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The effect of familiarity 
on behavioral oscillations in face 
perception
Xiaoyi Liu  & David Melcher *

Studies on behavioral oscillations demonstrate that visual sensitivity fluctuates over time and 
visual processing varies periodically, mirroring neural oscillations at the same frequencies. Do these 
behavioral oscillations reflect fixed and relatively automatic sensory sampling, or top-down processes 
such as attention or predictive coding? To disentangle these theories, the current study used a 
dual-target rapid serial visual presentation paradigm, where participants indicated the gender of a 
face target embedded in streams of distractors presented at 30 Hz. On critical trials, two identical 
targets were presented with varied stimulus onset asynchrony from 200 to 833 ms. The target was 
either familiar or unfamiliar faces, divided into different blocks. We found a 4.6 Hz phase-coherent 
fluctuation in gender discrimination performance across both trial types, consistent with previous 
reports. In addition, however, we found an effect at the alpha frequency, with behavioral oscillations 
in the familiar blocks characterized by a faster high-alpha peak than for the unfamiliar face blocks. 
These results are consistent with the combination of both a relatively stable modulation in the theta 
band and faster modulation of the alpha oscillations. Therefore, the overall pattern of perceptual 
sampling in visual perception may depend, at least in part, on task demands.

Protocol registration 
The stage 1 protocol for this Registered Report was accepted in principle on 16/08/2022. The protocol, as 
accepted by the journal, can be found at:https://​doi.​org/​10.​17605/​OSF.​IO/​A98UF.

The brain functions through back-and-forth communications among different specialized regions, which is 
thought to be coordinated by neural oscillations at different frequencies. The theta (3–7 Hz) and alpha- (8–12 Hz) 
band oscillations, in particular, have been linked to visual perception1–3. Although the neural generators of these 
rhythms and the specific functions they serve are still topics of debate, researchers have in general agreed that 
they reflect large-scale inter-areal modulation effects (e.g., between more high-level cortex and the visual cortex) 
and connections within the visual processing pathways4,5.

In the last decade, human psychophysical studies have demonstrated rhythms in perceptual outcomes that 
mirror these neural oscillations by collecting perceptual judgements at densely distributed time points after a 
visual event6–13. While such fluctuations were initially reported in studies of detection of relatively simple stimuli, 
recent work has shown temporal effects also for complex stimuli. For example, theta-band behavioral oscillations 
have been reported in both rapid object categorization8 and face detection tasks14 that have utilized a dual-target 
rapid serial visual presentation (RSVP) paradigm. In this paradigm, two identical targets are embedded in a 
stream of distractors, with targets separated by a varying stimulus onset asynchrony (SOA). Because the previous 
and subsequent distractors in the stream will suppress the lingering neural signals evoked by the target, the 
RSVP paradigm has the unique advantage of allowing us to isolate the processing of a brief target. However, the 
underlying mechanisms of the observed behavioral oscillations in the dual-target RSVP paradigm still remain 
largely unknown.

The current project aimed to replicate our previous finding of a general theta-band rhythm in accuracy in 
face perception task as a function of the SOA (Hypothesis 1) (Table 1), which was obtained from an online study 
that allowed for a highly diverse sample in terms of age and nationality, across several different continents, but 
provided less control over experiment parameters such as testing environment14. Moreover, our design aimed 
to disentangle different theories of the reasons for behavioral oscillations by introducing a new within-subject 
independent variable—the familiarity of the face stimuli. While face processing is in general highly efficient 
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for humans, research has consistently shown a much more robust representation for familiar than unfamiliar 
faces in our brain, reflected in superior identification especially under challenging conditions15–17, faster 
saccadic response17, larger neural responses19, increased processing speed and reduced decoding latency20,21, 
and beyond. In particular, the increased neural response and faster processing speed for familiar faces would 
predict interesting changes in the dynamics of the behavioral oscillation.

The contrast between familiar and unfamiliar faces would enable us to critically test alternative hypotheses 
from different theories. Dividing the trials into familiar and unfamiliar blocks, we expected to see an effect of 
familiarity, in which the familiar block would not only yield better overall performance but also potentially show 
a faster oscillation than unfamiliar block (Hypothesis 2; Fig. 1A). This result would be based on the theory that 
behavioral oscillations are a result of top-down processes such as attentional sampling or predictive coding (for 
interpretation, see Table 2). Specifically, theories of attentional sampling propose that the functioning of early 
visual cortex (EVC) is modulated by the attention network at the frontoparietal regions through rhythmic neural 
activities at the theta-band4,22, giving rise to alternating moments of low and high perceptual responsiveness to 
visual inputs. In lab settings, researchers typically use a flash event to reset the attentional rhythm and observe the 
‘attention spotlight’ to oscillate between multiple spatial locations at around 4 Hz6,11,12. Because this attentional 
sampling reflects a trade-off between exploration and exploitation, when the task is more difficult and requires 
more resources for internal processing (exploitation), researchers have observed a slower oscillation9,23. In our 
case, therefore, if the behavioral oscillation reflected attentional sampling, we would observe a slower oscillation 
at theta band in unfamiliar trials where the task was harder.

In contrast, other theories suggest a role of predictive coding. Instead of viewing human vision as a passive 
sampling machine that automatically discretizes continuous input at a relatively constant rate, many variants of 
prediction theories claim that high-level cortical areas are constantly generating predictions about the incoming 
visual inputs and verifying these predictions via the backward connections to the EVC24. In line with this 
‘active perceiver’ hypothesis, researchers have recently revealed a theta-band rhythmic interaction between the 
prefrontal cortex and mediodorsal thalamus in humans, the latter of which serves as a relay to update predictions 
stored in the cortex based on sensory inputs25. In priming studies, previous work has tested this idea by presenting 
a brief prime (e.g., an arrow, a face image) to activate multiple predictions about a following probe of the same 
kind7,10,26. These studies have revealed theta-band rhythmic fluctuations in reaction time as a function of the 
time lag between the prime and probe. In a recent neuroimaging study, Guo and colleagues27 used the same 
priming paradigm with a face/house discrimination task with fMRI. They found a similar 5 Hz oscillation in the 
decoding accuracy of voxels in the fusiform face area (FFA) and the parahippocampal place area, suggesting a 
possible origin of the behavioral oscillations at the category-selective regions. Because evidence has suggested that 
familiar faces elicit faster and more robust neural processing even when familiarity is irrelevant to the task18,20, 
this suggests that bottom-up neural signals will reach the prediction generation areas faster, and thus iterate faster. 
Therefore, if the behavioral oscillation reflected predictive coding, we would observe a similar effect of familiarity.

If an effect of familiarity was found, we then planned to conduct a second study to further differentiate the 
attentional sampling and prediction theories by mixing the familiar and unfamiliar trials together in the same 
block. We hypothesized a similar effect of familiarity as in Study 1 (Hypothesis 2.1), meaning that familiarity 
would trigger a fast automatic processing advantage. This fast adjustment is predicted by the attentional sampling 
theories. Alternatively, the effect of familiarity might only be observed in Study 1, in which the familiar and 

Table 1.   Design table.

Question Hypothesis (if applicable) Sampling plan (e.g. power analysis) Analysis plan

Is there a theta and/or alpha-band oscilla-
tory temporal structure in face perception?

Hypothesis 1: There will be a significant 
fluctuation in accuracy at 3–12 Hz as a 
function of the SOA between the two 
targets in the dual-target trials

Fast Fourier Transform and sinusoidal 
fitting. Statistical significance indicated 
by a non-parametric bootstrap test with a 
cluster-based permutation test to control 
for multiple comparison. Rayleigh test of 
non-uniformity

Is the behavioral oscillation in face percep-
tion a result of top-down processes (e.g., 
attentional sampling, and/or predictive 
coding) or sensory sampling?

Hypothesis 2: If it involves top-down 
processes, the peak frequency of oscillation 
in the familiar trials will be higher than that 
in the unfamiliar trials

To be able to detect a significant peak in 
each condition, 55 participants are needed 
to reach a power level of 0.97

Fast Fourier Transform; Non-parametric 
bootstrap

(If there is an effect of familiarity) Is the 
behavioral oscillation a result of rhythmic 
attentional sampling or predictive coding?

Hypothesis 2.1: If it reflects rhythmic 
attentional sampling, then the effect of 
familiarity (faster oscillation in familiar 
than unfamiliar trials) will be observed 
Study 2 where familiar and unfamiliar trials 
are mixed together

Fast Fourier Transform; Non-parametric 
bootstrap

(If there is no effect of familiarity) Does 
familiarity have any effect on behavioral 
oscillations?

Hypothesis 2.2: If the processing of familiar 
face is more robust, the amplitude of behav-
ioral oscillation at the peak frequency will 
be larger in familiar than unfamiliar trials

One-sided paired-sample t-test (alpha level: 
0.05)

Does familiar faces evoke a stronger 
attention capture/more consistent gender 
prediction?

Hypothesis 2.3: If stronger, the phase-lock-
ing difference (PLD) will be significantly 
greater than 0

Inter-trial phase coherence (ITC) analysis. 
Permutation test

Are people better at perceiving familiar 
faces than unfamiliar faces?

Hypothesis 3: If better, the accuracy in 
familiar trials will be higher than that in the 
unfamiliar trials

One-sided paired-sample t-test (alpha level: 
0.05)
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unfamiliar trials were presented in separate blocks. This pattern would be more consistent with a predictive 
coding hypothesis, which predicts that prior experience will slowly tune the oscillation function.

In contrast, the behavioral oscillation could result from a relatively fixed sensory sampling rate, which has 
been proposed to be related to occipital alpha oscillations5. This alpha-band sensory sampling has often been 
found embedded in slower theta-band attentional sampling. According to this idea, although attention monitors 
activities in visual system periodically through a theta-band rhythm, the visual system itself also samples from 
environment periodically at a faster alpha-band frequency11,12. For example, researchers have shown an intrinsic 
sensory sampling rate of 10–15 Hz by systematically modulating the signal-to-noise ratio of parts of the image at 
different frequencies28,29. If the sensory sampling rate is fixed, then the frequency of behavioral oscillation would 
be less susceptible to stimulus-related factors such as familiarity, and we would not observe a difference in oscil-
lation frequency between familiar and unfamiliar blocks in Study 1 (Fig. 1B). However, given that the process-
ing of familiar faces might still be more robust, this would lead to the specific hypothesis that the amplitude of 
behavioral oscillation at the peak frequency would be larger in familiar than unfamiliar blocks (Hypothesis 2.2). 
In other words, our manipulation would only influence the magnitude rather than the critical rate/frequency.

We also tested for other effects brought by the manipulation of familiarity (Table 1). Because familiar faces 
tend to evoke a stronger attention capture than objects and unfamiliar faces18, we predicted that familiar tri-
als would be more phase-locked than the unfamiliar trials due to a stronger phase reset and phase alignment 
(Hypothesis 2.3). Finally, we expected to replicate previous finding of a prioritized detection of familiar faces in 
an RSVP stream17 by comparing the general gender discrimination performance (as measured with accuracy) 
between familiar and unfamiliar trials. We predicted a main effect of familiarity, with a higher accuracy in the 
familiar trials (Hypothesis 3).

Methods
Ethics information.  Participants were recruited through the NYUAD SONA system. They must be aged 
between 18 and 40 years old, have normal or corrected-to-normal vision, and have no history of epilepsy or 
other neurological disorders to participate in the study. In addition, participants were asked how familiar they 
are with the identities in an online survey before the main experiment. They must be familiar with all 12 celebrity 
faces and unable to recognize the unfamiliar faces (see Appendix) to be included in the study. Participants 
received a small reimbursement for their time in terms of money (30 AED) or class credits (0.5 credit) for every 
30 min they spend in the main experiment (around 90 min). The online survey was no longer than 20 min, and 
participants received 10 AED as compensation for completing the initial online survey (regardless of whether 
they were included in the in-person study). All participants were given enough time to read and sign the consent 
form and all aspects of the study will conform with international standards for ethical human subjects research. 
The experiment design was approved by the NYUAD Institutional Review Board (IRB).

Figure 1.   Hypothesized performance. (A) Behavioral oscillations as a result of top-down processes (Hypothesis 
2). We expected that top-down neural modulation (left column) would oscillate faster in familiar (orange) 
than unfamiliar (blue) trials within theta-band frequencies. Right column shows the corresponding detrended 
behavioral performance as a function of SOA under the hypothesis. (B) Behavioral oscillations as a result of 
intrinsic sensory sampling at alpha frequencies (Hypothesis 2.2). In this case, face familiarity would not affect 
the sampling rate. However, because the processing of familiar faces is more robust, we expected to see a larger 
oscillatory amplitude in this condition. The transparency of the face images represents neural sensitivity to the 
stimuli. The face images used here were selected from the [64] (https://​gener​ated.​photos/​datas​ets).

https://generated.photos/datasets
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Hypothesis 1 

There is a significant fluctuation in accuracy at certain frequency between 3 and 12 Hz as a function of the SOA 

in the dual-target trials (collapse across familiarity). 

YES NO 

Hypothesis 2 

The peak frequency of oscillation in the familiar trials is higher than that in the unfamiliar trials in Study 1.  

YES NO YES NO 

The behavioral oscillation observed in face 

perception is a result of top-down processes 

(attentional sampling, and/or predictive 

coding). 

The behavioral oscillation 

might result from a relatively 

fixed sensory sampling rate, 

that is related to occipital 

alpha oscillations. 

(Different 

fluctuation 

patterns in 

familiar and 

unfamiliar 

trials cancel 

each other out 

when 

collapsing 

across 

familiarity.)  

Face 

perception, 

gender 

discrimination 

specifically, 

does not rely 

on oscillatory 

mechanisms. 

Hypothesis 2.1 Hypothesis 2.2 

The peak frequency of oscillation in the familiar trials is 

higher than that in the unfamiliar trials in Study 2. 

The amplitude of behavioral 

oscillation at the peak 

frequency is higher in familiar 

than unfamiliar trials. 

YES NO YES NO 

The behavioral oscillation 

in face perception is a 

result of attentional 

sampling. 

The behavioral oscillation in 

face perception is a result of 

predictive coding. 

Confirms that 

the advantage 

in the 

processing of 

familiar faces 

exists even 

after 

detrending. 

The 

manipulation 

of familiarity 

does not have 

any effect on 

behavioral 

oscillations. 

(continued)
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Design.  Images of non-face objects (baseline) and faces (targets) were presented in a dual-target RSVP 
paradigm. We used 4000 inanimate object images from the database used by Konkle and colleagues30. As a 
critical manipulation, we used 12 familiar faces (6 female) and 12 age (age when the photos were taken), gender, 
and ethnicity matched unfamiliar faces. The familiar faces were celebrity faces (e.g., famous actors and political 
figures; see Appendix) with images freely available on the internet. To ensure that participants were actually 
familiar with the supposedly familiar faces, participants completed an online survey before coming in for the 
main experiment. In the online pretest, they were presented with images of the 24 identities (different from the 
stimuli we used in the main experiment) and of 24 random unfamiliar identities and indicated their knowledge 
about him/her. Participants indicated how familiar with the faces by selecting from 1 (‘Yes, I know who this is.’) 
to 3 (‘I have never seen this face before.’). For the celebrity faces, participants also indicated their names and any 
knowledge they had regarding these people. The unfamiliar face images were people whose names might be 
famous but faces are unfamiliar to most people (e.g., writers, scientists, etc.). The purpose of including random 
unfamiliar identities that were not used in the study was to prevent participants from learning the unfamiliar 
identities. Participants were asked again about the identity of the familiar face images when they come in for 
the main experiment. To reduce the chance of learning the unfamiliar faces due to the repeated exposure, we 
selected six different images of the same identity as stimuli, such that each image was repeated for seven times 
(for example, see Fig. 2A; note that the images in Fig. 2A are not the actual stimuli for copyright issues. Images 
were included here after obtaining written informed consent from the individuals depicted.). All images were 
converted to gray-scale and resized to 256 pixels in width and height with Adobe Photoshop graphics software. 
Face images were further cropped with the ellipse tool with most hair and ear information cropped out. All 
images were histogram-matched for luminance through the SHINE toolbox31.

The study was coded with MATLAB PsychToolbox-332. Stimuli were presented on a grey background 
(luminance: 128) on an ASUS monitor (1920*1080 screen resolution; 120 Hz refresh rate) at a viewing distance 
of approximately 90 cm. The EyeLink 1000 Plus eye-tracker (SR Research, Ontario, Canada) was used to ensure 
central fixation during the trials. We used a within-subject design. In each trial, participants were presented with 
a 500-ms fixation, followed by a stream of object images presented at 30 Hz. At the end of the image stream, 
participants were asked to indicate the gender of a face target (i.e., the gender discrimination task) by pressing 
keys (‘f ’/‘j’ for ‘female’/‘male’ response; keyboard correspondence was counterbalanced across participants) 
on a keyboard. On the critical dual-target trials, two identical face targets were embedded and separated by a 
SOA that varied between 200 to 833 ms in 20 steps of 33.3 ms (Fig. 2B). This choice of SOAs was motivated by 

Table 2.   Interpretation Table.

Hypothesis 2.3 

The phase-locking difference is significantly different than zero. 

YES NO YES NO YES NO 

Familiar face 

evokes a 

stronger 

phase-reset, 

presumably 

through a 

stronger 

There is no 

difference 

in attention 

capture 

between 

familiar 

and 

The briefly 

presented 

first familiar 

face in the 

RSVP stream 

evokes a 

more 

The gender 

information 

of familiar 

face, when 

presented 

under 

challenging 

Familiar face 

evokes a 

stronger 

phase-reset, 

presumably 

through a 

stronger 

There is no 

difference in 

attention 

capture 

between 

familiar and 

attention 

capture.

unfamiliar 

faces.

consistent 

gender 

prediction 

than 

unfamiliar 

face, due to 

advantage in 

processing 

conditions, is 

not easier to 

extract than 

unfamiliar 

face.

attention 

capture that 

updates the 

sensory 

sampling.

unfamiliar 

faces.
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previous results with the dual-target RSVP paradigm33. The first target appeared randomly at either 3rd, 4th, 
or 5th position in the stream of 30 images. Each SOA condition was repeated for 48 times (2 familiarities × 12 
identities × 2 repetitions). There were also 48 one-target trials, where only the first target was presented, to 
measure baseline performance.

In Study 1, Familiar and unfamiliar trials were divided into separate blocks. The order of the blocks was 
counterbalanced and predetermined depending on subject ID. For example, participants with an odd number 
ID ran the familiar block first and then unfamiliar block, while participants with an even number ID ran in the 
reversed order. In Study 2, everything would be kept the same except that familiar and unfamiliar trials would 
be randomly mixed together.

Before the main experiment, participants practiced with 72 one-target trials with varying levels of image 
contrast. A QUEST staircase procedure34,35 was implemented during the practice to estimate the image contrast 
at 60% accuracy for each participant. Target images were unfamiliar faces. All stimuli used in the practice trials 
were different identities from those in the main experiment. There were a total of 1008 trials divided into 16 
blocks with self-paced breaks in between. Data collection and analysis were not performed blind to the condi-
tions of the experiments.

Sampling plan.  To determine the sample size, we did a statistical power analysis by bootstrap resampling 
the data from 140 participants in our previous study14. Specifically, we (1) predefined a range of sample sizes 
from 20 to 60, (2) sampled participants from the original online dataset14 with replacement for 2000 times, 
(3) ran the same Fast Fourier Transform (FFT) analysis at each new dataset as in the current study, and (4) 
computed the power. The statistical power refers to the proportion of positive results (Bonferroni corrected p 
value < 0.05). In light of the results, our target sample size for each study was 55 participants, with a statistical 
power of 0.97 to detect an overall behavioral oscillation. A separate power simulation suggests that we would 
have a power of at least 80% to detect the difference in oscillatory frequencies in two conditions when the actual 
effect size is larger than 1.5 Hz.

We planned to first recruit 55 to complete the online survey. If according to the results of the online survey, 
less than 55 participants were eligible, we would continue to recruit until the number of eligible participants 
reached 55. Participants who were not able to complete the task due to technical issues or other personal reasons 
were excluded from the analysis. Participants who completed the task but whose accuracy in 200 ms SOA condi-
tion was below 50% were also excluded because the task should be the easiest in this condition. If a participant 
was excluded, then we would recruit and test an additional participant. This process continued until we had the 
full data of 55 participants. We did not analyze any other aspect of the data, other than checking that performance 
in the 200 ms SOA condition was above 50%, before we finished collecting the entire dataset. Participants who 
took part in Study 1 would not be eligible for Study 2.

Data analysis.  First, we computed the accuracy as the index for gender discrimination performance and 
calculated a one-sided paired-sample t-test (alpha level: 0.05) to compare the difference between familiar versus 
unfamiliar trials. For the main analysis, we focused on the accuracy in the dual-target trials. Average accuracy 
was computed for each SOA level for each participant. There was a slightly decreasing trend in the accuracy as 

Figure 2.   An illustration of the dual-target trials. (A) Sample face images. For each identity, we selected 
six instances of varied expressions and view angles. Note that images shown here are photos of lab research 
assistants, not from the actual stimulus set due to copyright. All rights reserved. Images were included here 
after obtaining written informed consent from the individuals depicted. (B) Thirty images were presented in an 
RSVP stream of 30 Hz (33.3 ms per image). Two identical face targets were embedded in the object distractors, 
separated by a SOA that varied between 200 ms to 833 ms in 20 steps of 33.3 ms. The first target always appeared 
randomly at either the 3rd, 4th, or 5th position in the stream. There were also one-target trials, where only the 
first target is presented. The face images used here were selected from the64 (https://​gener​ated.​photos/​datas​ets).

https://generated.photos/datasets
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the SOA increases (Fig. 3A), because targets presented within the same processing cycle tend to be integrated 
and enhance perception36. We fit an exponential decay function to the individual raw data and subtracted it from 
the raw data to get the detrended data:

where x is the SOA, a0 the starting point, τ the time constant (that is, the variable describing the steepness of the 
decay) and c the right-hand asymptote, or the baseline performance.

Then, a Fast Fourier Transform (FFT) was performed on the detrended data time course for each participant 
to convert the results from time domain to frequency domain. Zero padding was applied to achieve a frequency 
resolution of 0.1 Hz. We did not apply smoothing or any filters. The frequencies of interest were from 3 to 13 Hz, 
at which the theta- and alpha-band activities are typically defined. Next, we extracted the phase-locked sum 
(PLS) by summing the complex numbers of the FFT results of all participants, taking the absolute value, and 
dividing the result by participant number9:

The PLSf  is the phase-locked sum for frequency f  , n is the number of participants, A and θ are, respectively, the 
amplitude and the phase angle of the complex vector, for each frequency f  and participant k . This computation 
allows us to test the amplitude of oscillations that are consistent in phase across participants. A permutation test 
was then performed to test the statistical significance of the result by randomly shuffling the SOA labels of the 
individual detrended data for 10,000 iterations and comparing the 95-percentile with the original amplitude for 
each frequency. We corrected for multiple comparisons by taking the maximum amplitude across all frequen-
cies as threshold10,37. In light of the recent publication by Brookshire who proposes that the shuffling-in-time 
randomization procedure might conflate the results with aperiodic temporal structure in the time series38, we 
also verified any significant results with the new pipeline with a few modifications. First, we fit an autoregressive 
(AR(1)) model to the exponentially detrended data of each participant:

where Xt is the accuracy at each time point, c is a constant, φ is the AR parameter, and ǫ is white noise. The fit-
ted model was used to create 10,000 surrogate, pseudo-random dataset of each participant. On each surrogate 
dataset, we applied the same PLS computation, which created a null distribution of PLS based on random time 
series preserving the original aperiodic temporal component. We used the same multiple comparisons correction 
as before37. If there was a significant peak, we completed a Rayleigh test of non-uniformity for circular data to 
verify the phase concentration at the peak frequency (with MATLAB-based CircStat toolbox;39).

We also ran a sinusoidal fitting analysis on the detrended data to independently confirm any behavioral oscil-
lations found in the FFT analysis. The fitting procedure was able to tell us how well our detrended data fit the 
sinusoidal wave at the frequency of interest. To this end, the adjusted R2 was computed. Statistical significance 
was again determined by a similar permutation test.

To test the effect of familiarity, we repeated the same analyses for the two familiarity conditions, analyzed 
separately. To evaluate any difference in the oscillatory frequencies, we resampled with replacement from the 
original data for 1000 times to get a distribution of the peak frequencies in each condition. Then we computed 

f (x) = a0e
−x/τ

+ c

PLSf =

(

1

n

)

∑n

k
A(f ,k)e

i2πθ(f ,k)

Xt = c + φXt−1 + ǫt

Figure 3.   Better performance in familiar versus unfamiliar conditions. Accuracy on the group level (black 
dots) and individual levels (colored dots) in familiar (purple) and unfamiliar conditions (blue). Paired data were 
connected by the grey lines. The black lines around the mean dots represent one standard error of mean (SEM).
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the Bootstrap estimates of standard error from the distributions, which were used to calculate the z-score of the 
difference between the two conditions40. The z-score was compared to the critical value of 1.64 (one-sided). We 
expected to see different peak frequencies, with a faster oscillation in the familiar condition. In the case of the null 
result, we planned to run an equivalence test with the two one-sided tests (alpha = 0.05, equivalence margin = 0.5) 
to confirm the result. If there was no difference in the peak frequency between familiar and unfamiliar condi-
tions, we would simply compare the amplitude of behavioral oscillation (the product of 30 and the amplitude 
from the FFT results to compensate for the loss of the complex part of the signal) at the peak frequency (i.e., the 
effect size) between them with a one-sided paired sample t-test (alpha level: 0.05).

To test the phase-lock difference (PLD) between familiar and unfamiliar trials, we computed inter-trial 
phase coherence (ITC) for each familiarity condition by calculating the phase angle at the peak frequency for 
each participant and determining the average vector length with the CircStat toolbox. PLD was defined as: 
ITC(familiar)—ITC(unfamiliar). Statistical significance of the PLD was determined with a permutation test by shuffling 
the trial label (familiar vs unfamiliar) of all trials for 10,000 iterations and computing a distribution of PLD. As 
before, we compared the value of the real PLD with the 95-percentile of the permutation result to get the p value 
(see41,42 for similar methods).

If there was a difference in peak frequency (i.e., the effect of familiarity), we planned to conduct Study 2, in 
which familiar and unfamiliar trials were mixed together within the same block and carry out the same analyses 
to test (1) the difference in gender discrimination performance between two trial types, (2) the general behavioral 
oscillation, (3) the difference in the oscillatory frequency between two trial types, and (4) the PLD.

Results
Participant information.  Participants were recruited through the New York University Abu Dhabi 
(NYUAD) SONA system. As stated in our preregistered sampling plan, we continued recruiting participants 
until there were 55 qualified participants. In summary, we recruited 117 participants to complete the online 
survey, among which 57 qualified participants were invited to the in-lab experiment (Study 1). Two participants 
were excluded from the analysis because their discrimination accuracy in the 200 ms SOA condition was below 
50%. All of the 55 participants (age: 19.85 ± 1.86 years old; 18 males) that were included in the final analyses 
reported normal or corrected-to-normal vision, and reported to have no history of epilepsy or other neurological 
disorders.

Better performance in the familiar than unfamiliar blocks.  Prior to the main task, participants 
indicated in an online survey how familiar they were with the face images. All participants who were selected 
for the behavioral task were more familiar with the famous (1.06 ± 0.11) (M ± SD) than unfamiliar identities 
(2.81 ± 0.13). The familiarity effect was reflected in the main task. One-sided paired-sample t-test showed a 
significant higher accuracy for the familiar (76.62% ± 1.34%) (M ± SE) than unfamiliar faces (65.43% ± 0.91%), 
t(54) = 12.51, p < 0.001. The trend was consistently found at the individual level in all but six participants (Fig. 3).

To confirm the familiarity effect in both the one- and dual-target trials, we ran a repeated-measures analysis 
of variance (ANOVA) with familiarity (familiar, unfamiliar) and target number (one, two) as within-subjects 
variables. Consistent with the t-test, there was a main effect of familiarity, F(1, 54) = 82.62, p < 0.001, ηp

2 = 0.60. 
We also found a main effect of target number, with enhanced performance for the dual-target (73.45% ± 1.20%) 
than one-target trials (68.60% ± 0.91%), F(1, 54) = 38.49, p < 0.001, ηp

2 = 0.42. The interaction between familiar-
ity and target number was not significant. Thus, we could confirm that the familiarity effect was found in both 
single and double target trials.

A theta‑band fluctuation in gender discrimination accuracy.  To evaluate the fluctuations in gender 
discrimination accuracy, an FFT analysis was performed on the detrended time course (Fig.  4B). We first 
computed the PLS at the pre-defined frequencies of interest from 3 to 13 Hz, with both familiar and unfamiliar 
trials combined. There was a significant peak at 4.6 Hz (Fig. 4C), p(shuffle-corrected) = 0.038. The Rayleigh test revealed 
a strong phase coherence across participants at this frequency (z = 5.67, p = 0.003) (Fig.  4D). The first target 
onset had a robust phase reset effect that lasted at least 200 ms, such that performance was consistent across 
participants at the beginning of the behavioral oscillation at 4.6 Hz. The peak was also verified with the surrogate 
data suggested by Brookshire38 with a marginal significance, p(autocorrelation-corrected) = 0.05 (Fig. 4C). To check the 
possibility of any significant peaks outside our frequencies of interest, we also computed the whole spectrum 
from 0 to 15 Hz, which was the limit of our effective frequency range (sampling rate of 30 Hz). This verified the 
4.6 Hz peak as the only significant peak before correction. However, due to a large increase in the 95-percentile 
permuted PLS at the 15  Hz, the peak was not significant after corrected for the larger number of multiple 
comparisons (p(shuffle-corrected) = 0.067, p(autocorrelation-corrected) = 0.093).

Next, we ran a complementary sinusoidal fitting analysis on the group detrended data to confirm the 
behavioral oscillation at the group level. We found a best-fitting frequency at 4.64 Hz (adj R2 = 0.18, p = 0.15) 
(Fig. 5A), consistent with the PLS result. The non-significant result could be attributed to a decrease in sinusoidal 
fitting as the temporal distance from the reset event increased, a phenomenon that has been recorded in previous 
studies43,44. Therefore, as an exploratory analysis to quantify the decrease, we used a sliding time window method 
to compute the fit between segments of the original detrended time series and the best-fit sinusoidal function 
obtained from the sinusoidal fitting analysis. The time window had a length of 233 ms and was centered at the 
dual-target SOAs, so that we can compute a goodness of fit (R2) at each SOA. To compensate for the length 
difference when the time window was centered on the first and last few SOAs, we added zero paddings to the 
beginning and the end of the original time series. The same analysis was performed on the surrogate data to find 
the 95-percentile threshold, and the maximum R2 across the time series was used as the threshold. As shown 



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10145  | https://doi.org/10.1038/s41598-023-34812-6

www.nature.com/scientificreports/

Figure 4.   Results of all trials combined. (A) Raw accuracy in the dual-target trials as a function of the SOA 
between targets. Dots represent group average accuracy at each SOA. Shaded areas represent SEM. Solid lines 
show the exponential functions fit to the raw data. Colored dashed lines show the average accuracy in the one-
target trials. (B) The average of individual detrended time courses. (C)  Phase-locked sum of group spectra. The 
red solid line represents 95% percentile of permutations used to define significance of the peaks before multiple 
correction. The red dashed line represents similar permutation results but with the surrogate data suggested by 
Brookshire. (D) Polar histogram of the phase angle distribution for the highest peak at 4.6 Hz.

Figure 5.   Sinusoidal fitting results. (A) Dots represent detrended accuracy at each SOA. Shaded area represents 
SEM. Solid line represents the sinusoidal function fitted to the data at 4.64 Hz. The small inset shows the fits 
(R-squared) at different time points. (B) Histogram of adj R-squared computed from each permutation (n = 
10,000). Dashed vertical line represents 95% percentile of permutation distribution as threshold for significance. 
Brown solid line represents the observed adj R-squared.
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in Fig. 5A, we found a significant fit at the first 200 ms of the time series (p(corrected) < 0.05). The fit decreased to 
below the threshold 433 ms after the first target onset, and remained non-significant for the rest of the time series 
(except two significant time points at 733 and 767 ms).

We used the same method as Liu et al.14 to determine the effect size at the peak frequency. Instead of taking 
the PLS, we computed the amplitude of the FFT spectrum at 4.6 Hz on the individual data to obtain a distribution 
of the amplitude (Fig. S1). To test the relationship between FFT amplitude and the actual amount of variance, 
we simulated a time course fluctuating at 4.6 Hz with a true variance of 50% (-25% to 25%). We applied the 
same FFT analysis to the simulated data and found a peak at 4.6 Hz with an amplitude of 0.0167 arbitrary unite 
(a.u.). The 30 times discrepancy was due to zero-padding which would lead to a loss of signal (see Fig. S1). We 
therefore computed the amount of variance as the product of the FFT amplitude and 30. The result suggests that 
the fluctuation at 4.6 Hz can explain an average of 4.4% variance in the behavioral performance. The variance 
explained was slightly smaller than the previous study (6.6%)14, presumably due to a higher task demand in the 
current study (i.e., a gender discrimination task versus a face detection task in the previous study) that increased 
noise in the behavior response.

Different oscillatory patterns for familiar and unfamiliar faces.  We next compared the frequency 
of the behavioral oscillation for the two conditions (familiar versus unfamiliar faces). We performed the same 
FFT analysis on the detrended data (Fig.  6) as above, but separately for familiar and unfamiliar face trials. 
Consistent with the result of the aggregated data, the peak at 4.6 Hz was found for both familiarity conditions 
(Fig. 7A & 7C), although neither reached significance with the smaller number of trials. This initially suggested 
that familiarity did not influence the rate of behavioral oscillation for faces. However, there was a difference in 
the overall pattern of behavioral oscillations between the two stimulus types. Specifically, within the pre-defined 
frequencies of interest, we found a highest peak at 12.9 Hz (p(shuffle-corrected) = 0.029, p(autocorrelation -corrected) = 0.043) for 
familiar trials and at 3 Hz for unfamiliar trials (p(shuffle-corrected) = 0.064, p(autocorrelation -corrected) = 0.089). This suggested 
that familiarity might have created a shift in behavior. However, these peaks were near the maximum (13 Hz) 
and minimum (3 Hz) frequencies under consideration. The a priori frequencies of interest were 3–13 Hz, at 
which the theta- and alpha-band activities are typically defined This raised the possibility that the true peaks 
were actually slightly lower or higher in frequency and just appeared to be at 3 and 13 since we were not looking 
for slower or faster frequencies in our analysis.

In order to better understand this difference for familiar and unfamiliar trials, we computed the whole 
spectrum (range 0–15 Hz) to determine where the real peaks were located. In the whole spectrum analysis, we 
found a marginally significant peak at 12.9 Hz, p(shuffle-corrected) = 0.058 for familiar blocks (Fig. 7A). However, the 
phase coherence at this peak frequency did not reach significance (z = 2.20, p = 0.11). Sinusoidal fitting analysis 

Figure 6.   Time domain results for the familiar and unfamiliar conditions. (A) Raw (top) and detrended 
(bottom) accuracy as a function of the SOA in the familiar condition. Dots represent group average accuracy 
at each SOA. Shaded areas represent SEM. Solid lines show the exponential functions fit to the raw data. 
Colored dashed lines show the average accuracy in the one-target trials. (B) Raw and detrended accuracy in the 
unfamiliar condition.
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confirmed a similar best-fitting frequency at 12.64 Hz on the group data (adj R2 = 0.10, p = 0.23) (Fig. 7B). For 
unfamiliar trials, on the other hand, there was a peak at 2.8 Hz, p(shuffle-corrected) = 0.074, which was again not phase 
coherent across participants (z = 1.69, p = 0.19). Note that with the unfamiliar FFT spectrum, we also found two 
slightly smaller peaks at 4.6 Hz (as in the main analysis) and 6.8 Hz, both of which also reached significant phase 
coherence (4.6 Hz: z = 3.12, p = 0.044; 6.8 Hz: z = 3.64, p = 0.026) (Fig. 7C). The best-fitting frequency as indicated 
by the sinusoidal fitting analysis was 2.77 Hz (adj R2 = 0.14, p = 0.18) (Fig. 7D). Next, we compared the variance 
in behavioral performance that was accounted for by the oscillation at the peak frequency. As stated in the pre-
registration, we ran a one-sided paired sample t test. The effect size was similar for the familiar (5.70% ± 0.41%) 
than unfamiliar blocks (8.22% ± 0.55%), t(54) = -3.73, p = 0.99. In light of this result, we ran a second two-sided 
paired sample t-test with an alpha level of 0.05, and confirmed a larger effect size in the unfamiliar than familiar 
blocks, p < 0.001 (Fig. S2).

We also compared the frequency difference between the two conditions using a bootstrapping procedure. We 
resampled the data 1000 times, and obtained the Bootstrapped distributions of the PLS in familiar and unfamiliar 
trials separately (Fig. S3). The difference in the mean peak frequencies between the two conditions was significant, 
z = 6.40, p < 0.001. The mean peak frequency was higher in the familiar trials (10.0 Hz) than unfamiliar trials 
(6.0 Hz). Thus, this finding was consistent with our second hypothesis. The results, however, should be taken 
with caution, as the fluctuations found in familiar and unfamiliar trials were not significantly phase coherent 
across participants. This lack of phase coherence suggests that either the effect of familiarity was not consistent 
across participants or might have been influenced by an additional, unknown factor.

We also tested whether there was a difference in the phase reset induced by the faces, since a more familiar 
face might have been more salient and thus caused a stronger reset. We found a small PLD between familiar and 
unfamiliar trials (ITC(familiar) − ITC(unfamiliar) = 0.025). The permutation test result, however, shows that the PLD 
was not different from zero (p = 0.27), suggesting that familiar faces did not induce a stronger phase reset than 
the unfamiliar faces.

Figure 7.   Fluctuations in the familiar and unfamiliar conditions. (A, C) Phase-locked sum of the familiar (A) 
and unfamiliar (C) spectrum and respective polar histogram of phase angle distributions at the highest peaks. 
The red solid line represents 95% percentile of permutations used to define significance of the peaks before 
multiple correction. The red dashed line represents similar permutation results but with the surrogate data 
suggested by Brookshire. (B, D) Sinusoidal fitting results in the familiar (B) and unfamiliar (D) conditions. Dots 
represent detrended accuracy at each SOA. Shaded area represents SEM. Solid line represents the sinusoidal 
function fitted to the data at 12.64 Hz (familiar) and 2.77 Hz (unfamiliar).
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Discussion
Behavioral oscillations in the theta and alpha bands have been reported across many tasks in which the brain 
samples near-threshold signals across multiple spatial locations2,6,12,22,45,46 or multiple features at one location11,47. 
In a recent online study, we further revealed a theta-band fluctuation in the sampling of a continuous flux of 
object and face images14, demonstrating the impact of rhythmic sampling in more naturalistic vision tasks. 
Considering the constraints of online experimenting, the current study aimed to replicate the previous online 
finding and explore the effect of perceptual expertise on behavioral oscillations.

Consistent with our first hypothesis, we found a phase-coherent fluctuation in the theta band (at 4.6 Hz) in 
gender discrimination accuracy as a function of the SOA between the two target faces. This fluctuation accounted 
for 4.4% of the variance in discrimination performance. There are a growing number of studies providing evi-
dence for a sampling rate in the theta frequency (4–7 Hz) for face perception. Several studies have demonstrated 
that face processing changes when stimuli are presented faster than about 3–6 images per second. In an fMRI 
study, for example, face and house images were presented at rates from 2.3 to 37.5 Hz, while temporal frequency 
responses were measured for various stages along the ventral processing stream48. While early visual areas 
showed peak responses for fast presentation rates, the fusiform face area (FFA) and scene selective regions (such 
as the para-hippocampal place area) peaked at rates of around 4–5 Hz. Similar findings have been reported in 
other fMRI studies using faces49,50. Further evidence for a sampling rate comes from studies using EEG, which 
have varied the presentation rate of faces and other complex images and measured the evoked response. For 
instance, Yeatman and Norcia51 varied presentation rate of faces and text images, alternated with noise, from 1 
to 12 Hz and found a maximal face-selective response at 4 Hz. Thus, our main finding was consistent with our 
first hypothesis and the previous literature.

Our second hypothesis was that the familiar block would yield better overall performance and a faster behav-
ioral oscillation. Indeed, there was a main effect of familiarity, with higher detection accuracy for familiar faces. 
We also found evidence implying a much faster fluctuation at higher frequencies (alpha) for familiar than unfa-
miliar face perception. In terms of the rate of the behavioral oscillation, a similar peak at 4.6 Hz was found for 
both familiar and unfamiliar trials. However, the largest/strongest peaks differed significantly between familiar 
(12.9 Hz) and unfamiliar (2.7 Hz) blocks. This pattern of results is partially consistent with the second hypothesis. 
The potential implications of these findings, with respect to our hypotheses, is considered in more detail below.

Although the current findings fit well with previous studies showing sampling in face processing at around 
4–7 Hz, our results are also slower than the 7.5 Hz fluctuation found in our previous online study14. In the 
discussion of that paper, we discussed various reasons why our estimate might have been slightly higher than 
the actual sampling rate. The current study, in contrast, fits more closely with the 4–7 Hz that might have been 
expected based on the previous studies with faces and complex objects. Because most parameters of the two 
studies were the same, it is reasonable to attribute the discrepancy in the results to their primary difference: the 
specific task demands. In a detection task, as in the online study, people simply attend to the presence of a target 
among perceptually distinct distractors (e.g., finding a face in non-face objects). In contrast, the discrimination 
task used in the current study requires participants to compare the fine details of two stimuli within a category 
(e.g., female versus male faces). This additional computational requirement could affect the oscillatory frequency 
by adding more time to each ‘perceptual cycle’. Consistent with this theory, Dobs and colleagues20 have found 
that face presence information emerged around 20 ms earlier in the brain than its gender information. However, 
another factor might be that in order to prevent ceiling and flooring in behavioral performance, we titrated the 
stimulus contrast such that the discrimination accuracy in single-target unfamiliar trials would be around 60%. 
The true oscillation in gender discrimination performance might be masked by a decreased ability to detect the 
face target under such low contrast. Future studies could use other methods (e.g., face morphing) to control the 
discrimination performance without decreasing the face detectability.

The theta-band peak found here provides some evidence that the behavioral oscillations found in the dual-
target RSVP paradigm may reflect rhythmic top-down modulations. In the spatial attention domain, for example, 
the 3–5 Hz sampling rate has been associated with a theta-band reweighting of the pulvino-cortical interaction4,52. 
The optimal phase of the theta activity is characterized by an increase in beta (15–30 Hz) and gamma (> 35 Hz) 
synchronizations at the frontal eye field (FEF) and the lateral intraparietal area, which are associated with sup-
pressed motor functions and enhanced sensory processing respectively52. At the opposite phase, it is thought that 
the increase in alpha activity within the parietal cortex and the increased synchronization between the parietal 
cortex to the pulvinar enabled windows of attention to shift by temporally suppressing sensory processing52. In 
the current study, however, the targets appeared at a single location (the fovea) embedded in time among object 
distractors. While previous studies have shown similar theta-band fluctuation when sampling from multiple 
features11,47 or objects at the same location27, brain regions and pathways responsible for feature- and object-
based attention may not fully overlap with those for spatial attention53,54. Feature-based attention, for instance, 
has been found to first emerge at the ventral prearcuate in the frontal lobe, rather than the FEF53. Future studies 
are needed to investigate the underlying neural mechanisms for rhythmic feature-based attentional sampling.

Our results also have implications to the computational models of populational neural responses over time. 
Whereas traditional models tend to explain neural responses with a linear function55, many recent models have 
achieved significant fit improvement by add a nonlinear summation component (e.g., an exponential modula-
tion)56,57. Our results suggest that the models might be further improved by adding a rhythmic modulation at 
low frequency band. This could also potentially account for a temporal processing capacity of four to six items 
per second at areas along the ventral visual pathway48–50. For instance, Stigliani et al.50the largest neural response 
amplitude at the face-selective areas when face stimuli changed at 4 Hz, compared with 1, 2, and 8 Hz.

While the peak at 4.6 Hz was observed for both trial conditions separately, the largest/strongest peaks dif-
fered significantly between familiar (12.9 Hz) and unfamiliar (2.7 Hz) blocks. These results support the idea that 
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the rate of perceptual sampling reflects contributions of different brain rhythms, rather than a single unitary 
sampling rhythm across all stimuli and tasks58. In a recent preprint, Kawashima and colleagues37 provided some 
preliminary evidence for this idea with an attentional blindness paradigm. They tested the detection of a second 
target following varied SOAs from the first target. Detection performance showed either an alpha- or a theta-
band fluctuation as a function of the SOA, depending on the presence or absence of distractors in between37. 
Magnetoencephalography (MEG) recordings revealed a pronounced parietal theta activity in the no-distractor 
condition, reflecting periodic feedback modulations, but instead a dominant occipital alpha activity in the dis-
tractor condition, presumably reflecting an extra effort to suppress task-irrelevant inputs37. A similar principle 
has been observed in Ronconi et al.3, which reported that the frequency of the pre-stimulus neural oscillation 
that predicted behavioral performance, either theta or alpha, was related to the specific temporal integration 
window duration of the task. Even with the same task (e.g., visual search), researchers have shown that the oscil-
latory frequency increased with task complexity, presumably as a result of the increased attention cycles needed 
to complete the task42.

The difference in the strongest/peak rhythm between conditions in the present study might reflect a balance 
between feedforward and feedback processing59–61. When comparing the neural activation for the recognition of 
masked and unmasked objects, for instance, Bar et al.62 found that the orbitofrontal cortex was activated earlier 
than temporal object-selective region and facilitated object recognition. This top-down modulation, however, 
was only found when the object was masked or for low spatial-frequency images62. Using Granger causality 
analysis, they found that familiar face processing was dominated by a fast feedforward connectivity, whereas 
unfamiliar and phase-scrambled faces required the feedback communication from peri-frontal to peri-occipital 
area. It has been suggested that the speed of feedback communication is influenced by perceptual difficulty, with 
slower feedback under more challenging viewing conditions61. Considering this idea for the current study, in 
the familiar blocks, gender discrimination could rely on feedforward processing. The alpha-band behavioral 
oscillation we found could reflect either a dominant sensory sampling rhythm that operates independently from 
other processes63, or a faster top-down modulation. In spatial attention, for instance, it has been reported that 
attentional sampling was phase locked to ongoing alpha oscillations in prefrontal cortex when the need to shift 
attention was minimized58. In the current study, in which the familiar faces were easier (76.62% versus 65.43% in 
discrimination performance), this difference might have influenced the relative power of alpha versus theta bands.

Phase coherence is important when interpreting any peak frequency band differences and we did not find 
evidence of phase coherence at these peak frequencies that differed between familiar and unfamiliar blocks. 
Therefore, our familiarity effect results in the alpha band should be taken with caution. Phase coherence is a 
measure of the efficiency of the phase reset event. Significant coherence suggests that the brain rhythms respon-
sible for the current task are in synchrony after the reset event and are consistent across individuals9. Previous 
studies typically used a flash8 or a spatially salient cue6,12,45 as a reset event. It is possible that the event in the 
current study (the first face target onset) was not perceptually salient enough to evoke a strong phase reset. As 
the PLD analysis reveals, the familiar faces did not evoke a stronger attention capture. For the same reason, we 
did not conduct the second preregistered study in which trial types would be mixed randomly in the same block 
to further disentangle the rhythmic attentional sampling and predictive coding theories. Future studies should 
implement a stronger attention reset event to capture a more reliable peak when the trials are mixed together.

Overall, the present study replicated our previous online finding14 showing fluctuations in performance as 
a function of the temporal interval between the face targets (face detection in the previous study, gender dis-
crimination in the current study). This adds further evidence for a theta-band oscillatory temporal organization 
underlying visual perception for complex stimuli such as faces. We further showed that the rate of the behavioral 
oscillation was also modulated by task demands, consistent with the top-down modulation theories of rhythmic 
perceptual sampling. In the unfamiliar block where faces were perceptually less salient, we found a slower fluc-
tuation in discrimination accuracy, implying a longer time for the feedback signals to return in this condition.

Data availability
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