpredicts the upstream UO depletion rates and overestimates the downstream rates. Poorer agree-
ment is observed for the U profile (1a), which decreases faster in the model in both upstream and downstream 
regions. An interesting feature of the U emission data is observed in the semi-logarithmic plots. Namely, the 
U emission signal appears to saturate toward a minimal value after around 4–5 cm. The signal to background 
ratio for the 591.5 nm U line at these locations remains consistently high, so this behavior cannot be attributed 
to instrument noise or the uranium background. Indeed, this behavior is not observed for the UO band, which 
is generally weaker than the U line and approaches background after 6 cm. One possible explanation is that this 
downstream U signal originates from scattered light emitted in the upstream portion of the PFR. Since the 591.54 
nm U emission line is more intense than the 593.55 nm UO band in the upstream region, the scattered light could 
disproportionately contribute to the downstream U line intensity. Given that this observation may be unrelated 
to chemical reactions, it merits special consideration during the optimization procedure, as discussed later.

Figure 5.   Plots showing the uranium, background (argon), and background subtracted uranium emission 
spectra measured at 3 and 8 cm away from the RF coil. The vertical lines denote the locations of the 591.5 nm U 
line and the 593.55 nm UO band.
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Monte Carlo: exploration of parameter space.  As previously discussed, the purpose of the Monte 
Carlo step of the MCGA is to perform a preliminary survey of the problem parameter space and generate a 
starting population for the genetic algorithm. As such, a relaxed criterion for retaining candidate mechanisms 
is used, only requiring a positive linear-scale coefficient of determination for all modeled species profiles (i.e. 
R2
lin > 0 ). This criterion was satisfied by 8.61% of generated mechanisms from 2.3 million samples. These 200,000 

candidate mechanisms could be used as a starting population for the GA portion of the algorithm. However, to 
keep the run time of the GA reasonable, only a subset of the candidate mechanisms is used. This is done by first 

1a) 1b)

2a) 2b)

3a) 3b)

Figure 6.   Example uranium spectra (a) and corresponding integrated background subtracted line intensities 
(b) for datasets 1, 2, 3 with no added O2 flow.
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sorting the mechanisms according to two versions of the objective function φ previously defined in Eq. (14). The 
two objective functions are: φ1 , which includes all terms in the objective function:

and φ2 , which excludes R2
log terms for atomic uranium emission:

where D refers to the datasets (including various oxygen flow conditions), s refers to the species, and N represents 
the total number of terms in each case. The latter formulation is included here due to the anomalous saturation 
of the downstream uranium emission signal seen in Fig. 8, which dominates the log space experimental U curve. 
If this effect is due to chemical processes, then we expect it to be well matched by the MCGA algorithm using 
φ1 . However, if the saturation behavior is not capture when using φ1 , then the effect may be non-chemical in 
nature, in which case it should not be used to constraint the reaction mechanism and φ2 should be used instead.

Figure 9 plots normalized fitness-sorted MC generated mechanisms using either φ1 or φ2 as the objective 
function. Fitness here is defined as 1/φ due to our formulation of φ being minimized for the best fit. Note that 
both φ and fitness are statistical, rather than physical, quantities. Furthermore, the fitness values are only mean-
ingful in the context of the objective function used to calculate them and cannot be compared across objective 
functions. For convenience, the fitness values here are normalized with respect to the maximum fitness value for 
the corresponding objective function. For both objective functions, only about 5% of the generated mechanism 
have fitness values within 67% of the maximum fitness. Furthermore, only a few hundred mechanisms (out of 
200,000) fall within the top 20% of fitness. This subset of top mechanisms serves as the initial population for the 
genetic algorithm, as discussed below.

Genetic algorithm: fitness optimization.  Having chosen the target objective functions, the genetic 
algorithm can now be used to optimize the UOx reaction mechanism for the experimental conditions used in 
this study. To test the reliability of the genetic algorithm, we perform four separate GA optimizations. These 
optimizations represent combinations of two input settings with two options each. The first input setting sets the 
objective function used, with the two options being φ1 and φ2 as described by Eqs. (19) and (20), respectively. 
The second input setting sets the initial population used (i.e. starting set of candidate reaction mechanisms), 
with the two options being the 200 best MC generated mechanisms according to either φ1 or φ2 . Therefore, two 
optimizations use the φ1 and φ2 objective functions initialized with the corresponding 200 fittest MC mecha-
nisms according to that objective function. We will refer to these as the optimal population runs. The other two 
optimizations instead swap the initial populations used for each objective function, such that the starting GA 
population is sub-optimal in each case. That is, the φ1 optimization is started with the fittest population accord-
ing to φ2 and vice versa. This tests whether the GA can reliably obtain the same optimal fitness regardless of 
the starting population. The overlap between the fittest mechanisms for the two objective functions is only 2 
mechanisms out of 200. Lastly, for both the optimal and sub-optimal populations, 200 MC samples of arbitrary 
fitness (i.e. generated with no constraints/selection criteria) are added to the initial population to provide addi-
tional diversity for the optimization6. Therefore, the total starting GA population for each run consists of 400 
mechanisms (individuals).
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Figure 7.   Unoptimized 0D UOx model5 results showing select species profiles in the flow according to the 
temperature profile shown in Fig. 3.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9293  | https://doi.org/10.1038/s41598-023-35355-6

www.nature.com/scientificreports/

Results from GA optimizations using φ1 (all R2
log terms) with optimal and sub-optimal initial populations 

are shown in Fig. 10. Subplots 1a and 1b illustrate results for the optimal case while subplots 2a and 2b show 
corresponding results for the suboptimal case. Note that the total number of generations plotted here (400) 
is not correlated with the number of mechanisms in the population (also 400). The optimal and sub-optimal 
starting populations are shown by the blue curves (labeled 0) in 1b and 2b, respectively. The optimal case (1b) 
clearly shows the fitness difference between the 200 best MC mechanisms and remaining 200 mechanisms of 
arbitrary fitness by the discontinuity in the middle. This difference is not evident in the sub-optimal case (2b), 
which shows the low overall fitness of the starting population aside from a few high fitness mechanisms. Look-
ing at the evolution of the max and mean population fitness (1a and 2a), we see that that the fitness increases 
most drastically within the first 40–60 generations. During this time, the diversity of the initial population is 
leveraged by crossover reproduction to rapidly locate high fitness regions in the parameter space. This improves 
the overall fitness of the population (as evidenced by the mean curve) and locates fitter individuals to displace 
the starting “elites” (increasing the max fitness). This can similarly be seen in the population fitness distribu-
tions (1b and 2b), where the shift from a concave to a convex shape reflects the increase in mean fitness. After 
the first 100 generations, much of the population is homogenized toward a similar fitness value, as evidenced 
by the plateau shape of the population fitness distributions (1b and 2b). Past this point, mutations maintain a 
baseline level of genetic diversity, as indicated by the persistence of a lower fitness population subset that makes 

1a) 1b)

2a) 2b)

Figure 8.   Synthetic emission profiles of (1) U and (2) UO (with linear and semi-log axes) generated by the 
unoptimized 0D UOx model5 compared with (a) combined datasets 2 & 3 measurements and (b) dataset 1 
measurements. The transparency of experimental points indicates signal-to-background ratio.
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(a) (b)

Figure 9.   MC generated candidate mechanisms sorted by fitness values ( 1/φ ) evaluated using (a) φ1 (Eq. 19) 
and (b) φ2 (Eq. 20) objective functions, which differ only by the exclusion of U emission in φ2 , and normalized 
with respect to the maximum fitness value for each objective function.

1a) 1b)

2a) 2b)

Figure 10.   GA optimization results using φ1 (all R2

log terms) initialized with (1) optimal and (2) sub-optimal 
MC generated mechanisms. Plots (a) show the mean and maximum normalized fitness as a function of 
generation while plots (b) show sorted normalized fitness distributions for select generations.
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up about 10–25% of the total population. This also allows parameter exploration to continue, leading to gradual 
population fitness improvement (1a and 2a) over the remaining 300 generations. After 400 generations, both the 
optimal and sub-optimal starting populations saturate toward a similar fitness value. Note that while the fittest 
starting mechanism is shared by the optimal and sub-optimal populations, the final fittest mechanisms differ. 
Curiously, the sub-optimal starting case possesses a higher fitness after 400 generations than the optimal case, 
but this is likely a stochastic occurrence.

Figure 11 presents the same set of plots for the GA optimizations using φ2 ( R2
log excluded for U). The evolu-

tion of this GA population is very similar to that of the previously examined φ1 case. Despite the initially less fit 
population (both in mean and maximum), the sub-optimal run (2a and 2b) again arrives at a similar fitness as 
the optimal run (1a and 1b). In this case, the final fitness of the optimal case is higher than for the sub-optimal 
run, but this gap would likely close as the evolution is continued. Regardless, the above four runs show that the 
GA optimization performs reliably and produces similar fitness values regardless of the initial population used. 
However, the sub-optimal and optimal cases do not converge to an identical fitness value for either objective 
function over the 400 generations observed here. This may be due to the limited number of generations per-
formed and the choice of GA properties dictating parameter exploration and convergence rates. This behavior 
may also be inherent to the optimization problem itself due to the limited range of conditions provided by the 
constraining data and the non-orthogonality of certain reaction channels. These considerations are illustrated 
by examining the rate coefficients predicted by the optimized populations, as discussed below.

MCGA output: dominant reaction channels.  Figure 12 plots the mean rate coefficients of the main 
reaction channels from the four optimized populations. The dominant reactions are identified by examining the 

1a) 1b)

2a) 2b)

Figure 11.   GA optimization results using φ2 (no R2

log for U) initialized with (1) optimal and (2) sub-optimal 
MC generated mechanisms. Plots (a) show the mean and maximum normalized fitness as a function of 
generation while plots (b) show sorted normalized fitness distributions for select generations.
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statistical variation in rate coefficients across the optimized populations. Only reactions for which the standard 
deviation of the rate coefficient does not exceed the mean are included (based on mechanisms within 0.1% of 
the top fitness). This condition is satisfied for at most seven out of the 12 optimized reactions channels, meaning 
that the remaining reactions are not well constrained by the current data. However, four reactions (R1, R4, R6, 
and R11 in Table 2) are consistently constrained, as indicated by their appearance in all optimization cases. The 
remaining three reactions (R5, R9, and R10) appear in only some of the optimized populations and are therefore 
only partially constrained. This is likely due to the non-orthogonality of the various reaction pathways. That is, 
channels like U+O , U+OH , and U+H2O or UO+O , UO+OH , and UO+H2O can compensate for one 
another since they perform the same operation on the constrained species (i.e. adding O to U or UO). Although 
the different oxygen flow conditions of dataset 1 constrain this behavior somewhat, the range of O2 concentra-
tions is limited and only downstream locations (>3 cm) are covered. These reactions could be better constrained 
in the future by performing upstream measurements over a wider range of O2 conditions or with reduced H2 O 
concentrations (i.e. using a desolvating nebulizer). The current dataset is also limited in the range of tempera-
tures and cooling rates covered, which also inhibits the location of a true global optimum. This is related to the 
temperature dependence of the Arrhenius rate expression, since similar reaction rates can be achieved using dif-
ferent combinations of coefficients if the reaction is active over a limited temperature range in the system. Based 
on the above observations, the lack of convergence toward a singular global optimum appears to stem more from 
the limited constraining data rather than from a shortcoming of the genetic algorithm. Even so, four reactions 
(R1, R4, R6, and R11 in Table 2) are consistently well constrained by the current optimization, demonstrating the 
reliability of the MCGA method and highlighting the dominant reaction channels for UO formation in the PFR.

1a) 1b)

2a) 2b)

Figure 12.   Mean reaction rate coefficients ( ̄k ) of GA populations optimized using (1) φ1 and (2) φ2 initialized 
with (a) optimal and (b) sub-optimal MC generated mechanisms. The means are calculated from mechanisms 
falling within 0.1% of the top fitness ( ∼ 300 mechanisms in each case) for reactions that satisfy k̄ > σk (where σk 
is the standard deviation of k).
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Before performing a detailed analysis of the optimization results, we must decide which objective function 
to use by checking whether the saturation of the downstream U signal is captured by the φ1 optimized mecha-
nism. Figure 13 shows the synthetic U and UO emission profiles produced by this mechanism compared to the 
full experimental dataset. Although the φ1 MCGA result produces improved fitting of the upstream data over 
the unoptimized mechanism (Fig. 8), the downstream (>3 cm) behavior of U is poorly captured. While the R 2 
values appear to be adequate (outside of the 0 O2 dataset 1 case), visual inspection reveals that neither the 3–5 
cm decrease nor the 5–8 cm saturation behavior is well matched for any dataset. This suggests that the satura-
tion may be driven by a non-chemical effect that is not accounted for in the current 0D treatment of the PFR. As 
discussed previously, this behavior is likely caused by optical scattering of the strong upstream U emission line. 
Therefore, we will consider it an invalid constraint for the current optimization problem and will focus our sub-
sequent analysis on the φ2 optimized mechanism. As shown in the next section, the φ2 result captures the 3–5 cm 
decrease in U intensity while disregarding the subsequent signal saturation due to the exclusion of the log U term.

1a) 1b)

2a) 2b)

Figure 13.   Synthetic emission profiles of (1) U and (2) UO (with linear and semi-log axes) generated by GA 
optimized mechanism using φ1 (all R2

log terms) compared with (a) combined datasets 2 & 3 measurements and 
(b) dataset 1 measurements.
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Discussion

The final set of optimized UOx reaction channels and corresponding rate coefficients obtained by the MCGA 
are shown in Table 5. The table also includes relevant reaction channels from the previously constructed UOx 
mechanism5. Only well-constrained rate coefficients are listed for the MCGA optimized mechanism (see Fig. 12). 
The rate coefficients for both mechanisms are plotted in Fig. 14 for the temperature interval 3000 ≤ T ≤ 4500 K, 
which represents the range over which the optimization is performed (see Fig. 3). Since the unoptimized reaction 
mechanism did not consider interactions with HxOy molecules, only a few reaction channels are present in both 
mechanisms. This is exacerbated by the elimination of UOx +O2 reaction channels by the MCGA optimization 
due to the relative abundance of OH in the PFR flow, as shown previously in Fig. 7. Therefore, only two reaction 
pathways (R6 and R11) can be directly compared between the two mechanisms. From Fig. 14, we can see that 
the MCGA optimized rate coefficient for the former reaction (R6) is at least an order of magnitude below the 
literature estimate. For the latter reaction (R11), the difference is even larger, around four orders of magnitude. 
In general, the unoptimized estimates lie an order of magnitude or more above the optimized rate coefficients. 
This is to be expected considering the literature estimates consist largely of barrierless first order hard sphere 
collision rate estimates, which are the theoretical upper limit of the reaction rates.

Table 5 and Fig. 14 provide additional insight into similarities and differences between the optimized and pre-
viously constructed reaction mechanisms. First, we note that the U+O pathway in the optimized mechanism is 
dominated by the associative ionization channel (R11) over the molecular association reaction (R1). This behavior 
is in partial agreement with a previous study31, which measured a much higher cross section for the associative 
ionization reaction (R11) compared to the molecular association reaction (R1). The study suggested that the 
molecular association channel is effectively closed due to the dominance of the associative ionization pathway. In 

Table 5.   Comparison between final MCGA optimized and previously constructed5 UOx mechanisms. a Only 
well-constrained reaction channels included here (see Fig. 12 for selection process). b Literature rate calculated 
for reverse process, reversed here by fitting over 300 < T < 10,000 K.

No. Reaction

kamcga klit

A (cm3/s) n (–) EA/R (K) A (cm3/s) n (–) EA/R (K)

1 U+O ⇋ UO 1.942× 10−11 − 1.25 209.88 –

2 U+O2 ⇋ UO2 – 3.360× 10−12 0.50 12910.0

3 U+O2 ⇋ UO+O – 3.360× 10−12 0.50 5161.7

4 U+OH ⇋ UO+H 1.346× 10−13 0.32 5505.1 –

5 U+H2O ⇋ UO+H2 – –

6b UO+O ⇋ UO2 1.950× 10−11 0.31 28020.3 8.084× 10−13 0.27 3582.4

7b UO+O2 ⇋ UO3 – 4.325× 10−11 − 0.23 − 7503.5

8 UO+O2 ⇋ UO2 +O – 3.800× 10−11 0.17 0.0

9 UO+OH ⇋ UO2 +H 1.309× 10−12 − 0.56 2.03 –

10 UO+H2O ⇋ UO2 +H2 1.488× 10−13 0.36 10422.0 –

11 U+O → UO+ + e− 2.495× 10−14 − 0.12 51.3 1.025× 10−12 0.50 0.0

12 U+O2 → UO
+
2
+ e− – 7.747× 10−14 0.50 0.0

(a) (b)

Figure 14.   Comparison of literature5 (solid) and MCGA optimized (dash-dotted) rate coefficients for 
(a) U+HxOy and (b) UO+HxOy channels in Table 5. The rate coefficients are calculated over the given 
temperature range using the Arrhenius parameters from the table and Eq. (2).
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the optimized mechanism, however, the two channels differ by only around an order of magnitude. Furthermore, 
the optimized R11 rate coefficient suggests a much lower cross section than observed in the aforementioned study. 
The optimized pathway is also found to be effectively barrierless, which is consistent with the study.

Next, we note some similarity in the optimized R4 and unoptimized R3 channels, particularly with regards to 
the activation energy51 ( EA/R in Table 5). This may indicate that the abstraction mechanism for U colliding with 
either OH or O2 proceeds in a similar manner. Comparing the two reactions further, we see that the optimized 
collision rate is about two orders of magnitude lower than the hard sphere estimate. Nevertheless, the overall 
optimized rate coefficient is still high relative to the other optimized reactions, as seen in Fig. 14.

Moving on to R6, we observe a large discrepancy in activation energy between the optimized result and our 
previous estimate. The activation energy in the unoptimized rate coefficient comes from an Eyring-estimate 
adjusted according to an analogous semi-empirical calculation for an Al oxidation mechanism2,5. The unopti-
mized barrier value is essentially a byproduct of the above adjustment, as the Eyring estimate itself is barrierless. 
The strong temperature dependence of this channel for all MCGA results (see Fig. 12) suggests that the sizable 
activation barrier of the optimized rate is physically significant. The collision rate for this channel is observed 
to be close to the hard sphere limit, which offsets the effect of the large activation barrier. Thus, the overall rate 
coefficient is within an order of magnitude of the unoptimized channel at 4500 K and is around the same value 
as R4 at this temperature, as Fig. 14 shows.

Next, the R9 abstraction reaction is found to be effectively barrierless and has an overall low collision rate 
comparable to the R11 associative ionization channel. The lack of an activation barrier for the analogous unop-
timized R8 abstraction channel is simply due to a lack of literature information, so a definitive comparison 
between R8 and R9 is not attempted here.

Lastly, the remaining R10 reaction channel is found to have a collision rate similar to R4, albeit with a higher 
activation energy. Despite the relatively large rate coefficient, this reaction pathway is expected to be important 
only in the downstream portion of the PFR due to its dependence on H2 O, which reaches concentrations com-
parable to OH only at > 7 cm where temperature drops below 3000 K.

To analyze where the dominant reaction channels are most active in the PFR flow, we calculated the first-
order sensitivity coefficients for the chemical kinetic system of equations52. The results for U and UO for dataset 
2 and 3 conditions are shown in Fig. 15. In addition to the optimized channels, these plots include the fixed 
UO2/UO3 formation reactions R13 and R14 from Table 3. From these plots we see that R1, R4, and R11 play the 
greatest role in the upstream (<3 cm) evolution of U, while R1 and R13 become dominant further downstream 
(>3 cm). The UO sensitivity plots show that the upstream UO evolution is relatively insensitive to the reaction 
mechanism. Further downstream, UO is most sensitive to R6 and R13. The remaining optimized channels from 
Table 5, R9 and R10, appear to make finer adjustments to the downstream UO evolution. Overall, the upstream 
behavior of the mechanism is constrained mainly by U data, while both U and UO measurements play a role in 
constraining the downstream behavior.

The species number densities produced by the optimized reaction mechanism are shown in Fig. 16. Compared 
to the unoptimized results of Fig. 7, the MCGA mechanism produces markedly less uranium ions in the coil 
region due to the lower R11 associative ionization rate. Although this results in a higher population of neutral 
U, it is still about an order of magnitude less abundant than UO. A peak upstream intensity ratio of IU/UO ≈ 6 
is obtained using the optimized mechanism, which corresponds to nUO/nU ≈ 20 . A similar value is obtained 
across all the other MCGA optimizations. While this falls within the range of IU/UO values allowed by the penalty 
term, a thorough calibration of the absolute densities would be required to validate this result.

Lastly, to examine the fitness of the optimized mechanism, the final uranium synthetic emission profiles and 
constraining datasets are plotted in Fig. 17. As expected, the MCGA mechanism produces improved fitting of 
most experimental data when compared to the unoptimized results of Fig. 8. The largest discrepancy between 
the data and model is the downstream low amplitude saturation of the U emission signal, as seen in the semi-log 
plots. This arises from using the φ2 objective function, which excludes the saturation behavior as a constraint. 
However, the optimized mechanism produces an excellent fit of the upstream ( < 5 cm) U data. The mechanism 
also produces good fitting of both the upstream and downstream UO data. As discussed previously, the partial 

(a) (b)

Figure 15.   First-order sensitivity coefficients for (a) U and (b) UO using the MCGA optimized mechanism for 
dataset 2 & 3 conditions.
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fitting of the upstream UO data provided by dataset 3 is limited by the approximate representative temperature 
profile used here.

Conclusion
In this work, we investigated an MCGA-based approach for calibrating a UOx reaction mechanism using emis-
sion measurements from PFR experiments. The selection of target reaction channels and their potential rate 
coefficients was made using a limited set of a priori assumptions. Consistency between the 0D PFR model and 
experiments was attained using a representative temperature profile in agreement with available temperature 
measurements. The Monte Carlo sampling and genetic algorithm steps were used to explore and optimize the 
problem parameter space, respectively, enabling refinement toward a fitness maximum. The resulting optimized 
UOx reaction mechanism was analyzed, highlighting four dominant reaction channels that were consistently con-
strained across all attempted optimizations and three additional channels that were at least partially constrained. 
Notable among these channels is the involvement of the OH radical, which was not previously considered in the 
unoptimized mechanism. The optimized mechanism predicted slower kinetics for U and UO formation (with 
U kinetics being impacted more than UO) compared to the unoptimized mechanism, yielding rates that were 
1–2 orders of magnitude or more below the prior hard sphere estimates. A notable feature of the optimized 
mechanism is the lower branching ratio between the associative ionization and neutral pathways of the U+O 
channel, which suggests the neutral pathway is not eliminated in favor of associative ionization as indicated in 
a previous study31.

Overall, this study demonstrates the viability of using a MCGA approach to optimize the chemical kinetic rate 
coefficients for a 0D PFR model using optical emission measurements. However, due to various limitations of 
the current study, we strongly caution against using the resulting optimized rate coefficients as is until additional 
optimization and validation is performed. A well validated reaction mechanism could be attained via the MCGA 
method after incorporating various refinements in a future work, as outlined below.

First, the importance of OH molecules for oxidizing uranium in the PFR suggests that both oxygen and hydro-
gen fugacity should be varied in future studies. This may be achieved by using a desolvating nebulizer, which 
removes most of the water from the analyte solution prior to introduction into the plasma. Second, additional 
temperature measurements in the coil region of the PFR would improve the consistency between model and 
experiments, which is important due to the sensitivity of the simulated chemical evolution to the temperature 
history. The consistency can be further refined by also considering the effects of mixing and radial diffusion 
downstream of the flow inlets. Third, the 593.55 nm UO band could be better resolved using a higher spectrom-
eter grating. This would help eliminate some uncertainty in the calibration introduced due to the treatment of 
the UO band as the 0–0 head of the band. Fourth, the experimental dataset could be expanded to include infor-
mation on higher uranium oxide formation (i.e. UO2 and UO3 ), using Fourier transform infrared spectroscopy 
(FTIR), for example. However, this would necessitate extending the atomic and diatomic emission calculations 
used here to larger molecules, which is potentially challenging for uranium species. Fifth, the modeling could 
be refined by performing detailed radiation transport calculations to quantify the impact of self-absorption and 
scattering on the simulated emission intensity throughout the PFR. Lastly, a relatively straightforward way to 
improve the MCGA generated mechanism is to use a larger dataset for the optimization. This includes measur-
ing emission in both the upstream and downstream regions over a wider range of flow rates, temperatures, and 
analyte concentrations.

Figure 16.   Modeled number density profiles of select species predicted by the MCGA optimized UOx 
mechanism.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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