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Motional consensus 
of self‑propelled particles
Jia‑xin Qian 1,2, Jun Wang 1,3* & Yan‑qing Lu 1,2*

The motional consensus of self‑propelled particles is studied in both noise‑free cases and cases with 
noise by the standard Vicsek model. In the absence of noise, we propose a simple method, using grid‑
based technique and defining the normalized variance of the ratio of the number of particles locally 
to globally, to quantitatively study the movement pattern of the system by the spatial distribution 
of the particles and the degree of aggregation of particles. It is found that the weaker correlation of 
velocity leads to larger degree of aggregation of the particles. In the cases with noise, we quantify 
the competition between velocity alignment and noise by considering the difference of the variety 
of order parameter result from the velocity alignment and noise. The variation of the effect of noise 
on motional consensus is non‑monotonic for the change of the probability distribution of noise from 
uniform to non‑uniform. Our results may be useful and encourage further efforts in exploring the basic 
principles of collective motion.

Collective behavior extensively exists in both the macroscopic systems such as the crowds of  human1, the herds of 
 mammal2, the flocks of  bird3–6, the schools of  fish7 and the swarms of  insect8 and the microscopic systems includ-
ing bacterial colonies, cells  etc9–12. Studying the motional consensus of collective behavior is of great importance 
in discovering the basic principle of collective motion, which enables us to better understand the mechanism 
of escaping from predators, foraging  etc13,14. In addition, the study of motional consensus inspires the control 
of multibody systems such as a number of robotic  machines15, which is beneficial to exploring efficient motion 
strategies for escaping from fire  etc16.

The Vicsek  model17, proposed in 1995, is one of the classical models for studying collective motion of active 
systems. It considers the velocity alignment and noise for updating the velocity of all of the particles. Flocking 
phenomena is observed when the noise is small, which means the motion of all the agents almost reach global 
alignment and the degree of motional consensus is high. Spontaneously  local18 and global velocity  alignment19 
also be explored. Because the Vicsek model is simple but catches the main factors of collective motion, many 
researchers have paid attention to it in theory as well as  simulation20–24. Series of interesting phenomena are 
observed including traveling  bands25, moving  crystals26, Swirlonic  state27, phase  transition28–30 and circular 
 pattern31,32. Various factors, including hybrid  noise33, aggregation  interaction34, low density and low  speed35, 
auditory  sensing36, view  angle37,38,  chirality39 and complex noise  environment40, are considered for exploring 
the diverse phenomenon of collective behavior as well. Some model, modifying based on Vicsek model, is pro-
posed to improve the speed of motional consensus by adjusting the rules of velocity alignment such as remote 
neighbors  strategy41, updating the direction with exponential weights depending on the neighbor  numbers42,43 
or according to the direction of the  neighbors42,44.

Besides the progress that has been made in exploring collective behavior, the quantitative description of 
the movement pattern of the particles and the mechanism for the formation of different movement patterns of 
standard Vicsek model remain unclear. And how the competition between velocity alignment and noise affects 
motional consensus is not clear enough. Studying them is important to improving our understanding of the 
mechanism of collective motion. Therefore, in noise-free cases, we study the movement pattern of motional 
consensus by the spatial distribution of the particles and the degree of aggregation of the particles. And we 
proposed a method to quantitatively describe the spatial distribution of the particles. The effect of different 
parameters on the movement pattern of motional consensus is analyzed and the reason of different movement 
patterns is explored. As for the effect of velocity alignment and noise on motional consensus, we quantify the 
competition between them and find the non-monotonic variation of the effect of noise on motional consensus.
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Model
Here, we consider the standard Vicsek  model17 including N self-propelled particles. All of the particles are 
regarded as points and continuously move in a two-dimensional square cell. The linear size of the square cell is 
L and the cell is considered with periodic boundary conditions. The interaction radius among particles is r which 
means the field of vision for each particle is πr2 . Particles in the field of vision of particle i, including particle 
i itself, are regraded as the neighbor of it. The motion of each particle obey the ordinary differential equations 
(ODEs) as follows

where Ni(t) = {j : |xj − xi| � r} denotes the number of the neighbor of particle i at time t and ξθi is random 
noise. And the ODEs of the model in 2D cartesian coordinates are as follows

In the simulations, the time step updating the velocity and position of all of the particles is �t = 1 . The initial 
positions of all of the particles are randomly distributed in the cell. Using the Euler method to discrete the Eq.(1), 
simultaneous update of the position of all of the particles at each time step according to

and i denoting different particle among all of the N particles, takes one to N. All of the particles have the same 
absolute value of velocity v. The initial direction of velocity of all of the particles are randomly and uniformly 
distributed in [−π ,π) . The variation of the velocity is shown in the change of the direction of the velocity. 
According to Eq.(1), the rule for updating the direction of velocity of the particles is

where 〈θi(t)〉r is the average direction of all of the neighbors of the particle i, which is given by

and �θ represents noise which is a random number following uniform distribution in [−η/2, η/2] . η is the 
parameter to control the amount of noise.

In order to measure the degree of the motional consensus of the system, the normalized average velocity of 
all the N particles is considered as the order parameter of the system, which is as follows

When the direction of the velocity of the particles achieves global alignment (flocking state), normalized average 
velocity φ reaches 1 and zero in the randomly disordered  states17.

Result and discussion
The noise‑free cases. In noise-free cases, η = 0 . When the number of simulated time steps is large enough, 
the order parameter of the system can reach 1. This means that the system arrives in a flocking state (strict 
motional consensus). In order to catch the main feature of motional consensus without sacrificing long simula-
tion times, we take φm = 0.979 to be the standard for reaching motional consensus. φm = 0.979 , which means 
the system almost reaches flocking state, is large enough to ensure the validity of analysis of motional consensus 
below will not change. In simulation, we set L = 10 . The total time steps for simulation are 1000, which is long 
enough for the system to reach motional consensus.

Considering the rules of velocity alignment in the standard Vicsek model, the update of the direction of 
velocity will be directly influenced by their neighbors. Particles with common neighbors will build correlation 
of their velocity, while there will be no correlation of the velocity among the particles without common neighbor. 
To quantify simply, here, we only consider the correlation of each pair of particles consisting of two particles.

When the system reaches motional consensus, they are found to have different movement patterns which 
show different spatial distribution and different degree of aggregation of all of the particles. As shown in Fig. 1, 
with the increasing of the interaction radius r, the spatial distribution of the particles is more uniform and the 
particles aggregate less closer. As the total number of particles increases, the particles are distributed more evenly 
and clustered closer together. The increase in velocity makes the spatial distribution of particles more uneven 
and the particles aggregate more closer.

To quantitatively study the movement pattern of the systems reaching motional consensus, we proposed a 
method with grid-based technique. Grid-based technique is widely used in many numerical approaches including 
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Fast Multipole Method(FMM)45 and Multi-Particles Collision(MPC)  etc46. FMM divides the space into differ-
ent number of cells depending on the level of division. By analyzing the spatial relationship between the target 
cells and other cells, the interaction among particles in the target cell and the interaction of that with other cells 
can be obtained. Then the total interaction among the particles of the system can be evaluated. MPC introduces 
randomly shifted cells in the simulation of each time step. Evaluating the streaming and collision of the particles 
in each cell to obtain the position and velocity of the mass of the center of each cell. Then analyzing the dynamics 
of the system by considering the interaction among all of the cells.

Both of the method mentioned above can improve the efficient of the simulation. But they are more suitable 
to solve the interaction among the particles. Here, we aim to catch the feature of the movement pattern of the 
system and our method with grid-based technique is simple and efficient. As shown in Fig. 2a, we divide the 
two-dimensional L× L space into G grids, where G = 25 here. Then we investigate the normalized variance of 
the ratio of the number of particles in each grid Ni to total number of the particles N.

The rationality of current grid selection is discussed in the Supplementary Information. The ratio of the 
number of particles in each grid Ni to total number of the particles N is obtained as follows

The normalized variance of the ratio of Ni to N is

and σ is the variance of the ratio of Ni to N

where R̄ =
(
∑

i
Ri

)

/G = 1/G is the average of Ri . σmax denotes the maximum of the variance of the ratio of Ni 
to N when all of the particles aggreagate in the same grid, which is
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Figure 1.  The movement pattern of the system reaching motional consensus for different interaction radius r, 
different number of particles N and different velocity v. The blue points denote the particles and the red arrows 
denote the direction of the velocity of the particles. v = 0.04 for (a)-(i). r = 0.8 for (a) N = 100 , (b) N = 300 
and (c) N = 500 . r = 1.2 for (d) N = 100 , (e) N = 300 and (f) N = 500 . r = 5.0 for (g) N = 100 , (h) N = 300 
and (i) N = 500 . r = 1.2 for (j) v = 0.01 , (k) v = 0.16 and (l) v = 0.20 . The value of other parameters for 
simulation are v = 0.04, L = 10 in (a)-(i) and N = 200, L = 10 in (j)–(l).
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The normalized variance χratio will be 1 when all of the particles aggregate in the same grid, while χratio = 0 when 
all of the particles are uniformly distributed in G grid.

As Fig. 2b–d shown, the increase of r or N and the decrease of v leads to smaller value χratio which means the 
more uniform spatial distribution of the particles (Supplementary Information 1).

To quantify the degree of aggregation of the particles, we investigate the average number of particles for the 
grid that occupied by particles 〈Ngrid〉 . As Fig. 3a shown, with the increasing of r, the value of 〈Ngrid〉 becomes 
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Figure 2.  (a) Scheme of dividing the two-dimensional L× L space into 25 square grids with equal size. The 
normalized variance of the ratio of the number of particles in each grid to total number of the particles χratio , 
showing the spatial distribution of the particles, as a function of (b) interaction radius r for v = 0.04, L = 10 , 
(c) total number of particles N for v = 0.04, L = 10 and (d) the velocity of the particle v for r = 1.2, L = 10 . The 
value of each data point in (b), (c) and (d) is the average of 200 different realizations.

Figure 3.  The average number of particles for the grid that occupied by particles 〈Ngrid〉 , showing the degree of 
aggregation of the particles, as a function of (a) the interaction radius r for v = 0.04, L = 10 , (b) total number of 
particles N for v = 0.04, L = 10 and (c) the velocity of the particles v for r = 1.2, L = 10 . The value of each data 
point is the average of 200 different realizations.
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smaller, which means the aggregation of the particles is less close. As shown in Fig. 3b,c, 〈Ngrid〉 increases as N 
or v increase. The increase of N or v makes the particles aggregate more closer.

In order to understand the variation of the degree of aggregation of particles and the spatial distribution of the 
particles with different r and N, we study the common neighbors of particles. The common neighbors of particles 
are significant for the movement pattern of the particles by affecting the update of the velocity and position of 
particles. For noise-free cases, the movement pattern of particles when reaching motional consensus depends 
only on the initial state of all of the particles. Given the initial state, the state of the system is fixed after updating 
in each time step, because the update in each time step is not affected by noise.

For the initial state, we first pay attention to the average ratio of the number of common neighbor ncom to 
the number of particles within the field of vision of pairs of particles npair = nA + nB − ncom , where nA and nB 
are the number of neighbors of particle A and B, which are any two of the N particles. 〈ncom/npair〉 reveals the 
average strength of the correlation of velocity for each pair of particles. As Fig. 4a,b shown, the decrease of r or 
the increase of N leads to weaker correlation of velocity for each pair of particles.

Because the motional consensus of the system is not only affected by the pairwise correlations of the velocity, 
but also related to all of the particles, we also investigate the average ratio of the number of common neighbor 
ncom to the total number of the particles N in initial state. As shown in Fig. 4c,d, with the decreasing of r or the 
increasing of N there is weaker correlation of velocity between pairwise particles and all of the particles.

What have been analyzed about Fig. 4 shows that increasing N and decreasing r will weaken correlation of 
velocity among particles. Weaker correlation of velocity among particles makes it more difficult for particles to 
reach motional consensus. The particles will keep moving in their direction respectively until the correlation 
between their velocity is large enough to enable them to move in the almost same direction. In order to build 
stronger correlation of their velocity, particles will move more closer, resulting in larger degree of aggregation 
when the system reaches motional consensus.

There is a different mechanism for the effect of velocity to the degree of aggregation of particles. For small 
velocity, particles move slowly to close in order to reach motional consensus by building stronger correlation of 
their velocity. Because particles move slowly, they are more sensitive to the boundary that whether they can reach 

Figure 4.  The average ratio of the number of common neighbors to the number of particles within the field of 
vision of pairs of particles 〈ncom/npair〉 , showing the average strength of the correlation of velocity for each pair 
of particles, as a function of (a) r and (b) N. The average ratio of the number of common neighbors to the total 
number of the particles N in initial state 〈ncom/N〉 , showing the average strength of the correlation of velocity 
between pairs of particles and all of the particles, as a function of (c) r and (d) N. In (a)–(d), the value of other 
parameters for simulation are v = 0.04, L = 10 . The value of each data point is the average of 200 different 
realizations.
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motional consensus or not. With the increasing velocity, particles move fast and are insensitive to the bound-
ary that whether they can reach motional consensus or not, which leads to larger aggregation of the particles.

Cases with noise. The rules of velocity alignment make the velocity of all of the particles unified, while the 
noise disturbs the motional consensus. For the motion of the particles, the restriction of velocity alignment will 
be weakened by the effect of noise, which makes the motional consensus more difficult or even impossible to 
reach. The temporal evolution of the order parameter for various strengths of noise are shown in Fig. 5a.

There is perturbation of order parameter when the state of the system can be thought to be steady. In order to 
quantify the value of order parameter when the system is nearly steady, we take the average of order parameter 
from 500 steps to 1000 steps as the order parameter of the system in the nearly steady state. With the increasing 
of η , the steady value of the order parameter is smaller, which means the less unified of the motion of all of the 
particles. Figure 5b shows the order parameter for different values of η in the absence of velocity alignment. It is 
impossible to reach motional consensus even in the case of small η.

In order to quantify the effect of noise on motional consensus, we investigate the difference of order parameter 
�φ between two cases as follows

where φva denotes the steady value of order parameter in the cases that the motion of particles is only restricted 
by velocity alignment and φvn denotes the steady value of order parameter in the cases that the motion is affected 
by both velocity alignment and noise.

As shown in Fig. 6a, the difference of order parameter �φ increases with the increasing of the value of η for 
different interaction radius r, which shows the larger effect of noise on motional consensus.

To compare the influence of velocity alignment and noise on reaching motional consensus and quantify the 
competition between the effects of velocity alignment and noise, we defined the difference of the difference of 
the order parameter κ which is shown as follows

where �ϕ = φva − φn denotes the difference of order parameter between the cases that the update of the motion 
of particles is affected by both velocity alignment and noise and the cases that the motion is just affected by 
noise. As shown in Fig. 6b, the value of κ will change from positive to negative as η increases, which means the 
increasing of η improves the effect of the noise to the motion of the particles and the effect of velocity alignment 
becomes more and more weak comparing that with the noise. When κ = 0 , velocity alignment and noise affect 
motional consensus equally.

We also observed that the variation of �φ is not monotonous when the value of η is larger than 6. When 
η = 6 , �θ ∈ [−3.0, 3.0] , which is close to [−π ,π ] , the probability of all the direction of velocity effected by noise 
is almost equal as shown in Fig. 7a.

Because of the periodicity of the angle denoting the direction of velocity, the probability distribution 
of the noise will be changed when η > 6 . For example, as shown in Fig. 7b,c, when η = 3π which means 
�θ ∈ [−1.5π , 1.5π] , the probability of �θ ∈ [−1.5π ,−π ] and �θ ∈ [π , 1.5π] will be unified in the probability 

(11)�φ = φva − φvn

(12)κ = �ϕ −�φ

Figure 5.  Order parameter φ as a function of time steps for different values of η (a) With the effect of both 
velocity alignment and noise. (b) Just with the effect of noise. In both (a) and (b), the value of other parameters 
for simulation are v = 0.04, L = 10,N = 400, r = 1.0.
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of �θ ∈ [−0.5π ,−π ] and �θ ∈ [0.5π ,π ] respectively, which changing the probability distribution of �θ . As 
shown in Fig. 7c,d, in the cases of η ∈ [2π , 3π ] , the more the η larger than 2π , the less the �φ will be. When 
η ∈ [3π , 4π ] , the probability unified in [−π ,π ] makes the probability distribution of �θ more uniform, which 
leads to the increment of �φ.

In order to confirm our analysis of the reason of the non-monotonic variation of �φ when η > 6 , we inves-
tigate the probability distribution of noise with different value of η . As shown in Fig. 8, different values of η lead 
to different probability distribution of �θ , which affect the value of �φ.

This is consistent with the above analysis of noise. As shown in the inset of Fig. 7a, the degree of the non-
monotonic variation about the difference of order parameter is larger with the increasing of the interaction radius 
r. This is because the larger interaction radius improves the effect of velocity alignment on motional consensus, 

Figure 6.  (a) The difference of order parameter between the cases that the update of the motion of particles 
is affected by both velocity alignment and noise and the cases that the motion is just affected by noise �φ , 
showing the effect of noise on motional consensus, as a function of η for different interaction radius r. Inset: 
�φ in the range of [0.7, 1] for clearly showing the variation of it as the η increases. (b) The competition between 
velocity alignment and noise κ as a function of η for different interaction radius r. The value of each data point 
is the average of 200 different realizations. In both (a) and (b), the value of other parameters for simulation are 
v = 0.04,N = 400, L = 10.

Figure 7.  Scheme of the probability distribution of the direction of all of the particles. (a) The grey area 
denotes �θ is in the range of [−π ,π ] . (b) The probability distribution of �θ when �θ ∈ [−1.5π , 1.5π] . The 
green area denotes the probability in the case of �θ ∈ [−1.5π ,π ] and the red area denotes the probability 
when �θ ∈ [π , 1.5π] . (c) The probability distribution of �θ when unifing all of the value from [−1.5π , 1.5π] 
to [−π ,π ] . (d) The probability distribution of �θ when unifing all of the value from [−1.2π , 1.2π] to [−π ,π ] . 
The red area and the green area denotes the probability when �θ ∈ [−1.2π ,π ] and �θ ∈ [π , 1.2π] respectively 
before unifying and they denote �θ ∈ [−π ,−0.8π] and �θ ∈ [0.8π ,π ] after unifying.
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which makes the competition between velocity alignment and noise more intense. This makes the difference of 
order parameter �φ more sensitive to the change of the distribution of noise.

Conclusion
In conclusion, we have studied the motional consensus of self-propelled particles in both the noise-free cases 
and the cases with noise by standard Vicsek model.

For the noise-free cases, we have proposed a method to quantitatively describe the spatial distribution of the 
particles by divided the two-dimensional space into some grid with equal size and count the normalized variance 
of the ratio of Ni to N. It is found that the smaller r or larger N builds weaker correlation of the velocity among 
particles, which leads to larger degree of aggregation of the particles when the system reaches motional consensus.

For the cases with noise, we have quantitatively analyzed the competition between the effects of velocity 
alignment and noise on the degree of motional consensus. The results show that the non-monotonic variation 
of the effect of noise on motional consensus result from the non-uniform probability distribution of the noise.

Collective behaviors of active systems present various patterns. Pattern formation of active systems may be 
studied by generalizing the Smoluchowski aggregation theory which focus on the growth and distribution of 
clusters for passive  systems47. Bridging the Vicsek model(particles-based model) and the theroy proposed by 
Tu and Toner based on  hydrodynamics48 is also an interesting perspective of study about collective behavior of 
active systems. As for the further studies concerning the collective behavior of active systems, our study may be 
useful for exploring the basic principle of collective motion.

Data availability
The data presented in this study are available on request from the corresponding author.
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