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Clinical validation for automated 
geographic atrophy monitoring 
on OCT under complement 
inhibitory treatment
Julia Mai 1, Dmitrii Lachinov 1,2, Sophie Riedl 1, Gregor S. Reiter 1, Wolf‑Dieter Vogl 1, 
Hrvoje Bogunovic 1,2 & Ursula Schmidt‑Erfurth 1*

Geographic atrophy (GA) represents a late stage of age‑related macular degeneration, which leads 
to irreversible vision loss. With the first successful therapeutic approach, namely complement 
inhibition, huge numbers of patients will have to be monitored regularly. Given these perspectives, 
a strong need for automated GA segmentation has evolved. The main purpose of this study was the 
clinical validation of an artificial intelligence (AI)‑based algorithm to segment a topographic 2D GA 
area on a 3D optical coherence tomography (OCT) volume, and to evaluate its potential for AI‑based 
monitoring of GA progression under complement‑targeted treatment. 100 GA patients from routine 
clinical care at the Medical University of Vienna for internal validation and 113 patients from the FILLY 
phase 2 clinical trial for external validation were included. Mean Dice Similarity Coefficient (DSC) was 
0.86 ± 0.12 and 0.91 ± 0.05 for total GA area on the internal and external validation, respectively. Mean 
DSC for the GA growth area at month 12 on the external test set was 0.46 ± 0.16. Importantly, the 
automated segmentation by the algorithm corresponded to the outcome of the original FILLY trial 
measured manually on fundus autofluorescence. The proposed AI approach can reliably segment GA 
area on OCT with high accuracy. The availability of such tools represents an important step towards 
AI‑based monitoring of GA progression under treatment on OCT for clinical management as well as 
regulatory trials.

Due to a progressively ageing population, the number of patients diagnosed with geographic atrophy (GA) sec-
ondary to age-related macular degeneration (AMD) is expected to grow  steadily1. Given the increasing burden 
of this disease, treatment for GA secondary to AMD is highly sought after, which is reflected by the high number 
of interventional clinical trials in the field. Several phase 2 up to phase 3 clinical trials are ongoing or have been 
completed to investigate potential new  treatments2,3. The phase 2 FILLY clinical trial (NCT02503332), which 
studied the therapeutic efficacy of pegcetacoplan, a complement C3-inhibitor, revealed promising results by 
showing a significantly decreased GA growth rate in treated patients compared to sham patients after 1  year4. 
This led to two phase 3 studies DERBY (NCT03525600) and OAKS (NCT03525613) and pegcetacoplan has now 
been approved as the first therapy for GA secondary to AMD.

In clinical trials anatomic endpoints like GA growth rate are used to evaluate the efficacy of new  treatments5,6, 
also done so in the FILLY trial. The current standard imaging modality in clinical trials evaluating therapeutic 
efficacy on GA progression is fundus autofluorescence (FAF)6. In clinical practice, however, optical coherence 
tomography (OCT) is more widely available and is established as standard of care for the monitoring of AMD, 
especially exudative  AMD7. As spectral-domain OCT (SD-OCT) generates 3D volumes composed of a set of 2D 
cross-sectional B-scans, it offers more detailed information about the morphology of the affected retinal layers. 
This provides a detailed understanding of pathomorphologic changes in GA on the level of the neurosensory 
 layers8. In particular, early morphological changes such as photoreceptor degeneration can only be seen reli-
ably on  OCT9,10. Photoreceptor degeneration at the margins of the GA lesion, the junctional zone, have been 
shown to be early indicators of disease  progression11–13. Visual acuity can be preserved until an advanced stage 
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of the disease, until the atrophy progresses to the foveal  tissue14. The assessment and quantification of foveal 
involvement is superior on OCT compared to blue-light  FAF15, leading to a superior estimate of the visual acuity 
preservation. As soon as the fovea is involved, visual acuity is strongly and irreversibly reduced. Therefore, foveal 
involvement represents a critical stage during the course of the disease, and the prevention of foveal involvement 
is a promising target for new treatments. Now that a treatment for GA has become available, huge numbers of 
patients will have to be monitored with respect to the assessment of treatment indication and evaluation of a 
potential therapeutic benefit in slowing down the disease progression. Given these perspectives, a strong need 
for automated GA segmentation has evolved. Image analysis methods using artificial intelligence (AI) are suit-
able to be used to process large amounts of data in a fast, accurate and reproducible way, thus saving labor and 
cost-intensive human  resources16.

In this study, we developed and evaluated a novel fully-automated deep learning-based algorithm for GA 
segmentation and area quantification on OCT using real-world data from routine clinical care. We further vali-
dated the algorithm on an independent external validation set from a clinical trial and the performance of the 
algorithm was compared to the inter-grader variability of two experienced graders. Additionally, we evaluated 
the potential of the algorithm for monitoring GA progression under complement inhibitory therapy with OCT.

Methods
Data sets and study population. The study population consisted of two independent cohorts of SD-
OCT scans and FAF images (both Spectralis, Heidelberg Engineering, Heidelberg, Germany) of GA patients, 
one originating from the Medical University of Vienna (MUV) and the other from the randomized sham-con-
trolled FILLY phase 2 trial. Only Spectralis scans were included for this analysis due to the higher image quality 
(signal to noise ratio) and because follow-up scan acquisition was anatomically aligned, facilitating the topo-
graphic growth evaluation.

The real-world GA cohort from the MUV consisted of 184 eyes of 100 consecutive patients from routine clini-
cal practice, who were 50 years of age or older and had a diagnosis of GA secondary to non-neovascular AMD 
on FAF images, assessed by two experienced graders. A detailed description has been published  previously17. In 
short, patients were excluded if there was a history of other ocular diseases that would confound retinal assess-
ment. Patients were followed-up every 3 months for at least 12 months, and FAF and SD-OCT scans (20° × 20°, 
resolution of 1024 × 49 A-scans × B-scans, ART 9) were performed at every visit. FAF images were excluded in 
case of insufficient image quality, preventing accurate measurement of atrophy size.

The FILLY trial was a randomized sham-controlled phase 2 clinical study of intravitreal pegcetacoplan, an 
investigational therapy targeting complement C3, for GA secondary to AMD (NCT02503332). The detailed 
inclusion and exclusion criteria have been published  previously4. In brief, 246 patients were recruited in the 
trial, which were randomized in a 2:2:1:1 manner to receive either 15 mg intravitreal pegcetacoplan monthly 
(AM), every other month (AEOM) or a sham injection monthly or every other month (SM). The imaging data 
consisted of OCT scans, taken in a raster of 512 × 49 × 496 voxels, Infrared Reflectance (IR), and FAF images. 
The primary outcome measure was the change in square root GA lesion size from baseline to month 12 assessed 
by a centralized reading center on FAF images, using a semi-automatic region finder software  tool18. Patients 
were excluded if there was presence of GA secondary to causes other than AMD, history or current evidence of 
exudative AMD at screening, and retinal disease other than AMD.

The presented study was approved by the Ethics Committee of the MUV (EK Nr: 1246/2016). The research 
was performed in compliance with the tenets of the Declaration of Helsinki and Good Clinical Practice. Written 
informed consent was given by all patients before any study-specific procedure.

Image annotation. OCT annotation of the real‑world cohort. The FAF images from the MUV cohort were 
annotated manually by delineating the GA area, defined as well-demarcated areas with a significantly decreased 
or extinguished degree of autofluorescence. The grading was done by two trained graders, using a validated im-
age analysis software (OCTAVO, Vienna Reading Center, Vienna, Austria). To obtain matched OCT gradings, 
the annotated FAF images were automatically anatomically registered to the corresponding near infrared reflec-
tance (NIR) image, which were aligned with the acquired OCT scans by the imaging device, resulting in 2D en-
face OCT annotations. A deep learning-based spatial registration  method19 was employed, and the registration 
process corrected the difference in magnification between the FAF image and the OCT scan.

OCT annotation of the study cohort. The OCT scans from study eyes of the FILLY trial were assessed by one 
trained image annotator from a group of four at the Ophthalmic Image Analysis (OPTIMA) research group in 
Vienna and supervised by an experienced clinician. Complete retinal pigment epithelium (RPE) loss was manu-
ally annotated on whole OCT volumes obtained at baseline and month 12. RPE loss was defined as the complete 
absence of RPE in combination with a hypertransmission in the underlying choriocapillaris without minimum 
size requirements. Annotations were performed on an A-scan level using an in-house software tool, delineat-
ing the areas of the RPE loss on every OCT B-scan. An example of an OCT B-scan with manual annotation is 
provided in Supplementary Fig. 1. To investigate inter-grader variability, the baseline OCT volumes were split 
into quartiles by respective GA size. From each quartile, 3 volumes were randomly selected, and the resulting 12 
OCT volumes were annotated and supervised by another experienced clinician. OCT volumes with insufficient 
image quality to allow manual annotation as well as patients that did not complete follow-up at month 12 were 
excluded from this analysis.

Development of the deep‑learning model. A deep neural network architecture for 3D-to-2D image 
segmentation, first introduced by Lachinov et al.20, was employed to train an automated image segmentation 
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model to delineate 2D en-face GA areas from a set of annotated 3D OCT volumes. The method takes entire 
OCT volumes as an input, benefiting from spatial 3D context, and provides the likelihood of atrophic changes 
to be present in each A-scan in the form of a 2D en-face map. The model was trained on 3D patches and cor-
responding en-face reference masks randomly sampled from OCT volumes. To segment a single A-scan, the 
method evaluates the spatial context of 1.09 × 1.03  mm2. Fully convolutional nature of the model enables parallel 
processing of the A-scans, taking a few seconds to process a single OCT volume. Details on the development of 
the model are provided in the Supplementary Material.

Training, validation and external testing. For training and internal validation, we employed a fivefold 
cross-validation setup. The MUV dataset was split into five groups at the patient level with stratification by the 
baseline lesion size. Five instances of our segmentation model were trained. For each instance, one group was 
selected as validation set and the remaining four groups as training set. After the training, each model processed 
the corresponding validation set. The cross-validation scheme allows to anticipate the performance of the model 
on the unseen data. Having multiple slightly different models in addition to providing more robust solutions also 
allows estimating the segmentation uncertainty as the standard deviation across the models. The results from 
the five validation sets were pooled together and the segmentation performance metrics described below were 
computed.

For external testing, the previously unseen FILLY dataset was employed to get an unbiased estimate of what 
the performance would be on an independent  dataset21. Each OCT volume was processed by five trained models 
and their output segmentation masks were averaged. The averaging was performed by calculating the mean across 
predictions of the models. The segmentation performance metrics were then computed on the final averaged 
segmentation masks. Details on the training of the model are provided in the Supplementary Material.

The following evaluations of the model performance were conducted. (i) The automated segmentation of 
GA was evaluated on the baseline and month 12 OCT scans of the internal validation set and of the external 
test set by comparing them to the respective manual annotations. In addition, in a subset of external test scans, 
the automated measurements were compared to the inter-grader variability. (ii) The automated segmentation of 
the GA growth area at month 12 was compared to the manually annotated area on the external test set. (iii) The 
growth rates obtained from automated processing of OCT scans of the FILLY trial were compared to the growth 
rates assessed manually on OCT, and the difference in OCT-based growth rates between the treatment arms of 
the FILLY trial were statistically analysed.

Statistical analysis. The performance of the algorithm was evaluated by calculating the mean ± standard 
deviation (SD) and median with interquartile range (IQR) of the Dice Similarity Coefficient (DSC), representing 
the overlap between the segmented GA topographic area and the manual expert annotation. As the DSC has its 
limitation in the evaluation of small lesion areas, we computed the Hausdorff distance (HD) as additional evalu-
ation metric to detect the presence of local outliers in the segmented lesion contour. For instance in regions that 
were wrongly segmented as GA, the DSC could result in a high score if the overall overlap is big but won’t spot 
the outlier. This metric indicates the quality of the lesion localization to provide an overlap-based metric (DSC) 
and distance-based metric (HD) to have a comprehensive  evaluation22. Since the Hausdorff distance is especially 
sensitive to outliers, instead of taking the maximum distance between segmented and ground-truth surfaces, 95 
percentile was calculated. The inter-grader variability was evaluated by calculating the DSC of the two manually 
annotated areas and the intraclass correlation coefficient (ICC) using a two-way random effects model. Corre-
sponding 95% confidence intervals (CI) were calculated following Shrout et al.23.

For the 12-month growth area, mean ± SD and median [IQR] DSC and HD were computed. The GA growth 
rate was defined as the difference between the GA area at baseline and month 12. To adjust for baseline lesion 
size, the GA growth rate was calculated using the previously established square root transformation by calculating 
the difference between the square root transformed GA growth areas of month 12 and baseline,  respectively24. 
The correlation between the growth rates of manual annotation and automated segmentation for the different 
treatment groups was reported using Pearson’s correlation coefficient r and the coefficient of determination  R2. 
All statistical analyses were done using Python and its packages scipy, medpy and pingouin.

Conference presentation. This work was in parts presented at the Annual Meeting of the Association of 
Research in Vision and Ophthalmology 2021.

Results
Data set and baseline characteristics. For training and internal validation, 967 OCT volumes (at all 
time points) from 184 study eyes of 100 patients were used from the MUV GA cohort. For the external test set, 
226 OCT volumes (baseline + month 12) were used from 113 study eyes of 113 patients from the FILLY trial. 
Detailed information on patient numbers and excluded data is shown as flowchart in Supplementary Fig. 2. In 
total, 11,074 B-scans of the external test set were annotated manually. The baseline characteristics of the study 
population are summarized in Table 1. Both datasets showed comparable age and gender distributions.

AI performance evaluation. The performance of the automated GA segmentation from the internal and 
external test sets at baseline and month 12 was evaluated using the DSC. Results are presented as mean ± SD. In 
the internal test set, mean DSC was 0.82 ± 0.15 for baseline and 0.87 ± 0.11 for month 12 GA area. Mean overall 
DSC for all scans was 0.86 ± 0.12 in the internal test set. In the external test set, the performance of the automated 
segmentation was numerically higher than in the internal test set with a mean DSC of 0.91 ± 0.05 for baseline and 
0.92 ± 0.05 for month 12 GA area. Mean overall DSC for all scans was 0.91 ± 0.05 in the external test set. Detailed 
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evaluation metrics for internal and external validation are presented in Table 2 and Supplementary Table 1. The 
distribution of the DSC and HD95 for baseline and month 12 GA area as well as the distribution of DSC across 
different GA lesion sizes at baseline is presented in the Supplementary Figs. 3, 4. The algorithm performed well 
for smaller as well as for larger GA lesion sizes.

The results of the inter-grader variability on a subset of 12 OCT volumes are also shown in Table 2. Mean DSC 
and ICC were high between expert gradings as well as for model-grader agreements. Grader 1 slightly underes-
timated GA lesion size compared to grader 2. The limits of agreement were wider for the inter-grader agreement 
than for the model-grader agreements (Fig. 1), showing that the model operated within inter-grader variability.

To evaluate the performance of the algorithm for the segmentation of the GA growth area, the automated 
segmentation of the 12-month GA growth area was compared to the manual annotation on the external test 
set for all treatment groups pooled. Examples of the automatically segmented baseline GA area and 12-month 
growth area by the model are shown in Fig. 2. Mean DSC for segmenting the 12-month GA growth area on the 
external test set was 0.46 ± 0.16 and mean HD95 was 0.40 ± 0.36. The distribution of the DSC and HD95 for the 
GA growth area as well as the distribution of the DSC across GA lesion sizes at baseline is presented in the Sup-
plementary Material (Supplementary Figs. 5, 6).

AI‑based monitoring of GA progression under therapy. To evaluate the ability of the algorithm for 
the segmentation of the GA progression under complement inhibitory treatment, the correlation between the 
growth rates of manual annotation and automated segmentation for the different treatment groups was ana-
lysed. Automated vs. manually segmented GA growth rates by month 12 for the different treatment groups are 
shown in Fig. 3. There were consistent results in measuring the mean GA growth rate under therapy between 
automated vs. manual segmentation with a mean square root transformed growth rate at month 12 of 0.28 mm 
vs. 0.29 mm in the SM group, 0.24 mm vs. 0.22 mm in the AEOM group and 0.20 mm vs. 0.19 mm in the AM 
group, respectively. There was no statistically significant difference observed between the automated and the 
manually segmented growth rates in all treatment groups (SM: p = 0.920, AEOM: p = 0.942, AM: p = 0.807). The 
Pearson’s correlation coefficient between manual and automated GA growth rates across the treatment groups 
was 0.81 with an  R2 of 0.62 (Fig. 4).

The fully-automated measured GA growth rate on OCT by month 12 was slower in the AM compared to 
the SM group (AM: 0.20 ± 0,13 mm vs. SM: 0.28 ± 0.17 mm, p = 0.030). This was in line with the primary results 
from the FILLY trial, where a significant slower GA growth was shown in treated patients compared to sham, 

Table 1.  Baseline characteristics of the study population for internal (MUV) and external (FILLY) test set. 
Baseline GA area and GA growth rate are presented as square root transformed values. *Calculated as the 
mean of all treatment groups.

Data type MUV FILLY

Number of patients 100 113

Baseline age (years), mean (SD) 75.8 (7.4) 78.9 (7.2)

Female gender, no. (%) 64 (65.2) 74 (65.5)

Baseline GA area (mm), mean (95% CI) 2.44 (2.28–2.58) 2.61 (2.48–2.73)

GA growth rate (mm/y), mean (95% CI) 0.32 (0.28–0.36) 0.23 (0.20–0.27)*

Table 2.  Evaluation metrics of the algorithm for internal and external validation and inter-grader variability. 
DSC Dice Similarity Coefficient, SD standard deviation, IQR interquartile range, HD Hausdorff distance (mm), 
ICC intraclass correlation coefficient, G1 Grader 1, G2 Grader 2, P prediction.

N DSC mean ± SD DSC median [IQR] HD95 mean ± SD HD95 median [IQR]

Internal validation (MUV)

 Baseline 121 0.82 ± 0.15 0.85 [0.80; 0.92] 0.51 ± 0.42 0.38 [0.24; 0.65]

 Month 12 121 0.87 ± 0.11 0.90 [0.85; 0.93] 0.48 ± 0.40 0.37 [0.21; 0.61]

 All 967 0.86 ± 0.12 0.90 [0.84; 0.93] 0.54 ± 0.45 0.40 [0.24; 0.71]

External validation (FILLY)

 Baseline 113 0.91 ± 0.05 0.92 [0.89; 0.95] 0.40 ± 0.45 0.24 [0.13; 0.48]

 Month 12 113 0.92 ± 0.05 0.93 [0.89; 0.95] 0.39 ± 0.36 0.26 [0.14; 0.46]

 All 226 0.91 ± 0.05 0.93 [0.89; 0.95] 0.38 ± 0.40 0.24 [0.13; 0.44]

N DSC mean ± SD ICC (95% CI)

Inter-grader variability

 G1 vs. G2 12 0.92 ± 0.08 0.98 (0.93–0.99)

 P vs. G1 12 0.87 ± 0.10 0.98 (0.94–1.0)

 P vs. G2 12 0.90 ± 0.07 0.99 (0.96–1.0)
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measured manually on FAF. The difference in our automated measured growth rates between the treatment 
groups AEOM vs. SM showed a trend towards slower growth in the AEOM group (AEOM: 0.24 ± 0.21 mm vs. 
SM: 0.28 ± 0.17 mm, p = 0.106).

Discussion
With this work, we present a novel deep learning-based algorithm for GA segmentation and quantification on 
OCT with high and consistent performance. The algorithm was able to accurately segment GA areas on OCT 
with a mean DSC of 0.86 in the internal test set and a mean DSC of 0.91 in the external test set. Notably, our 
algorithm reached the same level in DSC as the inter-grader variability of manual segmentation by human expert 
graders obtained with extensive manpower efforts.

The DSC of the GA growth area between baseline and month 12 was close to 0.5 and therefore lower than 
that of the segmentation of the total GA area. As the GA growth area represents a small region in most cases, 
especially compared to the total GA areas, every wrongly segmented pixel—manually or automatically—has a 
large impact on the average DSC, generally leading to a lower DSC result. As complimentary performance met-
ric we calculated the HD95, which corresponds to the maximum distance between 2D en-face contours of the 
reference and the segmented region. The mean HD95 for the GA growth area was 0.40 mm, meaning that 95% of 
the values had an error below 0.40 mm. It was within the range of the mean HD95 of the external validation set 
for the total GA area (0.38 mm), which indicates the quality of the predicted lesion  localization25. Additionally, 
we evaluated the correlation between manually and automatically segmented growth rates between treatment 
groups. No statistically significant difference was detected between the automated and the manually segmented 
growth rates at month 12 with a correlation coefficient of 0.81, which is a clinically relevant finding with regard 
to providing reasonable automated GA monitoring under therapy.

Figure 1.  Limits of agreement for inter-grader agreement (A) and model-grader (B,C) agreements of the total 
geographic atrophy lesion size. The mean difference is plotted in blue and the limits of agreement are plotted in 
orange (mean difference + 1.96 standard deviation of the difference) and green (mean difference − 1.96 standard 
deviation of the difference). Sqrt square root transformation. Grader 1 slightly underestimated GA lesion size 
compared to grader 2. The model performance was closer to grader 2 than to grader 1. The limits of agreement 
were wider for the inter-grader agreement than for the model-grader agreements, showing that the AI model 
operated within inter-grader variability.
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Precise morphological monitoring of disease activity and therapeutic response is crucial in GA. Functional 
parameters like best corrected visual acuity (BCVA) that are used to evaluate disease progression and thera-
peutic response in other retinal diseases, do not reflect disease progression in GA and are thus unsuitable for 
disease monitoring. BCVA can be preserved until an advanced stage of the disease, when the foveal tissue gets 
affected by the atrophic  process14. Currently, slowing the anatomical growth rate of GA is an accepted clinical 
trial  endpoint5. This underlines the importance of precise and objective image analysis methods to measure 
morphologic parameters in GA patients, especially since a novel treatment has now been approved by regulatory 

Figure 2.  Examples of en-face segmentation of geographic atrophy on OCT of a small (first column), medium 
(second column) and large (third column) baseline lesion size, marked in blue. (A) represents the manually 
annotated baseline area, (B) represents the automatically segmented baseline area, (C) represents the manually 
segmented growth area at month 12, marked in red and (D) represents the automatically segmented growth area 
at month 12, marked in red.
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Figure 3.  Boxplots for manual vs. automated segmentation of geographic atrophy growth on OCT at month 12 
for the different treatment groups. Asterisks denote statistically significant difference in growth rates between 
SM and AM treatment group by automated segmentation (p = 0.030) and manual segmentation (p = 0.028). 
Note that there was no statistically significant difference between manual and automated segmented growth 
rates for all treatment groups. SM sham, AEOM every other month, AM monthly treated group, Sqrt square root 
transformation, GA geographic atrophy.

Figure 4.  Correlation scatterplot for manual and predicted GA growth rates at month 12 for the different 
treatment groups. The correlation coefficient across treatment groups was r = 0.81 with an  R2 = 0.62. AEOM 
every other month, AM monthly treated group, SM sham group, GA geographic atrophy, GT ground truth.
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authorities. AI-based image analysis tools are urgently needed to support physicians in clinical practice to han-
dle the large amount of data and particularly the subclinical hallmarks at the population level generated by the 
huge number of patients affected by GA who may benefit from regular monitoring. In particular, the regulatory 
authorities such as the U.S. Food and Drug Administration (FDA) have documented their interest in considering 
anatomical endpoints when functional parameters are too  variable26. On using OCT as a modality it was noted 
that a more automated measurement is more prone to provide better  accuracy26. A first step towards this goal is 
the automated segmentation of the RPE loss area on OCT.

To this end, we developed an automated algorithm for RPE loss segmentation on OCT, whose technical 
framework has been introduced  previously20. To the best of our knowledge, our study is the first which evaluated 
AI-based longitudinal assessment of GA growth under therapy. Our algorithm was evaluated for GA progres-
sion monitoring on OCT and, furthermore, compared to the results of a prospective phase 2 clinical trial of an 
investigational complement inhibition therapy for GA. There was a slight difference in performance between the 
internal and external test set (mean DSC 0.86 in the internal test set vs. mean DSC 0.91 in the external test set). 
Of note, the internal and external test set derive from two completely independent datasets. One explanation 
for the difference in performance between the two datasets could be the clinical study setting of the external test 
set (FILLY trial) with standardized good quality images versus the real-world cohort setting of the internal test 
set. Moreover, for the internal validation, OCT annotations derived from FAF images were used as training data 
vs. manual annotations on OCT for the external validation. There could be a slight misregistration of the OCT 
and FAF images, which could also be an explanation for the difference in performance. We could show that the 
difference in growth rates between the treatment groups from the trial, measured semi-automatically on FAF, 
reached the same results as our deep learning-based algorithm using OCT scans from a subset of patients. Thus, 
we can conclude that FAF and OCT as well as manual and automated segmentation on OCT resulted in the 
same clinical trial outcome. Notably, the algorithm performed within the intergrader variability between two 
experts. Therefore, we believe that the performance of the algorithm has a high validity for possible clinical use.

Different approaches for automated GA segmentation on various imaging modalities have been proposed 
 previously27. Most studies predominantly focused on GA segmentation on 2D FAF with a DSC ranging from 
0.83 to 0.8928,29. As SD-OCT has become the standard imaging method in AMD in the clinical  setting7, more 
studies have now focused on GA segmentation on  OCT30–32 with a DSC range of 0.81–0.8727.

In contrast to our algorithm, which was trained on the pathology itself, namely the annotated RPE loss, 
previous algorithms mainly focused on choroidal hypertransmission to detect GA on OCT, which is a second-
ary consequence of overlying tissue  loss33,34. By processing an OCT projection image obtained from the region 
between RPE/Bruch membrane and the choroid, those methods achieved an average DSC of 0.8733 and 0.8134, 
respectively. However, choroidal hypertransmission alone is not sufficient to identify GA on OCT as it underlies 
great inter-individual variability and is dependent on image quality as well as on the overall signal level of the 
OCT  volume35. The inhomogeneity of the hypertransmission signal is also referred to as bar code pattern making 
it difficult to consistently quantify small changes in cellular loss.

Other AI methods used single A-scans of the OCT as an input instead of a projection image, reaching a 
DSC of 0.8730 and 0.9136. By only using the OCT A-scans as input, the algorithm cannot learn from the full 3D 
contextual information. Our algorithm was specifically trained to delineate a topographic GA area on a 2D en-
face map, using the whole 3D OCT volume as input and benefitting from a rich spatial 3D context. Moreover, 
the algorithm performs equally to human expert graders in an independent external test set and was evaluated 
using a clinically-relevant endpoint.

Recently, Zhang et al. published an algorithm for GA segmentation on OCT trained on the FILLY  data37. They 
used the previously reported classification system proposed by the Classification of Atrophy Meeting (CAM) 
group for the description of earlier lesions in atrophic AMD on OCT, namely incomplete RPE and outer retinal 
atrophy (iRORA) and complete RPE and outer retinal atrophy (cRORA). There are three major criteria that 
have to be present to meet the definitions for these lesions: (1) region of hypertransmission, (2) RPE disruption 
or attenuation and (3) signs of photoreceptor degeneration, with (1) and (2) < 250 µm diameter representing 
iRORA and ≥ 250 µm diameter representing  cRORA38,39. These definitions, however, still have to be validated and 
implemented in clinical practice as they have shown to underlie substantial inter-reader  variability40. The CAM 
classification originates from pre-AI times when an accurate measurement of the extension of alteration in the 
different layers was not available and therefore represents rather a qualitative assessment. With high-precision 
measurement using AI tools a distinct grading of GA progression has become possible and enables monitoring 
of disease activity and therapeutic response in area change on a micron scale, replacing the gross distinction 
between i- and c-RORA. Particularly to detect morphologic changes preceding GA and investigate potential 
earlier targets for new treatments requires a resolution superior to 250 µm. During the advanced progression 
of GA disease, the photoreceptor status has been shown to exceed and precede RPE loss and could therefore 
identify patients at risk for faster  progression11,41. The method proposed by Zhang et al. was in contrast to our 
work trained on the FILLY data and validated on clinical data and reached a mean DSC for RPE loss in the 
external test set of 0.87 ± 0.2137.

Another publication recently reported on a deep learning-based method using the RORA classification. The 
method reached a mean DSC of 0.88 ± 0.074 and 0.84 ± 0.076 compared to two separate graders in the external 
test set. However, the number of OCT scans in the external test set was very limited (18 OCT volumes)35.

The algorithm we proposed in this work goes beyond the previous methods by taking full 3D context into 
account as opposed to slice-by-slice segmentation. Moreover, it adds the clinically most relevant value of inves-
tigating AI-based monitoring of GA progression under complement inhibition therapy on OCT. Two other 
studies by our group used the proposed algorithm on RPE loss segmentation to investigate the therapeutic effect 
of pegcetacoplan on OCT but with distinct different purposes. The work of Riedl et al. focused on the inhibi-
tion of photoreceptor thickness and integrity  loss42. The work of Vogl et al. investigated the local GA growth 
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 estimation43—both aspects were not evaluated in our study. Both mentioned publications did not include the 
extensive clinical validation as was done in this study. However, they used additional automated algorithms as 
we believe it is crucial to introduce automated OCT monitoring of GA to the community, specifically under 
therapeutic conditions. Our results suggest that the proposed algorithm can be used for objective, scalable and 
precise quantification of GA areas on OCT over time. To be clinically applicable, the robustness of the model 
across different imaging devices and different disease stages has to be investigated. Further prospective, rand-
omized studies are needed to evaluate the ability of the algorithm to be implemented in clinical practice.

Now that a treatment for GA secondary to AMD has become available, we believe that automated and objec-
tive AI methods will be indispensable in the management of GA patients and OCT-based treatment guidance 
in routine clinical practice. Treatment effects in GA patients cannot be assessed by BCVA change as in exudative 
AMD, yet treatment will be invasive and long-term. Patients will have to be motivated to follow the continued 
regimen and payers may request proof of benefit. AI models can be used to predict disease progression and 
identify further biomarkers which are correlated with future GA growth, thus helping us to better understand 
the underlying  pathomechanisms44–46. Furthermore, treatment requirements may be adapted on an individual 
patient level based on such predictions. In respect to the huge GA population to be treated, only automated fast 
and accurate AI-based evaluation, i.e. by mouse click will be efficient.

A limitation of this study is a possible selection bias due to the post-hoc analysis of a potential non-random 
subset from the FILLY trial. Furthermore, this also defines the minimal GA size defined by the inclusion criteria 
of the trial (lesions > 2.5  mm2). Although the MUV GA cohort consists of real-world patients from routine clinical 
care, patients were excluded if they had other retinal diseases to train the algorithm on GA patients secondary 
to non-neovascular AMD only, in concordance with inclusion criteria of currently ongoing treatment trials. 
Also, the model was trained and evaluated on Spectralis scans only. More studies are needed to investigate the 
performance of the algorithm on other OCT devices as well as mixed cases. Potential discrepancies with the 
topline results reported in FILLY could be due to FAF having a bigger field of view than OCT. Furthermore, the 
automated registration of FAF-based annotations to OCT might lead to some discrepancies. However, this is only 
the case for internal evaluation, while for external validation the high-level expert annotations on every B-scan 
of the whole OCT volume were taken as the reference, which is a great strength of this study. The performance 
of the algorithm was even slightly higher in the laboriously annotated external test set than in the internal evalu-
ation, maybe due to the settings of a randomized clinical trial. While the overall correlation of GA growth rates 
was high between the manual and automated method for the different treatment groups, the prediction for one 
individual patient can still be challenging. More extensive phase 3 data is needed for further evaluation.

In conclusion, we propose a fully-automated segmentation method for reliable delineation and quantitative 
measurement of GA areas on SD-OCT, developed on a real-world cohort. The method was shown to be capable 
of monitoring GA progression under therapy with the first successful therapeutic approach, i.e. complement 
inhibition, a major unmet need for future personalized treatment of GA. The method represents an important 
step toward AI-based monitoring of GA patients in clinical practice on a large scale.

Data availability
Original data for this research were provided by Apellis Pharmaceuticals. Data that support the findings of this 
study are available upon reasonable request.
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