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A machine learning method 
for the identification 
and characterization of novel 
COVID‑19 drug targets
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In addition to vaccines, the World Health Organization sees novel medications as an urgent matter to 
fight the ongoing COVID-19 pandemic. One possible strategy is to identify target proteins, for which 
a perturbation by an existing compound is likely to benefit COVID-19 patients. In order to contribute 
to this effort, we present GuiltyTargets-COVID-19 (https://​guilt​ytarg​ets-​covid.​eu/), a machine 
learning supported web tool to identify novel candidate drug targets. Using six bulk and three single 
cell RNA-Seq datasets, together with a lung tissue specific protein-protein interaction network, we 
demonstrate that GuiltyTargets-COVID-19 is capable of (i) prioritizing meaningful target candidates 
and assessing their druggability, (ii) unraveling their linkage to known disease mechanisms, (iii) 
mapping ligands from the ChEMBL database to the identified targets, and (iv) pointing out potential 
side effects in the case that the mapped ligands correspond to approved drugs. Our example analyses 
identified 4 potential drug targets from the datasets: AKT3 from both the bulk and single cell RNA-Seq 
data as well as AKT2, MLKL, and MAPK11 in the single cell experiments. Altogether, we believe that 
our web tool will facilitate future target identification and drug development for COVID-19, notably in 
a cell type and tissue specific manner.

The ongoing COVID-19 pandemic led to millions of deaths and huge economic costs worldwide. While effective 
vaccinations are now widely available in developed countries, there are still a considerable number of infected 
people worldwide1. As of December 2022, there were a total of 12 treatment options that have either been author-
ized by the European Union (EU), approved by the United States Food and Drug Administration (USFDA), or 
are being utilized under an emergency use authorization (EUA) in the United States (U.S.) for treating severe 
cases of COVID-192,3. These options include anakinra (binds to the IL-1 receptor; EU & EUA), baricitinib (a 
JAK inhibitor; US FDA), ritonavir (a virus protease inhibitor; EU & EUA), tocilizumab (an IL-6 antibody; EU 
& EUA), remdesivir (a viral RNA polymerase inhibitor; EU & US FDA), molnupiravir (a ribonucleoside that 
introduces errors during viral replication; EUA), nirmatrelvir/ritonavir (virus protease inhibitors; EUA), as well 
as several monoclonal antibodies against the spike protein including regdanvimab (EU), bebtelovimab (EUA), 
sotrovimab (EU), tixagevimab/cilgavimab (EU & EUA) and casirivimab/imdevimab (EU). Though casirivimab/
imdevimab, bamlanivimab/etesevimab and sotrovimab were previously used in the U.S. under the EUA, they are 
currently no longer authorized due to the rise of SARS-CoV-2 variants in this region which are resistant to these 
antibodies. Due to this limited number of available compounds, there is clearly an unmet need for new, highly 
effective and well tolerated drugs which can be administered to prevent progression to a severe disease stage.
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Given the pressing need for effective novel treatments and that traditional drug development requires a mas-
sive time investment, there has been a growing interest recently in utilizing drug repositioning for COVID-194,5. 
To date, there are three general strategies being applied in the field of COVID-19 drug repositioning6: 

1.	 Same Target—New Virus: This strategy focuses on the idea of reusing an approved antiviral drug with a 
known target on a new virus. An example of this strategy is remdesivir, which was originally developed 
against Ebola7.

2.	 Same Target - New Indication: This strategy refers to using a drug known to modulate an essential pathway 
in human cells during infection to treat a disease that affects said pathway. One example is tocilizumab, an 
IL6 antibody that was originally approved for treating cytokine release syndrome, being administered to 
patients to inhibit the pro-inflammatory pathways that are activated in severe COVID-19 infections8.

3.	 New Target - New Indication: This strategy focuses on using existing compounds against novel targets, which 
are essential during viral infection9–11.

Existing computational approaches focus on integrating established biological knowledge from recent literature12 
in order to predict novel targets of existing drugs13, identify targets for which a perturbation from a known 
compound would likely affect the virus-host interaction14, or modify the response of infected cells15. In addi-
tion to these methods, several machine learning techniques have also been applied to this task including link 
prediction within a human interactome16 as well as methods combining knowledge graphs with gene expression 
profiles14,17, typically using a single gene expression dataset. To our knowledge, there has been no attempt so far 
to perform a more robust identification of viable targets based on a wider range of bulk and single cell RNA-Seq 
(scRNA-Seq) datasets, nor is there a suitable tool available to the scientific community which supports such an 
activity. Ideally, such a tool should—beyond predicting candidate targets - address the additional considerations 
of target identification including its degree of disease linkage, any associated target-related safety issues, and its 
technical feasibility such as its druggability18.

In the work presented here, we sought to fill this gap by developing a web-tool, GuiltyTargets-COVID-19 
(https://​guilt​ytarg​ets-​covid.​eu/) that can 

1.	 Make use of machine learning to prioritize candidate targets in a tissue specific manner and assess their 
druggability.

2.	 Unravel their linkage to known disease-associated human proteins and virus–host interactions.
3.	 Map them to additional ligands derived from the ChEMBL database.
4.	 Identify any potential safety issues.

We demonstrate the utility of our web tool by applying it to six bulk and three single cell RNA-Seq datasets.

Results
GuiltyTargets‑COVID‑19 web tool.  We start by providing a high level overview about the capabilities 
of the GuiltyTargets-COVID-19 web tool. The web application initially allows the user to browse through a 
ranked list of potential targets generated using six bulk RNA-Seq and three single cell RNA-Seq datasets applied 
to a lung specific protein–protein interaction (PPI) network reconstruction. Our website is also equipped with 
several filtering options to allow the user to quickly obtain the most relevant results. The candidate targets were 
ranked using a machine learning algorithm, GuiltyTargets19, which aims to quantify the degree of similarity of 
a candidate target to other known (candidate) drug targets. Further details about GuiltyTargets are outlined in 
the Methods section of this paper.

The user can retrieve a consensus ranking of any combination of datasets desired (Fig. 1). For each protein 
listed, its level of differential gene expression (upregulated, downregulated, no differential expressed) is displayed 
using a color coding system in addition to its association with COVID-19 as described in the literature. This 
latter feature is accomplished using an automated web search of scientific articles from PubMed that mention 
the protein in combination with COVID-19.

Though we provide nine different RNA-Seq datasets to explore, our tool also allows one to upload their own 
gene expression data. Uploaded data is sent through the GuiltyTargets algorithm and, after a short period of 
time, a ranking of candidate proteins is made available to the user to download and explore.

To further elucidate their linkage to known disease mechanisms, GuiltyTargets-COVID-19 enables one to 
explore the neighborhood of any given candidate target within the lung tissue specific PPI network reconstruc-
tion (Fig. 2). The network is labeled with information about known disease associations in humans in addition 
to virus-host interactions.

Importantly, in order to present the user with a list of possible drug candidates for a given protein, we 
parsed the ChEMBL database to generate a mapping of known ligands for each of the prioritized proteins and 
included this information in our web application. Direct links to the ligands’ description pages were added to 
GuiltyTargets-COVID-19 so that researchers can quickly explore the each compound’s profile.

To point out potential target related safety issues, GuiltyTargets-COVID-19 includes a list of adverse effects for 
each target-linked compound, all of which were derived from the NSIDES database20. By making this information 
readily available, the user can quickly decide which compounds for a given target are most viable.

Altogether, GuiltyTargets-COVID-19 implements a comprehensive workflow involving computational target 
prioritization supplemented with annotations from several key databases.

https://guiltytargets-covid.eu/
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Demonstration of use.  Ranking of candidate targets.  In the following sections, we demonstrate the util-
ity of GuiltyTargets-COVID-19 based on the analysis of 6 bulk RNA-Seq and 3 single cell RNA-Seq datasets. 
A detailed overview of the data and workflow can be found in the “Differential gene expression” section of the 
Methods. In brief, GuiltyTargets-COVID-19 maps differentially expressed genes in each of these datasets to a 
lung tissue specific, genome-wide PPI network, which was constructed using data from BioGRID21, IntAct22 and 
STRING23 (see “PPI Network Construction” in Methods). Users can choose a combination of these datasets and 

Figure 1.   Screenshot of the GuiltyTargets-COVID-19 web application available at https://​guilt​ytarg​ets-​covid.​
eu/.

Figure 2.   First degree neighbors of the (a) AKT3 and (b) PIK3CA proteins. Nodes are colored according to 
their associations: light orange means no virus or human association was found, dark orange indicates only 
human association, purple signifies viral association, and and dark blue nodes are proteins with associations to 
both viral mechanisms and human processes. The neighboring proteins and their associations for AKT3 and 
PIK3CA are outlined in Supplementary Data S1 and S2, respectively.

https://guiltytargets-covid.eu/
https://guiltytargets-covid.eu/
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the tool will present a ranking of each protein for each selected dataset based on its similarity to known drug 
targets. Additionally, a consensus ranking is also calculated if multiple datasets were selected.

For our analysis, we initially performed a ranking for each individual dataset. This ranking was performed 
using the GuiltyTargets positive-unlabeled machine learning algorithm19, which combines a PPI network, a 
differential gene expression (DGE) dataset, and a list of included nodes that are labeled as putative targets. 
Based on these results, GuiltyTargets then quantifies the probability that a candidate protein could be labeled 
as a target as well. In order to create a usable model, GuiltyTargets-COVID-19 was trained using a set of 218 
proteins targeted by small compounds extracted from ChEMBL. This set of proteins was previously found to be 
involved in cellular response mechanisms specific to COVID-19 that have been shown to be transcriptionally 
dysregulated in several bulk RNA-Seq datasets15. The set of 218 proteins may thus be regarded as an extendable 
set of candidate targets. We chose this approach as there are currently very few approved drugs for COVID-19 
(7 as of December 2022 in the European Union), hence making a machine learning model based ranking with 
respect to only known targets of approved drugs rather questionable.

In order to maximize transparency, GuiltyTargets-COVID-19 also reports the ranking performance of the 
GuiltyTargets machine learning algorithm that is calculated using the cross-validated area under receiver opera-
tor characteristic curve (AUC). As show in Fig. 6, the cross-validated AUCs found for each of the nine datasets 
used in this work were found to be between 85% and 90%, which align with the results reported in19. Additional 
details regarding the algorithm’s performance can be found in the Methods Section.

Consistently top ranked targets demonstrate disease association.  For our use case, we focused on proteins with a 
predicted target likelihood higher than 85% in each of the nine datasets. This resulted in 51–67 candidate targets 
for each of the bulk RNA-Seq datasets and 45–65 candidate targets for each of the scRNA-Seq datasets. By ena-
bling the filter option “novel” in our web tool, we can select for those prioritized targets that are not among the 
original set of 218 proteins labeled as known targets and used for training the model.

Among these prioritized targets, there was a considerable difference between the analyzed bulk RNA-Seq 
data, with only a single protein target appearing among the top candidates for all 6 datasets: AKT3 (Fig. 3). 
AKT3 is of great interest in COVID-19 research as the PI3K/AKT signaling pathway plays a central role in cell 
survival. Moreover, researchers have observed an association between this pathway and coagulopathies in SARS-
CoV-2 infected patients24. It has been suggested that the PI3K/AKT signaling pathway can be over-activated 
in COVID-19 patients either by direct or indirect mechanisms, thus suggesting this pathway may serve as a 
potential therapeutic target25.

To better understand the relationship of AKT3 with known COVID-19 disease mechanisms, the user can 
also download a CSV file comprised of the direct (first-degree) neighbors of AKT3 in the lung tissue specific 
PPI network used for our analysis. Each first-degree neighbor is additionally annotated to indicate whether the 
corresponding protein is associated with either the disease or with the virus itself. Figure 2a provides a visualiza-
tion of the AKT3 neighbor network generated using Cytoscape 3.9.126.

Interestingly, a larger number of shared prioritized protein targets can be found among the scRNA-Seq data. 
Based on the 17 cell types identified in the three datasets, four common target candidates were identified: AKT2, 
AKT3, MAPK11, and MLKL. The presence of AKT3, as well as its isoform AKT2, in our list of prioritized tar-
gets supports the predicted association of the PI3K/AKT signaling pathway with COVID-19 as observed in our 
analysis of the bulk RNA datasets. Interestingly, our analysis of the single-cell datasets revealed two additional 

Figure 3.   Venn diagram of the number of prioritized targets from the bulk RNA-Seq datasets.
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proteins of interest, MAPK11 and MLKL. MAPK11 is targeted by the compound losmapimod, which was tested 
against COVID-19 in a (terminated) phase III clinical trial (NCT04511819). The trial ended in August 2021 “due 
to the rapidly evolving environment for the treatment of Covid-19 and ongoing challenges to identify and enroll 
qualified patients to participate” (https://​clini​caltr​ials.​gov/​ct2/​show/​NCT04​511819). MLKL is a pseudokinase 
that plays a key role in TNF-induced necroptosis, a programmed cell death process. Recent evidence suggests 
that it can become dysregulated by the inflammatory response due to SARS-CoV-2 infection27. According to the 
DGldb database28 (which is cross-referenced by GuiltyTargets-COVID-19), the protein is also druggable and 
thus may serve as a therapeutic target.

Overall, these results demonstrate that GuiltyTargets-COVID-19 has the capability of identifying candidate 
targets with a clear disease association as well as assessing their potential druggability.

Cell type specific target prioritization.  After analyzing the top ranked protein targets shared by each group of 
RNA-Seq data, we next sought to characterize those candidates found in unique cell types (Table 1). Interest-
ingly, we found that PIK3CA was only ranked among the top therapeutic candidates in goblet cells. Goblet cells 
are modified epithelial cells that secrete mucus on the surface of mucous membranes of organs, particularly 
those of the lower digestive tract and airways. Dactolisib is a compound targeting PIK3CA that has been tested 
in a phase II clinical trial for its ability to reduce COVID-19 disease severity (NCT04409327). The trial was ter-
minated due to an insufficient accrual rate (https://​clini​caltr​ials.​gov/​ct2/​show/​NCT04​409327). Figure 2b depicts 
the PIK3CA protein and its first-degree neighbors as defined by the PPI network used in the GuiltyTargets-
COVID-19 algorithm.

Another interesting drug we identified during our analysis is the compound varespladib, a compound that is 
currently being tested in a phase II clinical trial (NCT04969991) and which targets PLA2G2A, a potential protein 
target that primarily affects NKT cells (Table 1). To better support the user in finding more information about 
the disease context of such candidate targets, GuiltyTargets-COVID-19 also includes links to PubMed articles 
in which the protein and its roles in COVID-19 are discussed. Identification of relevant articles is discussed in 
the the “Methods” section.

Altogether, these results demonstrate that the tool presented here can be used for cell type specific target 
prioritization as well as aiding in characterizing the proteins in the context of COVID-19.

Identifying active ligands.  GuiltyTargets-COVID-19 also includes a feature for identifying small compound 
ligands from the ChEMBL database with reported activity (pChEMBL > 5) against candidate targets. In our use 
case, we were able to identify 186 ligands for AKT3, the top prioritized target across bulk RNA-Seq datasets. 
Furthermore, 126 ligands were mapped to the four candidate targets that were found among all single cell RNA-
Seq datasets. A complete report of the number of ligands mapped to protein targets unique for a given cell type 
can be found in Table 2. We observed a high imbalance of mapped ligands for different cell types with secretory 
cells being targeted by the vast majority of compounds.

In total, these results demonstrate the ability of GuiltyTargets-COVID-19 to efficiently identify active ligands 
against candidate targets, thus supporting researchers in rapidly identifying potential new drugs for therapeutic 
intervention or repurposing.

Assessment of potential safety issues.  An important factor that must be taken into consideration with new target 
candidates are the adverse events which are associated with the drugs targeting these proteins. To better assess 

Table 1.   Candidate targets solely prioritized within one cell type, but not in others.

Cell type Unique candidate targets

Basal cells –

B cells GNAI1

Ciliated cells RPL19

Club cells EPHB2

Dendritic cells RIPK3, RPS14

Epithelial cells –

Goblet cells PIK3CA

Ionocytes CRY1, PIM3, ACVRL1, CDC42BPA

Macrophages IP6K2, GHRL

Mast cells RIPK1, CDK17

Neuro cells HSF1, MST1R

NKT cells PLA2G2A, PRKAB1, ABCG2

NK cells PDCD4

Secretory cells GRK2

Squamous CYP1A1, GNAI3

Tuft cells CDK5, PASK

T cells HCK

https://clinicaltrials.gov/ct2/show/NCT04511819
https://clinicaltrials.gov/ct2/show/NCT04409327
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the suggested therapeutics, we mapped significant adverse effects from the NSIDES database (http://​taton​ettil​ab.​
org/​offsi​des) to the extracted ChEMBL compounds. Hence, each protein can be visualized in tandem with the 
ligands that target it, as well as any side effects found to be associated with the linked compounds. To showcase 
this feature, Fig. 4 depicts the AKT3 protein as well as its associated ligands and their side effects as shown in the 
GuiltyTargets-COVID-19 web application.

Table 2.   The number of active ligands mapped to cell type specific, highly prioritized protein targets.

Cell type Number of mapped ligands

Basal cells –

B cells –

Ciliated cells –

Club cells 3

Dendritic cells –

Epithelial cells –

Goblet cells 2

Ionocytes 3

Macrophages 10

Mast cells 2

Neuro cells 9

NKT cells 44

NK cells 4

Secretory cells 1949

Squamous –

Tuft cells 13

T cells –

Figure 4.   Screenshot of part of the adverse effect network for the AKT3 protein.

http://tatonettilab.org/offsides
http://tatonettilab.org/offsides
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Discussion
Vaccinations have proven to be one of the most powerful weapons against COVID-19 despite their reduced 
effectiveness against the omicron variant29. However, even in highly developed countries such as the USA, the 
fraction of fully vaccinated individuals is currently still below 70%30. Hence, there is still an unmet need for 
effective and cost-efficient medications against COVID-19.

The contribution of this work is a machine learning supported web tool for (i) prioritizing novel candidate 
targets against COVID-19 and assessing their druggability, (ii) linking these targets to known disease mecha-
nisms, (iii) mapping active ligands to the proteins, and (iv) pointing out the potential side effects of the sug-
gested compounds. To our knowledge, there is currently no comparable software tool available to support such 
comprehensive COVID-19 drug development.

We evaluated the underlying GuiltyTargets algorithm using six bulk RNA-Seq and three single cell RNA-Seq 
datasets, in total spanning 17 different cell types. Based on this data, we showed that our tool not only provides 
a high ranking performance which is in agreement with our previous publication, but also consistently prior-
itizes proteins that have a clear disease association. Additionally, we demonstrated that our tool could be used 
to explore candidate targets which are unique to specific cell types. To facilitate the subsequent drug develop-
ment process, our GuiltyTargets-COVID-19 tool provides an assessment of druggability, a network mapping of 
candidate targets, a mapping of active ligands from ChEMBL, and a linkage to potential side effects.

Though we were able to find shared targets among the dataset groups, there are likely additional viable targets 
that were not identified due to the limited amount of data we had access to at the time of writing. By increas-
ing the number of datasets in the future for either a bulk group or a specific cell type, we can likely reveal more 
potential targets that are common among all of the groups analyzed, thus providing additional therapeutic routes 
to test. Furthermore, we found a high imbalance of compounds targeting GRK2, the only protein prioritized 
uniquely in secretory cells. Suggesting such a large number of compounds for testing is unhelpful, and improve-
ments will be made to our web application to better filter the ligands mapped to the ranked candidates.

In summary, we believe that our GuiltyTargets-COVID-19 web application provides a useful contribution to 
the scientific community and will help facilitate future drug development against COVID-19.

Methods
Methodological overview.  We start by explaining the overall approach implemented in GuiltyTargets-
COVID-19, which consisted the following steps: 

1.	 Differential gene expression (DGE) analysis of 6 bulk RNA-Seq and 3 single cell RNA-Seq datasets.
2.	 Construction of a tissue specific, genome-wide protein-protein interaction (PPI) network based on data from 

BioGRID21, IntAct22 and STRING23 as well as mapping of differentially expressed genes from the 3 single cell 
RNA-Seq and 6 bulk RNA-Seq datasets to their counterparts within the network.

3.	 Labeling of known disease associated protein based on the recently published COVID-19 pharmacome15.
4.	 Training of GuiltyTargets, a positive unlabeled machine learning algorithm for prioritizing further putative 

drug targets based on network representation learning19 within each dataset.
5.	 Analysis of both the overlap of highly ranked targets as well as those proteins unique to specific cell types.
6.	 Mapping of known ligands from the ChEMBL database31 to the candidates.
7.	 Identification of potential adverse effects for the given compounds.

Briefly, GuiltyTargets19 (Fig. 5) is a positive-unlabeled machine learning algorithm which combines a PPI 
network, DGE, and a list of nodes labeled as known targets for a given disease in order to rank putative novel 
drug targets relative to a set of existing ones. This technique quantifies the likelihood that a candidate protein 
could be labeled as target based on the overall similarity to existing targets (“guilt by association” principle). 
Given the fact that there are currently only a few approved drugs for COVID-19 (7 as of December 2022 in 
the European Union), we chose to employ a set of 218 potential targets involved in disease specific cellular 

Figure 5.   Idea behind GuiltyTargets: information about differentially expressed genes and putative COVID-
19 drug targets are mapped to a constructed tissue specific PPI network. Subsequently, GuiltyTargets applies 
network representation learning to embed the attributed graph into an Euclidean space. This positive-unlabeled 
model is used to rank unlabeled proteins with respect to their likelihood of being COVID-19 drug targets.
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response mechanisms that have been previously shown to be transcriptionally dysregulated in several bulk 
RNA-Seq datasets15. More details regarding GuiltyTargets can be found in Section “Machine learning based 
target prioritization”.

Differential gene expression.  Bulk RNA-Seq data was obtained from NCBI’s Gene Expression Omni-
bus (GEO) by querying the database for experiments on SARS-CoV-2 in Caco2 cells or samples directly from 
patients. Only those which contained a control/healthy group were included, and the raw counts were analyzed 
for differential gene expression (DGE) using DESeq232.

Single cell RNA sequencing (scRNA-Seq) data was obtained from33,34, and35 (GSE145926). Regarding the 
former two, cell type specific differential gene expression results were directly provided by the respective authors. 
For the latter, the data was pre-processed and analyzed for cell type specific differential gene expression using 
the Seurat R package36.

PPI network construction.  To construct the PPI network, we extracted data from the BioGrid, IntAct, 
and STRING databases. The PPIs derived from these databases were used to create a knowledge graph consist-
ing of protein nodes. All protein identifiers were converted to Entrez gene identifiers in order to synchronize 
the three resources. These databases provide confidence scores for each interaction which quantify the degree 
of evidence by which the interactions are supported, and were subsequently added to the network structure as 
edge weights. Finally, the resulting network was filtered to represent the lung proteome according to the Human 
Protein Atlas37.

Machine learning based target prioritization.  Our earlier published GuiltyTargets prioritization 
approach uses network representation learning to achieve a ranking of all proteins in the graph as potential drug 
targets based on network structure and DGE data. The DGE data used was first categorized using the following 
divisions: − 1 to indicate underexpressed (false discovery rate< 0.05, log2 fold change < − 1.0), 1 meaning over-
expressed (false discovery rate < 0.05, log2 fold change > 1.0), and 0 or not differentially expressed. The network 
was subsequently annotated with the annotated DGE data as protein node features. The approach utilizes the 
gat2vec algorithm, which then splits the graph into two networks: one composed solely of the structural network 
skeleton and one bipartite graph containing only the subset of the nodes which are labeled with DGE data as well 
as any additional vertices representing the annotated DGE attributes themselves38. The gat2vec algorithm then 
approximates node similarity through random walks, a process in which two nodes are considered more similar 
the more frequently they co-occur while traversing the graph from any given starting node. Random walks are 
used on each of the two aforementioned networks, thus generating a structural context from the former and a 
attribute context from the latter. These structural and attribute contexts serve as input into a SkipGram neural 
network39 which learns representative, Euclidean-space node embeddings. Finally, the GuiltyTargets algorithm 
uses a l2-penalized logistic regression classifier to predict the probability of each node, or protein, in the net-
work, of being a potential drug target. These probabilities are the foundation on which the drug target ranking 
is attained. As GuiltyTargets was designed specifically for prioritizing drug targets, proteins are either positively 
labeled as drug targets or entirely unlabeled (pseudo-negatives) rather than a more typical positive/negative 
labeling scheme. The positive labels were derived from the proteins defined by Schultz et al.15 and applied to 
corresponding nodes in our network. All remaining nodes (i.e. those not labeled as positive) were treated as 
pseudo-negatives (Fig. 5). We refer to our original publication19 for more details regarding GuiltyTargets and 
how the probabilities are estimated.

For each of the bulk RNA-Seq datasets as well as each individual cell type classified in the scRNA-Seq data, 
a GuiltyTargets model was trained to prioritize the proteins in the compiled lung-filtered network. After these 
rankings were created, the top targets were gathered and combined across all bulk RNA-Seq results as well as 
for all cell types from the scRNA-Seq results. In order to compare specific therapeutic routes by cell type, a list 
of unique prioritized targets was also generated for each dataset from the scRNA-Seq data (Table 1). These lists 
were generated by identifying the proteins that are unique to each cell type and not found in any other set. Targets 
were then mapped to any active chemical ligands found in the ChEMBL database.

Evaluation of target prioritization performance.  While previously compared our GuiltyTargets algo-
rithm against competing methods based on multiple datasets19, the focus of this work is its direct application and 
benefits in the context of COVID-19 as presented in our web application.

GuiltyTargets provides a ranking of candidate proteins relative to the set of putative COVID-19 targets taken 
from Schultz et al.15, which we refer to as positives in the work presented here. Our aim was to understand the 
probability that GuiltyTargets would rank one of those positives higher than any unknown protein. To that 
end, we trained the underlying GuiltyTargets algorithm using a 10 repetition, stratified 5-fold cross-validation 
scheme. This ensured that each independent test set inside the repeated cross-validation procedure contained 
approximately the same number of known targets. We report the area under receiver operator characteristic 
curve (AUC) as a ranking performance measure for GuiltyTargets based on nine datasets (Fig. 6). These same 
results are also provided on the GuilyTargets-COVID-19 homepage and demonstrate that GuiltyTargets assigns 
positives with high probability a higher rank than unknown proteins, as expected. In general, AUCs observed 
on bulk and single cell RNA-Seq datasets are highly similar, and on a range comparable to that reported in our 
previous publication19.

Ligand mapping.  To suggest potential drugs which target the prioritized protein set, information about 
chemical ligands for each target was obtained from the ChEMBL API using the available Python driver. Fea-
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tures including the canonical Simplified Molecular-Input Line-Entry (SMILES) string, the molecule name, and 
the corresponding assay information regarding the discovery of each ligand were included and used for fur-
ther chemical validation. Ligands were sorted by pChEMBL value, an approximate measure of potency. The 
pChEMBL values were calculated as the negative log of the half-maximal concentration/potency/affinity values 
and are therefore roughly comparable. Only ligands with a pChEML value greater than five, which corresponds 

Figure 6.   Ranking performance of GuiltyTargets measured by the AUC within a 10 times repeated, stratified 
5-fold cross-validation. The boxplots show the distribution of the AUC over the 10 cross-validation repetitions. 
Top: performances on bulk RNA-Seq. Bottom: performances on single cell RNA-Seq.
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to a half-maximal value of < 10 μM, were considered as potential therapeutics and subsequently mapped to the 
protein target.

Automatic literature mining.  To determine whether a particular protein was previously associated with 
COVID-19, we used SCAIView, our in-house semantic search engine that is capable of identifying co-occurring 
ontological terms within primary literature. Briefly, ontologies describing all currently accepted gene symbols 
(as defined by the HUGO Gene Nomenclature Committee) as well as COVID-1940 and SARS-CoV-2 were 
loaded into our COVID-19 SCAIView instance and a massive collection of recent publications were parsed and 
annotated with matching terms from these ontologies. Gene symbols that were found in the same publication as 
a COVID-19 or SARS-CoV-2 ontology term had their corresponding protein node labeled as being associated to 
the disease. The semantic search engine described here is available for public use at https://​covid.​scaiv​iew.​com.

Data availability
The code and all data used in the analysis is available to download at https://​gitlab.​scai.​fraun​hofer.​de/​bruce.​schul​
tz/​gtcov​id. Data sources are described in the “Differential gene expression” section.

Received: 16 May 2022; Accepted: 27 April 2023

References
	 1.	 WHO Coronavirus (COVID-19) Dashboard. https://​covid​19.​who.​int (2022). Accessed 21 Dec 2022.
	 2.	 COVID-19 treatments: Authorised. https://​www.​ema.​europa.​eu/​en/​human-​regul​atory/​overv​iew/​public-​health-​threa​ts/​coron​

avirus-​disea​se-​covid-​19/​treat​ments-​vacci​nes/​treat​ments-​covid-​19/​covid-​19-​treat​ments-​autho​rised (2023). Accessed 8 Mar 2023.
	 3.	 Coronavirus (COVID-19)|Drugs. https://​www.​fda.​gov/​drugs/​emerg​ency-​prepa​redne​ss-​drugs/​coron​avirus-​covid-​19-​drugs (2023). 

Accessed 8 Mar 2023.
	 4.	 Lee, C. Y. & Chen, Y.-P.P. New insights into drug repurposing for COVID-19 using deep learning. IEEE Trans. Neural Netw. Learn. 

Syst. 32, 4770–4780. https://​doi.​org/​10.​1109/​TNNLS.​2021.​31117​45 (2021).
	 5.	 Zhou, Y., Wang, F., Tang, J., Nussinov, R. & Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Dig. Health 2, 

e667–e676. https://​doi.​org/​10.​1016/​S2589-​7500(20)​30192-8 (2020).
	 6.	 Ng, Y. L., Salim, C. K. & Chu, J. J. H. Drug repurposing for COVID-19: Approaches, challenges and promising candidates. Phar-

macol. Ther. 228, 107930. https://​doi.​org/​10.​1016/j.​pharm​thera.​2021.​107930 (2021).
	 7.	 Gordon, C. J. et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respira-

tory syndrome coronavirus 2 with high potency. J. Biol. Chem. 295, 6785–6797. https://​doi.​org/​10.​1074/​jbc.​RA120.​013679 (2020).
	 8.	 Abani, O. et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, 

platform trial. Lancet 397, 1637–1645. https://​doi.​org/​10.​1016/​S0140-​6736(21)​00676-0 (2021).
	 9.	 Kuzikov, M. et al. Identification of inhibitors of SARS-CoV-2 3CL-pro enzymatic activity using a small molecule in vitro repurpos-

ing screen. ACS Pharmacol. Transl. Sci. 4, 1096–1110. https://​doi.​org/​10.​1021/​acspt​sci.​0c002​16 (2021).
	10.	 Redhead, M. A. et al. Bispecific repurposed medicines targeting the viral and immunological arms of COVID-19. Sci. Rep. 11, 

13208. https://​doi.​org/​10.​1038/​s41598-​021-​92416-4 (2021).
	11.	 Mslati, H., Gentile, F., Perez, C. & Cherkasov, A. Comprehensive consensus analysis of SARS-CoV-2 drug repurposing campaigns. 

J. Chem. Inf. Model. 61, 3771–3788. https://​doi.​org/​10.​1021/​acs.​jcim.​1c003​84 (2021).
	12.	 Koscielny, G. et al. Open targets: A platform for therapeutic target identification and validation. Nucleic Acids Res. 45, D985–D994. 

https://​doi.​org/​10.​1093/​nar/​gkw10​55 (2017).
	13.	 Beck, B. R., Shin, B., Choi, Y., Park, S. & Kang, K. Predicting commercially available antiviral drugs that may act on the novel 

coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 18, 784–790. 
https://​doi.​org/​10.​1016/j.​csbj.​2020.​03.​025 (2020).

	14.	 Loucera, C. et al. Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits 
related to SARS-CoV-2 infection. Signal Trans. Targeted Ther. 5, 1–3. https://​doi.​org/​10.​1038/​s41392-​020-​00417-y (2020).

	15.	 Schultz, B. et al. A method for the rational selection of drug repurposing candidates from multimodal knowledge harmonization. 
Sci. Rep. 11, 11049. https://​doi.​org/​10.​1038/​s41598-​021-​90296-2 (2021).

	16.	 Santos, S. D. S. et al. Machine learning and network medicine approaches for drug repositioning for COVID-19. Patterns 3, 100396. 
https://​doi.​org/​10.​1016/j.​patter.​2021.​100396 (2022).

	17.	 Pham, T.-H., Qiu, Y., Zeng, J., Xie, L. & Zhang, P. A deep learning framework for high-throughput mechanism-driven phenotype 
compound screening and its application to COVID-19 drug repurposing. Nat. Mach. Intell. 3, 247–257. https://​doi.​org/​10.​1038/​
s42256-​020-​00285-9 (2021).

	18.	 Emmerich, C. H. et al. Improving target assessment in biomedical research: The GOT-IT recommendations. Nat. Rev. Drug Discov. 
1, 1–18. https://​doi.​org/​10.​1038/​s41573-​020-​0087-3 (2020).

	19.	 Muslu, O., Hoyt, C. T., De Lacerda, M. P., Hofmann-Apitius, M. & Froehlich, H. GuiltyTargets: Prioritization of novel therapeutic 
targets with deep network representation learning. IEEE/ACM Trans. Comput. Biol. Bioinform.https://​doi.​org/​10.​1109/​TCBB.​2020.​
30038​30 (2020).

	20.	 Tatonetti, N. P., Ye, P. P., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 
4, 125–131. https://​doi.​org/​10.​1126/​scitr​anslm​ed.​30033​77 (2012).

	21.	 Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41, D816–D823. https://​doi.​org/​
10.​1093/​nar/​gks11​58 (2013).

	22.	 Orchard, S. et al. The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids 
Res. 42, D358–D363. https://​doi.​org/​10.​1093/​nar/​gkt11​15 (2014).

	23.	 Szklarczyk, D. et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly acces-
sible. Nucleic Acids Res. 45, D362–D368. https://​doi.​org/​10.​1093/​nar/​gkw937 (2017).

	24.	 Girija, A. S. S., Shankar, E. M. & Larsson, M. Could SARS-CoV-2-induced hyperinflammation magnify the severity of coronavirus 
disease (CoViD-19) leading to acute respiratory distress syndrome?. Front. Immunol. 11, 1–10 (2020).

	25.	 Khezri, M. R., Varzandeh, R. & Ghasemnejad-Berenji, M. The probable role and therapeutic potential of the PI3K/AKT signaling 
pathway in SARS-CoV-2 induced coagulopathy. Cell. Mol. Biol. Lett. 27, 6. https://​doi.​org/​10.​1186/​s11658-​022-​00308-w (2022).

	26.	 Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 
13, 2498–2504. https://​doi.​org/​10.​1101/​gr.​12393​03 (2003).

	27.	 Bader, S. M., Cooney, J. P., Pellegrini, M. & Doerflinger, M. Programmed cell death: The pathways to severe COVID-19?. Biochem. 
J. 479, 609–628. https://​doi.​org/​10.​1042/​BCJ20​210602 (2022).

https://covid.scaiview.com
https://gitlab.scai.fraunhofer.de/bruce.schultz/gtcovid
https://gitlab.scai.fraunhofer.de/bruce.schultz/gtcovid
https://covid19.who.int
https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/treatments-covid-19/covid-19-treatments-authorised
https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/treatments-covid-19/covid-19-treatments-authorised
https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs
https://doi.org/10.1109/TNNLS.2021.3111745
https://doi.org/10.1016/S2589-7500(20)30192-8
https://doi.org/10.1016/j.pharmthera.2021.107930
https://doi.org/10.1074/jbc.RA120.013679
https://doi.org/10.1016/S0140-6736(21)00676-0
https://doi.org/10.1021/acsptsci.0c00216
https://doi.org/10.1038/s41598-021-92416-4
https://doi.org/10.1021/acs.jcim.1c00384
https://doi.org/10.1093/nar/gkw1055
https://doi.org/10.1016/j.csbj.2020.03.025
https://doi.org/10.1038/s41392-020-00417-y
https://doi.org/10.1038/s41598-021-90296-2
https://doi.org/10.1016/j.patter.2021.100396
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1038/s41573-020-0087-3
https://doi.org/10.1109/TCBB.2020.3003830
https://doi.org/10.1109/TCBB.2020.3003830
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1093/nar/gks1158
https://doi.org/10.1093/nar/gks1158
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1186/s11658-022-00308-w
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1042/BCJ20210602


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7159  | https://doi.org/10.1038/s41598-023-34287-5

www.nature.com/scientificreports/

	28.	 Freshour, S. L. et al. Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids 
Res. 49, D1144–D1151. https://​doi.​org/​10.​1093/​nar/​gkaa1​084 (2021).

	29.	 Collie, S., Champion, J., Moultrie, H., Bekker, L.-G. & Gray, G. Effectiveness of BNT162b2 vaccine against omicron variant in 
South Africa. N. Engl. J. Med. 386, 494–496. https://​doi.​org/​10.​1056/​NEJMc​21192​70 (2022).

	30.	 Ritchie, H. et al. Coronavirus pandemic (COVID-19). Our World in Data (2020).
	31.	 Gaulton, A. et al. The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954. https://​doi.​org/​10.​1093/​nar/​gkw10​74 (2017).
	32.	 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome 

Biol. 15, 550. https://​doi.​org/​10.​1186/​s13059-​014-​0550-8 (2014).
	33.	 Chua, R. L. et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. 

Nat. Biotechnol. 38, 970–979. https://​doi.​org/​10.​1038/​s41587-​020-​0602-4 (2020).
	34.	 Ravindra, N. G. et al. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium. BioRxivhttps://​doi.​

org/​10.​1101/​2020.​05.​06.​081695 (2020).
	35.	 Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844. https://​

doi.​org/​10.​1038/​s41591-​020-​0901-9 (2020).
	36.	 Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29. https://​doi.​org/​10.​1016/j.​cell.​2021.​04.​048 

(2021).
	37.	 Uhlén, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteomics 4, 

1920–1932. https://​doi.​org/​10.​1074/​mcp.​M5002​79-​MCP200 (2005).
	38.	 Sheikh, N., Kefato, Z. & Montresor, A. gat2vec: Representation learning for attributed graphs. Computinghttps://​doi.​org/​10.​1007/​

s00607-​018-​0622-9 (2018).
	39.	 Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient Estimation of Word Representations in Vector Space. http://​arxiv.​org/​abs/​

1301.​3781 [cs] (2013).
	40.	 Sargsyan, A. et al. The COVID-19 ontology. Bioinformatics 36, 5703–5705. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa1​057 (2020).

Acknowledgements
We thank Sophia Krix for helpful discussions and supporting the network compilation.The COPERIMOplus 
Consortium: Fraunhofer Data Protection Office (Anne Funck Hansen), Fraunhofer IAIS (Sabine, Kugler Stefan 
Rüping), Fraunhofer IGD (Jan Burmeister, Jörn Kohlhammer), Fraunhofer IKTS (George Sarau, Silke Chris-
tiansen), Fraunhofer ITMP (Aimo Kannt, Andrea Zaliani, Ann Christina Foldenauer, Carsten Claussen, Eduard 
Resch, Kevin Frank, Phil Gribbon, Maria Kuzikov, Oliver Keminer), Fraunhofer MEVIS (Hendrik Laue, Horst 
Hahn, Jochen Hirsch, Marco Wischnewski, Matthias Günther, Saulius Archipovas), Fraunhofer SCAI (Alpha Tom 
Kodamullil, Andre Gemünd, Bruce Schultz, Carina Steinborn, Christian Ebeling, Daniel Domingo Fernández, 
Helena Hermanowski, Holger Fröhlich, Jürgen Klein, Manuel Lentzen, Marc Jacobs, Martin Hofmann-Apitius, 
Meike Knieps, Michael Krapp, Philipp Johannes Wendland, Philipp Wegner, Sepehr Golriz Khatami, Stephan 
Springstubbe, Thomas Linden), ZB MED Information Centre for Life Sciences (Juliane Fluck).

Author contributions
Initiated and guided the project: H.F., co-supervision: A.Z., implementation and data analysis: L.N.L., B.S., 
A.M., T.R., M.L., supported single-cell data analysis: D.v.D. All authors have read and approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work has partially been funded via the 
‘COPERIMOplus’ initiative and supported by the Fraunhofer ‘Internal Programs’ under Grant No. Anti-Corona 
840266.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​34287-5.

Correspondence and requests for materials should be addressed to H.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

 

https://doi.org/10.1093/nar/gkaa1084
https://doi.org/10.1056/NEJMc2119270
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/s41587-020-0602-4
https://doi.org/10.1101/2020.05.06.081695
https://doi.org/10.1101/2020.05.06.081695
https://doi.org/10.1038/s41591-020-0901-9
https://doi.org/10.1038/s41591-020-0901-9
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1074/mcp.M500279-MCP200
https://doi.org/10.1007/s00607-018-0622-9
https://doi.org/10.1007/s00607-018-0622-9
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1093/bioinformatics/btaa1057
https://doi.org/10.1038/s41598-023-34287-5
https://doi.org/10.1038/s41598-023-34287-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7159  | https://doi.org/10.1038/s41598-023-34287-5

www.nature.com/scientificreports/

COPERIMOplus

Anne Funck Hansen7, Sabine8, Kugler Stefan Rüping8, Jan Burmeister9, 
Jörn Kohlhammer9, George Sarau10, Silke Christiansen10, Aimo Kannt11, Andrea Zaliani11, 
Ann Christina Foldenauer11, Carsten Claussen11, Eduard Resch11, Kevin Frank11, 
Phil Gribbon11, Maria Kuzikov11, Oliver Keminer11, Hendrik Laue12, Horst Hahn12, 
Jochen Hirsch12, Marco Wischnewski12, Matthias Günther12, Saulius Archipovas12, 
Alpha Tom Kodamullil13, Andre Gemünd13, Bruce Schultz13, Carina Steinborn13, 
Christian Ebeling13, Daniel Domingo Fernández13, Helena Hermanowski13, Holger Fröhlich13, 
Jürgen Klein13, Manuel Lentzen13, Marc Jacobs13, Martin Hofmann‑Apitius13, Meike Knieps13, 
Michael Krapp13, Philipp Johannes Wendland13, Philipp Wegner13, Sepehr Golriz Khatami13, 
Stephan Springstubbe13, Thomas Linden13 & Juliane Fluck14

7Fraunhofer Data Protection Office, Sankt, Germany. 8Fraunhofer IAIS, Sankt, Germany. 9Fraunhofer IGD, Sankt, 
Germany. 10Fraunhofer IKTS, Sankt, Germany. 11Fraunhofer ITMP, Sankt, Germany. 12Fraunhofer MEVIS, Sankt, 
Germany. 13Fraunhofer SCAI, Sankt, Germany. 14ZB MED Information Centre for Life Sciences, Cologne, Germany.


	A machine learning method for the identification and characterization of novel COVID-19 drug targets
	Results
	GuiltyTargets-COVID-19 web tool. 
	Demonstration of use. 
	Ranking of candidate targets. 
	Consistently top ranked targets demonstrate disease association. 
	Cell type specific target prioritization. 
	Identifying active ligands. 
	Assessment of potential safety issues. 


	Discussion
	Methods
	Methodological overview. 
	Differential gene expression. 
	PPI network construction. 
	Machine learning based target prioritization. 
	Evaluation of target prioritization performance. 
	Ligand mapping. 
	Automatic literature mining. 

	References
	Acknowledgements


