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Explainable semi‑supervised deep 
learning shows that dementia 
is associated with small, 
avocado‑shaped clocks 
with irregularly placed hands
Sabyasachi Bandyopadhyay 1,6, Jack Wittmayer 2,6, David J. Libon 3, Patrick Tighe 4, 
Catherine Price 5,7 & Parisa Rashidi 1,7*

The clock drawing test is a simple and inexpensive method to screen for cognitive frailties, including 
dementia. In this study, we used the relevance factor variational autoencoder (RF‑VAE), a deep 
generative neural network, to represent digitized clock drawings from multiple institutions using an 
optimal number of disentangled latent factors. The model identified unique constructional features 
of clock drawings in a completely unsupervised manner. These factors were examined by domain 
experts to be novel and not extensively examined in prior research. The features were informative, 
as they distinguished dementia from non‑dementia patients with an area under receiver operating 
characteristic (AUC) of 0.86 singly, and 0.96 when combined with participants’ demographics. The 
correlation network of the features depicted the “typical dementia clock” as having a small size, a 
non‑circular or “avocado-like” shape, and incorrectly placed hands. In summary, we report a RF‑VAE 
network whose latent space encoded novel constructional features of clocks that classify dementia 
from non‑dementia patients with high performance.

Clock drawing is a simple, effective, and inexpensive way to screen for cognitive impairment in individuals with 
suspected mild cognitive impairment (MCI) or dementia, including Alzheimer’s disease (AD) and vascular 
dementia (VaD). The CDT consists of two parts: the command test condition, where participants are required to 
“draw the face of a clock, put in all the numbers, and set the hands to ten after eleven”; followed by the copy test 
condition where participants are instructed to copy a model clock. Two example clock drawings are shown in 
Fig. 1 with their corresponding annotations using Libon scoring  criteria1. Accurate clock drawing depends on the 
coordination of a host of cognitive abilities. Subtle changes in clock drawing behavior can reveal intricate details 
about underlying cognitive  functioning2,3. Command condition drawing requires the ability to process linguistic 
components of verbal instructions, syntactic comprehension of these instructions, recalling the semantic attrib-
utes of a clock, working memory, effective mental planning, visuospatial processing, and motor skills to execute 
the drawing  effectively4. Drawing the copy condition clock requires visual scanning ability, visuocontruction, 
and executive functioning to complete the  task5,6. Command and copy condition drawings have been shown 
to test complementary cognitive  abilities7. Also, performance on the CDT is correlated with other alternative 
assessments of cognitive frailty, e.g., the Mini-Mental State Examination (MMSE)7,8.

Previous literature has explored various ways of analyzing the CDT, ranging from nominal (good/bad) to 
elaborate 22 or 31-point analog scoring  systems2,9–11. These systems have tried to describe the CDT based on sali-
ent features in the clock drawing where subtle changes can indicate the onset of cognitive ailments. Some scoring 
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systems have been based on analysis of errors assessing semantics, graphomotor functioning, and executive 
 control2. Despite having similar psychometric  properties12, these scoring protocols hinge on the examiner’s ability 
to interpret a participant’s output leading to potentially unreliable  results13. For example, Price and colleagues 
have found considerable variance in intra and inter-rater  reliability14,15. The human component required for 
interpreting the CDT can also introduce ambiguities that can potentially reduce the robustness of any diagnosis. 
The THink project attempted to eliminate this variability by codifying all analysis routines which partook in 
 scoring16. They also introduced the digital clock drawing test (dCDT)16 to analyze the temporal component of the 
CDT. The dCDT uses a digital pen and smart paper technology to capture the temporal order of all pen strokes 
in patients’ drawings. Using dCDT technology, multiple novel clock drawing elements such as latencies between 
pen strokes, the total number of pen strokes, and total time taken to execute the drawing are made available for 
 analysis17. Davis et al.16 used approximately 500 spatio-temporal features from the dCDT to classify Dementia 
versus Healthy with accuracy = 0.82, AUC = 0.70, F1 = 0.46, Alzheimer’s versus Healthy with accuracy = 0.84, 
AUC = 0.76, F1 = 0.69, using linear support vector machines (SVM).

Despite the vast number of features extracted by the dCDT, they are eventually handcrafted by domain 
experts. Handcrafted features cannot span the entire space of relevancy and may suffer from redundancy. There-
fore, Binaco et al.18 extracted 350 dCDT features to maximize joint and conditional mutual information and 
minimize redundancy. They achieved AD versus non-MCI accuracy = 0.91, amnestic MCI versus non-MCI accu-
racy = 0.83, mixed/dysexecutive MCI versus non-MCI accuracy = 0.85, all MCI versus non-MCI accuracy = 0.84 
over a tenfold cross-validation using feed-forward neural network  classifiers18. Davoudi et al.19 further stream-
lined the features from Binaco et al.18 into 37 kinematic, time-based, and visuospatial features. They used this set 
of features to classify a combined group of AD and VaD from healthy controls with AUC = 0.91, Accuracy = 0.91, 
Specificity = 0.97, Sensitivity = 0.71, F1-score = 0.80 using random forest  classifier19. These methods have used 
machine learning and information-theoretic measures to extract informative and non-redundant features from 
the dCDT.

Alternatively, deep learning (DL) can automatically extract a nested hierarchy of features of increasing com-
plexity using backpropagation of errors. Several studies have used deep convolutional neural networks (CNN) 
for scoring  CDTs20,21. Some studies have used CNN variants (for e.g., R-CNN, U-Net) for segmenting a clock 
drawing into its individual components (clockface, numbers and hands) and used additional CNN models to 
score them  separately22,23. DL models such as CNN typically comprise millions of trainable parameters requiring 
commensurately large, labeled datasets to train them effectively. Otherwise, they converge to local suboptimal 
states which are not generalized or robust, thus limiting their clinical utility. These models are time and resource-
intensive, requiring the collection and annotation of large datasets to train them from scratch. In the absence 
of large labeled datasets, traditional supervised DL models cannot extract objectively important features. To 
circumvent this problem, researchers have used CNN models pre-trained on large datasets such as MNIST or 
ImageNet which have no bearing on clock drawings. This approach significantly hinders model interpretability 
and the DL system is merely used as a “black-box” predictor. In contrast, in this study we have used a deep, 
generative, semi-supervised DL model to create an interpretable predictor.

Recent advances in Artificial Intelligence have provided us with alternative methods to extract features that 
are (1) informative, (2) disentangled and (3)  complete24 in an unsupervised way. This paper uses a state-of-the-
art deep generative model named relevance factor variational autoencoder (RF-VAE) to capture all meaningful 
observable sources of variation in the clock drawing in an unsupervised  way25. RF-VAE is an advancement on 
the variational autoencoder (VAE), a generative model that learns a joint probability distribution over all vari-
ables present in a dataset in an unsupervised  manner26. RF-VAE leverages the latent space’s total correlation (TC) 
to achieve the disentanglement goal. It focuses the TC loss onto the relevant factors by tolerating a large prior 

Figure 1.  Example clock drawing tests with Libon scoring. (A) Clock drawing to command and copy 
conditions by the first individual. Clocks were scored on various metrics by the Libon criteria. This scoring 
system adjudicated the command clock to have atypical shape, hand placement and numbers’ spacing. It also 
adjudicated the copy clock to have erroneous number spacing. (B) Clock drawing to command and copy 
conditions by the second individual. The Libon criteria decided that the command clock has atypical size, hand 
placement, numbers’ spacing, and is drawn in counter-clockwise direction. The copy clock was evaluated to have 
anomalous shape, hand placement, numbers’ spacing and to have digit repetitions (perseveration).
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Kullback–Leibler (KL) divergence while simultaneously eliminating nuisance factors of variation with small prior 
KL  divergences25. It uses a suite of disentanglement metrics to demonstrate that RF-VAE outperforms existing 
methods across several challenging benchmark  datasets25.

The primary aim of this project is to calibrate clock drawing construction using a focused set of informative, 
disentangled constructional features that are useful for discriminating dementia from non-dementia peers. The 
study is formulated as a semi-supervised learning task where a large unlabeled dataset of clock drawings was 
used to train the RF-VAE network in an outcome-agnostic way. The trained model encoder was then fine-tuned 
together with a feed-forward, fully-connected neural network to classify dementia from control participants. 
Hyperparameters, including the number of relevant latent dimensions in the RF-VAE network, were optimized 
based on the classification performance. The RF-VAE decomposes the clock drawing into an optimal number 
of independent latent features linked to specific aspects of clock construction. The feed-forward neural network 
classifier combines these features in a non-linear way to discriminate dementia from controls. A previous study 
attempted to classify dementia from non-dementia using a two-dimensional latent space VAE  network27. This 
work provided proof of concept that compressed CDT representations retain their ability to distinguish dementia. 
Our results expand on this fundamental preliminary finding by cataloguing a complete set of independent and 
informative graphomotor features of clock drawing which can distinguish dementia from controls with high 
performance. To the best of our knowledge, these results represent a pioneering step in developing explainable 
semi-supervised deep learning models using CDT for identifying dementia.

Results
Participants. This study is a multi-center, multi-cohort study performed in collaboration between the Uni-
versity of Florida and the Rowan University, New Jersey. Three cohorts were used in this study namely-training 
cohort, fine-tuning cohort and testing cohort. Table 1 shows the participants’ demographics in the training and 
classification (fine-tuning and testing) cohorts. All participants in the classification cohort completed both com-
mand and copy condition drawings. Three individuals in the training cohort could not complete the command 
condition. In the classification cohort, dementia participants were significantly older, had lower MMSE scores, 
and had fewer years of education than their non-dementia peers. The training cohort had an equal percentage 
of male and female participants, whereas the classification cohort was predominantly male. Furthermore, there 
were significantly more male individuals in the dementia cohort. Both the training and classification cohorts had 
a predominance of white people.

RF‑VAE latent space (training dataset). Figure 2A shows the RF-VAE trained latent space after com-
pletion of unsupervised training with 23,521 clock drawings from both command and copy conditions. Each 
column corresponds to one latent dimension, and represents traversal over the latent space along that dimen-
sion. Due to disentanglement, there was no cross-correlation between these latent dimensions in the training 
dataset (Supplementary Fig. 1). Figure 2B defines the nature of each latent variable and elucidates its change over 
the corresponding latent dimension.

Column A shows a change in the brightness of the clock drawing. In reality, this corresponds to the size of 
the clock drawing as clocks of various sizes were resized to 64 × 64 during preprocessing, resulting in a decrease 
in the brightness of the larger clocks. Column B shows the existence of ovate and obovate (avocado-shaped) 
clocks in the training dataset. The direction of orientation of the obovate clock reverses as this latent dimension 
increases. This increase is associated with a lengthening of the clock hands. Column C encodes the change of 
clock shape from prolate (elongated) to oblate (flattened) with an increase in its latent dimension. Column D 
shows an upward movement of the point of intersection of the clock hands from the geometric clock center, with 
an increase in its latent dimension. Column E shows the presence of eccentric ellipsoidal clock drawings. The 
direction of the eccentricity of ellipsoidal clocks changes from left to right as this latent dimension increases. 
Column F shows an increase in the angle between the clock hands as its latent dimension increases. Column 
G shows the existence of non-circular clocks in the dataset. An increase in this latent dimension changes the 
clock shape from square to circular to rhomboid. Column H again shows ellipsoidal clocks, but in this case, the 
orientation changes from right to left as the latent dimension increases. Therefore, this dimension is the logical 
opposite of the fifth latent dimension. Column I shows the presence of clocks that have a horizontal circular 
asymmetry (side bulge). The side bulge changes position from left to right as the latent dimension increases. 
Column J shows a rotation of the clock hands while maintaining a constant inter-hand angle. This indicates clocks 
where the subject put hands in numbers other than 11 and 2 or a general shift in the placement of digits in the 

Table 1.  Demographics of cohorts. S.D standard deviation, MMSE mini-mental state examination, MoCA 
Montreal cognitive assessment. *This value is available only for 126 participants in the controls cohort. † This 
value is available only for 224 participants in the control cohort.

Dataset
Number of 
samples Mean age (S.D)

Mean 
education 
(S.D) % of female % of caucasian

Mean MMSE 
total score

Mean MoCA 
total score

Training clocks 23,521 73 (6) 14 (3) 50 86 26 (4.0) N/A

Dementia 112 80 (6) 13 (3) 32 98 22 (2.6) N/A

Controls 350 68 (6) 16 (2) 46 95 29 (0.9)* 25 (2.3)†
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clock. These are the ten disentangled constructive imperfections identified by the RF-VAE network from the 
training dataset. In the case of all factors, a shift towards higher absolute value of the latent variable is associated 
with the loss of digits on the clockface (Fig. 2A).

RF‑VAE latent space (classification dataset). All clocks in the classification dataset contained these 
anomalies to different degrees. Supplementary Figs. 2A–I show the distribution of each feature among dementia 
and non-dementia participants. Figure 3A shows the comparison between mean and standard deviations of each 
feature between dementia and non-dementia groups after removing confounding effects of age and education 

Figure 2.  Description of the latent space learned by the RF-VAE in the training phase. (A) Reconstructed clock 
drawings are shown as a function of every latent variable. Each column represents a single latent dimension 
ranging from − 3 (top) to + 3 (bottom). (B) A simplified explanation of every latent space traversal is provided. 
Each latent dimension is described by a constructional aspect of the clock drawing, which most closely 
resembles the traversal of reconstructed clocks over this particular latent dimension.

Figure 3.  Statistical comparison between dementia and non-dementia samples over the ten latent variables. 
(A) Mean and Standard Deviation of each latent variable in the dementia and the non-dementia group. 
***p < 0.0001, **p < 0.001, *p < 0.01. p values were generated after propensity matching to remove confounding 
effects of age and education and after multiple comparisons correction using FDR = 0.01 on two-tailed Student’s 
T-tests (Supplementary Table 1). (B) Number of “atypical occurrences” of latent variables in the dementia group. 
These atypical occurrences were calculated by the number of times a latent variable value in a dementia clock 
was greater than two standard deviations from the mean of the control distribution.
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through propensity matching. Significance was inferred from p values calculated after multiple comparisons 
correction on two-tailed, unequal variance Student’s T-test using the Benjamini–Hochberg method (False Dis-
covery Rate; FDR = 0.01). Uncompensated p values are provided in Supplementary Table 1 for reference. Clock 
size shows the greatest difference between dementia and non-dementia distributions. Features attributed to the 
clock shape such as obovateness, prolate/oblateness, ellipticity and those attributed to clock hands such as verti-
cal displacement, angle between hands and rotation of hands show significant difference between dementia and 
non-dementia groups. Comparing the latent values in Fig. 3A to Fig. 2A shows that dementia clocks are consid-
erably smaller, obovate, oblate clocks with vertically displaced hands having large angle between them. Rotation 
of the clock hand assembly showed the maximum drop in significance after compensating for age and education 
differences (Supplementary Table 1). Square-rhomboid and side-bulge have bi-modal dementia distributions 
and unimodal non-dementia distributions (Supplementary Fig. 2G,I) although they are not significantly differ-
ent between dementia and non-dementia groups. Furthermore, we found the number of “atypical occurrences” 
of each feature in the dementia group by comparing them against the mean and standard deviation of the respec-
tive non-dementia distribution (Fig. 3B). Size has the highest number of atypical occurrences in the dementia 
cohort. Square-rhomboid and side-bulge have the least number of atypical occurrences in the dementia cohort. 
Size, obovateness, prolate-oblateness, vertical displacement of clock hand assembly, and rotation of clock hand 
assembly are most frequently atypical in dementia clocks.

We examined the cross-correlation between different latent variables on the classification dataset and found 
the presence of positive and negative correlations (Fig. 4A). We used these correlations as adjacency values of a 
graph to represent the relations between the latent variables in a graphical format (Fig. 4B). The graph depicts 
the presence of three subnetworks characterized by relatively high intra-network positive correlation (correla-
tion > 0.2) and inter-network negative correlations (correlation < − 0.2). The three subnetworks comprise (a) 
obovate—eccentricity, (b) vertical displacement of clock hands—square/rhomboid, and (c) prolate/oblate—angle 
between clock hands. Prolate/oblate is negatively correlated with eccentricity and obovate. Vertical displacement 
of clock hands is negatively correlated with eccentricity. Furthermore, clock size and rotation angle of clock hand 
assembly show a weak positive correlation (correlation ~ 0.1). Clock size is negatively correlated with square/
rhomboid. Clock hand rotation is negatively correlated with prolate/oblate. Finally, the dementia label is cor-
related with small clock size, avocado-shape, flattening of the clock face (oblateness), eccentricity, increasing 
angle between hands, and anticlockwise rotation of the hand assembly.

Classification performance (fine‑tuning and testing datasets). We simultaneously fine-tuned the 
weights of the RF-VAE encoder and trained a neural network classifier with the fine-tuning dataset. The ten 

Figure 4.  Correlation patterns of latent RF-VAE features in the classification dataset. (A) Cross-correlation 
matrix between the ten latent features found by the RF-VAE. Correlation between each latent dimension and 
dementia label is also shown. (B) Feature co-occurrence network was constructed using only the relatively 
high correlation values as the adjacency matrix. Green denotes a positive correlation. Red denotes a negative 
correlation. Black arrows with regular arrowheads denote positive correlation, and red arrows denote negative 
correlation. The width of the arrows denotes the relative strength of correlation. Three subnetworks emerge 
where intra-subnetwork features are positively correlated with one another, and inter-subnetwork features are 
negatively correlated with each other. Clock size and clockwise rotation of clock hand assembly are weakly 
correlated. Side-bulge is not significantly correlated to any other feature.
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latent variables generated by the RF-VAE encoder were input to the classifier firstly as standalone features and 
secondly with demographics (age, sex, race, and years of education) for distinguishing dementia from non-
dementia. The test dataset was used to report the final performance metrics on both occasions, as shown in 
Table 2. 95% confidence intervals show the robustness of the model’s performance over bootstrapped versions 
of the test data. The model achieves good performance on the test data simply using the ten latent variables and 
achieves almost perfect classification when demographics are added to the model. The classification perfor-
mance using solely demographic information is presented for reference.

Discussion
RF-VAE delineated ten constructional features in clocks drawn by participants as part of a routine medical 
assessment in a preoperative setting. The ten constructional factors are as follows (1) size, (2) degree and ori-
entation of obovate, (3) prolate–oblate, (4) vertical displacement of the point of intersection of clock hands, (5) 
degree and direction of ellipticity, (6) angle between clock hands, (7) square—rhomboid clockfaces, (8) degree 
and direction of ellipticity in an opposite sense than (5), (9) degree and direction of side-bulge of clockface, and 
(10) rotation of clock hands assembly.

These factors are deemed independent generative factors that are significant sources of variation in clock 
drawings by the unsupervised training of a RF-VAE. Each clock comprised a superposition of these factors to 
different degrees. Statistical comparison of the different latent features between dementia and non-dementia 
showed that in our dataset dementia was most typically associated with small, avocado-shaped, oblate clocks 
with irregularly placed hands. Figure 5A shows a hypothetical clock drawing comprising a combination of the 
latent variables most highly associated with dementia in our dataset. Figure 5B shows the clock which was given 
the highest probability of being dementia by our neural network classifier.

These latent variables could distinguish dementia from nondementia peers with superlative performance, 
and the addition of age, sex, race, and years of education resulted in the near-perfect classification of dementia 
from non-dementia in the test dataset. The model’s high performance using standalone latent variables as fea-
tures proves that these features are highly informative of the participants’ cognitive status. However, significant 
improvement upon the addition of demographics proves that demographics still contain non-redundant infor-
mation necessary for the classification of dementia from controls.

The factors discovered in this study are generally different from traditional analog metrics used to score a 
clock drawing test, such as digit placement accuracy, missing digits, hand placement accuracy and the ratio of 
hour hand to minute hand length. The RF-VAE latent variables generally describe a global change in the shape 
of the clockface and placement of clock hands, whereas dCDT features describe salient high resolution grapho-
motor and latency variables from the CDT. Despite broad differences, some similarities exist. The ratio between 
the lengths of major and minor axes in a clock drawing is reflected in the fifth and eighth latent dimensions 
(degree and direction of the eccentricity of the ellipsoid) of RF-VAE. Similarly, hand misplacement corresponds 
to latent dimensions four (vertical displacement of the point of meeting of clock hands), six (angle between 
clock hands), and ten (rotation of clock hand assembly from 11 and 2). Figure 5C,D show which factors are 
atypically expressed in the CDTs shown in Fig. 1. By comparing Fig. 1A,B with Fig. 5C,D we can appreciate that 
the RF-VAE factors represent the graphomotor elements of a clock drawing in a novel and more nuanced way 
than traditional scoring criteria.

Despite disentanglement being a requirement in discovering these features, some features are algorithmically 
associated. For example, a more oblate clock will have greater angle between clock hands, and a change in the 
shape of the clock face from circular to square can vertically displace the clock hand assembly. These relations 
are reflected in the three subnetworks found from the classification dataset’s cross-correlation patterns between 
variables. These data show that the statistical disentanglement achieved by RF-VAE does not necessarily translate 
to algorithmic independence between the features. Despite statistical disentaglement, the presence of algorithmic 
dependence between different constructional aspects of the clock drawing can result in correlations between 
variables in smaller datasets such as our classification cohort. Achieving algorithmic independence between gen-
erative features is a possible future course of research in this area. Finally, the weak positive correlation between 
size and clockwise rotation of the clock hand assembly defines the ideal clockface.

Some of these factors have been identified by domain experts as important in classifying different subtypes of 
dementia and other cognitive frailties. For instance, a smaller clockface area is associated with subcortical disease 
profiles with primary executive dysfunction (e.g., micrographia in Parkinson’s disease)9, and misplacement of 

Table 2.  Performance of classifier on test data. AUC  area under the curve, C.I confidence interval, NPV 
negative predictive value. *p value < 0.01. **p value < 0.001.

Task Features AUC (95% C.I.)
Accuracy (95% 
C.I.)

F1- score (95% 
C.I.)

Precision (95% 
C.I.)

Sensitivity (95% 
C.I.)

Specificity (95% 
C.I.) NPV (95% C.I.)

Dementia predic-
tion 10 latent variables 0.86 (0.79–0.93) 0.84 (0.77–0.91) 0.72 (0.59–0.84) 0.62 (0.44–0.76) 0.9 (0.80–1.0) 0.82 (0.73–0.89) 0.96 (0.91–1.0)

Dementia predic-
tion

10 latent 
variables + demo-
graphics

0.96** (0.89–0.99) 0.95** (0.90–0.99) 0.88** (0.77–0.96) 0.82** (0.66–0.94) 0.96* (0.85–1.0) 0.95** (0.90–0.99) 0.99** (0.97–1.0)

Dementia predic-
tion Demographics 0.81 (0.73–0.88) 0.86 (0.80–0.93) 0.72 (0.63–0.80) 0.58 (0.49–0.67) 0.70 (0.61–0.78) 0.92 (0.87–0.97) 0.95 (0.88–1.0)
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clock hands is associated with visual attention deficits and  disinhibition2. In comparison to a previously published 
VAE  encoding27, the RF-VAE encoding reported in this study achieved significantly better results on the same 
classification dataset using identical training methods. This improvement is due to diversification of the latent 
space, and disentangling the latent dimensions. Enlarging the latent space allowed us to encode more sources of 
variations, while disentagling them ensured minimal mutual information.

This project advances bidirectional translational neuroscience with AI. Here, we have used the final result 
of dCDT to develop and validate a RF-VAE model for identifying dementia in a forward-translational experi-
ment. Clinicians and domain experts can review the disentangled factors identified by the RF-VAE latent space 
in concert with their classification performance to understand novel feature combinations from the CDT and 
incorporate them in gold-standard cognitive assessments. This bidirectional opportunity allows domain experts 
to broaden their understanding of classic cognitive assessments while simultaneously driving the research in 
futuristic AI technologies with their invaluable domain expertise. This symbiotic association of domain expertise 
with progressive AI technologies is crucial for fields sensitive to domain-level concerns such as interpretability 
and mechanistic grounding.

This study has certain limitations. Firstly, the classification performance improvement observed due to demo-
graphic features may be traced to the differences in average age and education level between dementia and non-
dementia groups. However, this is in line with previous literature that have shown that higher age and lower 
education increase the risk of dementia in older  adults28–30. Secondly, the preprocessing step involved resizing 
all clock images irrespective of their initial size to 64 × 64. This resulted in invariable obfuscation of key clock 
features such as the shape of digits and the presence of ticks and arrowheads, which can explain their absence 
from the trained RF-VAE latent space. Furthermore, although the RF-VAE has achieved statistical disentangle-
ment between the latent dimensions, the presence of correlations in the classification dataset points to algorithmic 
dependence between at least some of these features. Finally, the classification task of separating dementia from 

Figure 5.  Combination of atypical values of features that are significantly associated with dementia. (A) 
Our model found that dementia clocks are small, avocado shaped (obovate dimension < 0), oblate (prolate/
oblate dimension > 0), eccentric (ellipse dimension < 0), have large inter-hand angle, and hands rotated in 
an anticlockwise direction. (B) This clock drawing was given the highest likelihood of being dementia by 
our model. (C) Command and copy clocks drawn by the first individual with errors discovered by the latent 
variables of RF-VAE (to be compared against Fig. 1A). (D) Command and copy clocks drawn by the second 
individual with errors discovered by the latent variables of RF-VAE (to be compared against Fig. 1B).
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non-dementia is considerably general and might not be able to leverage the richness of features identified in the 
RF-VAE latent space.

In summary, this study showed that factorized VAEs could compress a CDT into a set of highly informative, 
statistically disentangled latent dimensions. These latent dimensions serve as generative features of the CDT 
and possess key information on characterizing dementia. We trained the RF-VAE in a completely unsupervised 
manner and agnostic to any cognitive outcome so that it can identify general, robust features that are informa-
tive to any downstream classification task. Thus, the same latent space can be fine-tuned to any downstream 
classification task related to clock drawings. Due to this advantage inherent in semi-supervised learning, in the 
future, we aim to represent different cognitive stressors (e.g., surgery, trauma) with a unique combination of the 
latent variables described here. This will also enable us to better understand and predict the prognosis of cognitive 
ailments through the CDT. Furthermore, we plan to use the reported RF-VAE latent space to distinguish differ-
ent types of dementia such as AD, VaD, mild cognitive impairment (MCI), amnestic-MCI, dysexecutive-MCI, 
and Parkinson’s disease. Since our model relies only on the outcome of the CDT it can leverage large amounts of 
publicly available CDT data for enriching the performance of its disease-specific classifiers.

Conclusion
In conclusion, in this study we have identified a complete and mutually independent set of graphomotor anoma-
lies which are meaningful sources of variation in the CDT. We have constructed neural network classifiers using 
these graphomotor features with and without the assistance of participant demographics. Our models were 
cross-validated for optimal performance and tested on an independent testing cohort to achieve superlative 
performance in distinguishing dementia from non-dementia clock drawings. In the future, we will expand this 
study to include post-surgical cognitive dysfunction, Parkinson’s disease and specific types of dementia. We 
will also use independent publicly available datasets to further validate the features found in this study. This 
study is a pioneering work in generative feature learning using semi-supervised deep neural networks on clock 
drawing data.

Methods
Participants. Study materials were collected from digital clock drawing consortium data between the Uni-
versity of Florida (UF) and New Jersey Institute for Successful Aging (NJISA), Memory Assessment Program, 
School of Osteopathic Medicine, Rowan University. The Institutional Review Boards of the University of Florida 
and Rowan University approved the study. Study participants at both institutions gave their written approval to 
be included in the study through informed consent forms. All study procedures were carried out per the Decla-
ration of Helsinki and respective university guidelines and TRIPOD  criteria31. The study consisted of two data 
cohorts:

Training dataset included a set of 23,521 clock drawings from 11,762 participants aged ≥ 65 years, primary 
English speaking, who completed clock drawing to command and copy conditions as part of routine medical 
care assessment in a preoperative  setting32. Exclusion criteria were as follows: non-fluent in the English language; 
education < 4 years; visual, hearing, or motor extremity limitation that potentially inhibits the production of a 
valid clock drawing.

Classification dataset consists of a “fine-tuning” dataset and a “testing” dataset used to fine-tune and test 
dementia versus non-dementia neural network classifier, respectively. These datasets comprise clock drawings 
from individuals diagnosed with dementia and non-dementia peers. The dementia clocks were collected from 56 
participants evaluated through a community memory assessment program within Rowan University. They were 
seen by a neuropsychologist, a psychiatrist, and a social worker. Inclusion criteria: age ≥ 55. Exclusion criteria: 
head trauma, heart disease, or other major medical illness that can induce encephalopathy; major psychiatric 
disorders; documented learning disability; seizure disorder or other major neurological disorder; less than 
6th-grade education, and history of substance abuse. All individuals with dementia were assessed using the 
Mini-Mental State Examination (MMSE), serum studies and an MRI scan of the brain. These individuals have 
been described in previous  studies33. As reported in previous studies, they were either diagnosed with AD or 
VaD using standard diagnostic  criteria34,35.

A total of 175 non-dementia participants completed a research protocol consisting of neuropsychological 
measures and neuroimaging. Two neuropsychologists reviewed all data. Inclusion criteria: age ≥ 60, English 
primary language, availability of intact activities of daily living (ADLs) as per Lawton and Brody’s Activity of 
Daily Living Scale, completed by both the participant and their  caregiver36. Exclusion criteria: clinical evidence 
of major neurocognitive disorder at baseline, as per the Diagnostic and Statistical Manual of Mental Disorders—
Fifth  Edition37, presence of a significant chronic medical condition, major psychiatric disorder, history of head 
trauma/neurodegenerative disease, documented learning disorder, epilepsy or other significant neurological 
illness, less than 6th grade education, substance abuse in the past year, major cardiac disease, and chronic medi-
cal illness-induced encephalopathy. These participants were screened for dementia over the telephone using the 
Telephone Interview for Cognitive Status  (TICS38) and one in-person interview with a neuropsychologist and a 
research coordinator who also evaluated comorbidity  rating39, anxiety, depression, ADLs, neuropsychological 
functioning, and digital clock  drawing40. Data from these participants have been described in other  studies3,19.

Procedure. Cohort participants completed two clock drawings: (a) command condition where they were 
instructed to “Draw the face of a clock, put in all the numbers, and set the hands to ten after eleven”, and (b) the 
copy condition wherein the participant was presented with a model of a clock and asked to copy the same under-
neath  it2. A digital pen from Anoto, Inc. and associated smart  paper17 were used to complete the drawings. The 
digital pen captures and measures pen positions on the smart paper 75 times/second. 8.5 × 11 inch smart paper 
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was folded in half, giving participants a drawing area of 8.5 × 5.5 inch. Only the final drawing was extracted and 
used for analyses in the current study.

Clock drawings to both command and copy conditions from the training cohort were used to train the RF-
VAE. After that, clock drawings to both command and copy conditions from the fine-tuning cohort were used to 
train the weights of a neural network classifier and fine-tune the weights of the RF-VAE encoder to distinguish 
dementia from control clocks. Command and copy clocks were not separated in training because we wanted the 
model to learn clock encodings that are agnostic to any cognitive outcome and hence generalizable to multiple 
different classification tasks. The fine-tuning dataset comprised 84 dementia and 263 nondementia clocks. Ulti-
mately, the classification network was tested on the test dataset comprising 28 dementia and 87 control clocks.

Individual clock drawings were extracted from the file using contour detection. The extracted contours were 
cropped to the boundaries of the clock drawing, padded with white space to a square, and resized to 64 × 64, as 
this was the only size supported by the RF-VAE  implementation25 used. Supplementary Fig. 3 shows the pre-
processing pipeline described above.

Statistical testing. The latent features developed by the RF-VAE were tested for statistical difference 
between dementia and non-dementia cohorts using two-tailed Student’s T-tests with multiple comparisons cor-
rection using the Benjamini–Hochberg  method41 with FDR = 0.01. The confounding effects of age and education 
were removed using propensity score matching using the open-source Python library called  PsmPy42. This gave 
us a propensity-score matched cohort of 110 dementia clocks and 220 non-dementia clocks. Significance shown 
in Fig. 3A were based on adjusted p-values estimated on this propensity-matched cohort, as shown in Supple-
mentary Table 1. Correlation between the variables was calculated using Pearson’s Product Moment Correlation 
coefficient. Thereafter, the correlation matrix was thresholded at 0.2 and − 0.2 as these values represented 5th and 
95th percentiles in the non-parametric distribution of the correlation values. The thresholded binary matrix was 
used as an adjacency matrix to generate a cross-correlation graph between the latent variables.

Models and experimental setup. A variational autoencoder (VAE) represents a generative model that 
can learn a lower-dimensional representation of input data in the form of the mean and standard deviation of 
a Gaussian distribution which it samples to reconstruct the input data. The non-linear output decoder network 
compensates the loss of generality caused by the prior normal distribution. One disadvantage of the VAE latent 
distribution is a lack of disentanglement of factors: each latent variable being exclusively responsible for the vari-
ation of a unique aspect of the input data. In this paper, we have used an existing implementation of a VAE-based 
deep autoencoder model that can learn all meaningful sources of variations in clock drawings in its disentangled 
latent representation. This model, called RF-VAE, uses total correlation (TC) in the latent space to improve 
disentanglement of relevant sources of variation while tolerating significant KL divergences from nuisance prior 
distributions while simultaneously identifying factors having low divergence from these nuisance priors as “nui-
sance sources of variation”. This way, it can learn “all meaningful sources of variations” in its latent space.

The preprocessed clock image was fed to the RF-VAE network with the latent dimension of 10. The RF-VAE 
network was trained for 1400 epochs at a learning rate of  10−4 with a batch size of 64 following recommenda-
tions in source  articles25,43. The reconstruction loss was cross-entropy, and the optimizer was  Adam44. RF-VAE 
training took 3.5 h, on a GeForce GP102 Titan × GPU from NVIDIA Corporation. The trained latent space of the 
RF-VAE was fed to a fully connected feed-forward neural network with two hidden layers having seven neurons 
in the first hidden layer and four neurons in the second hidden layer. Using an Adam optimizer, the classifier 
was trained using the fine-tuning dataset for 20 epochs, with a batch size of 32 and a learning rate of 0.0075. The 
classification loss was binary cross-entropy. A 3.125:1 weight was assigned to the dementia class during train-
ing to ameliorate the class imbalance in the fine-tuning dataset. All hyper-parameters were selected using the 
fine-tuning dataset inside a fivefold cross-validation design by maximizing the average fold AUC of the model. 
Figure 6 shows the network architecture and represents our method’s conceptual workflow. The top portion of 
each panel in the figure shows the training process of the RF-VAE. The bottom portion of the figure shows how 
the trained encoder weights of the RF-VAE support a task-specific classifier. The performance of this trained clas-
sifier was tested on the test data, and several important performance metrics, namely, AUC, Accuracy, Sensitivity, 
Specificity, Precision, and Negative Predictive Value (NPV), were reported. The test data were bootstrapped 100 
times using random sampling with replacement to create confidence intervals. The median score, 2.5th quartile, 
and 97.5th quartile of these metrics over the bootstrapped test dataset were reported.

We evaluated the performance gain of the classifier upon the addition of age, sex, race, and years of educa-
tion of participants to the model. The best-performing classifier consisted of three hidden layers with ten input 
neurons, 512 neurons in the first hidden layer, 256 neurons in the second hidden layer, and 128 neurons in the 
third hidden layer. It was trained for 20 epochs over the fine-tuning data with a batch size of 8, at a learning rate 
of 0.0075. All hyper-parameters were selected using the fine-tuning dataset inside a fivefold cross-validation 
design by maximizing the average fold AUC of the model. Figure 6 illustrates the different steps in the workflow.
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Data availability
Datasets are available upon reasonable request. All dataset related queries should be directed to Dr. Catherine 
Price (cep23@PHHP.UFL.EDU). Reasonable requests will be reviewed to monitor compliance with the concerned 
authorities- National Institute of Health (NIH) and the Institutional Review Board (IRB). Relevant clinical trial 
numbers for the studies from which the datasets in this study have been constructed are NCT01986577 and 
NCT03175302.

Code availability
All code used for dataset cleaning, model training, and analysis, as well as the trained RF-VAE model used to 
encode the clock drawings are provided. They are available at github.com/iheallab/Clock-Drawing-Classification-
With-RF_VAE.git.
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