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Hybrid GWO‑PSO based optimal 
placement and sizing of multiple 
PV‑DG units for power loss 
reduction and voltage profile 
improvement
Assen Beshr Alyu 1, Ayodeji Olalekan Salau 2,5*, Baseem Khan 3 & Joy Nnenna Eneh 4

Distributed generation (DG) is integrated in a passive distribution system to reduce power loss, 
improve voltage profile, and increase power output. To reap the most benefits of the distribution 
system, the best location and appropriate DG size must be determined. This paper presents a hybrid 
Grey wolf Optimizer (GWO) and Particle swarm optimization (PSO) approach for determining the 
best placement and DG size while considering a multi-objective function that includes active and 
reactive power loss minimization as well as voltage profile enhancement. Dilla distribution system was 
used as a case study and the weighted technique was used to convert to a single objective function 
while taking into account multiple constraints such as bus voltage limit, DG output limit, and branch 
current limit. DG penetration is limited to up 60% of the total active load on the feeder and a forward–
backward sweep load flow algorithm was used to generate the load flow solutions. The findings of 
the study show that combining three PV-DGs (Case 3) is the best way to improve voltage profile and 
minimize losses. In addition, the proposed hybrid GWO-PSO algorithm performed better compared 
to the other four algorithms (Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), 
Particle swarm optimization (PSO), and sine cosine algorithm (SCA)) in terms of achieving the best 
multi-objective function (MOF) outcome.

A power distribution network is used to supply power to various customers. Power distribution presents a 
number of challenges which include high power losses and voltage deviation. Different solutions have been 
proposed in literature to optimize the performance of a distribution network1–3. Presently, Ethiopia’s aggregated 
power loss is 18.655%, which includes transmission loss, distribution loss, and loss due to power theft2. The 
main challenges that limit the performance of a distribution system are high power loss, low voltage profile, 
timing and frequency of interruptions, voltage and current harmonic distortions, and unstable voltage in the 
node of the system3. As a result, there is a need to improve the performance of the distribution system in order 
to make it more reliable and secure. Network reconfiguration, capacitor placement, DG integration, and the 
incorporation of a FACTS device are some of the techniques for improving the distribution systems performance4. 
The existing radial distribution system (RDS) is passive which means power flows in only one direction from 
the source to the end node. Network reconfiguration is performed in a distribution network by using tie and 
sectionalized switches5. Distributed Generation (DG) is the installation of small-scale power generation units 
near load centers that inject active, reactive, or both power into a distribution system. The integration of dis-
tributed generation (DG) into a distribution system has numerous advantages, which include reduced power 
loss, improved voltage profile, and increased system reliability6. The term "Distributed Generation (DG)" refers 
to small-scale electric power generation near the load side (typically 1 kW–50 MW)7. To achieve the maximum 
benefit of DG integration, DGs can be optimally located and sized in a distribution system. Improper place-
ment and sizing of DGs leads to higher power loss and unreliability of the distribution system. There are five 
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common methods for optimizing the placement and sizing of DG and FACTS devices. These are: Analytical, 
artificial neural network (ANN)-based, meta-heuristic, sensitivity approaches, and combination of sensitivity 
approaches and meta-heuristic approaches8–10. Other methods have been used in literature, but we have used a 
hybrid of Grey wolf Optimizer (GWO) and Particle swarm optimization (PSO) method. The main advantage of 
PSO is that there are fewer parameters to configure. In a high-dimensional search field, PSO finds the optimal 
solution through particle interaction, but it converges to the global optimum very slowly. In addition, it produces 
low-quality results for complex and large datasets. The Whale Optimization Algorithm (WOA), a swarm-based 
metaheuristic optimization technique (MOT) inspired by the foraging habits of humpback whales, has so far 
yielded promising results. However, the WOA, like all MOTs, has drawbacks. Some of these disadvantages include 
a slow rate of convergence and a limited capacity for exploitation. GWO algorithm is simple in principle, fast 
in terms of speed, has high search precision, and easy to realize, also has better exploitation ability and is easily 
combined for use in practical engineering problems. Our proposed algorithm combines the advantages of the 
two algorithms, which means that PSO has a higher exploration rate and GWO has a higher exploitation rate.

Literature review.  In literature, various researchers have conducted research on optimal placement and 
sizing of DG in a distribution network for the purpose of achieving technical, economic and environmental 
benefits.

In Ref.11, the authors proposed a flower pollination algorithm for optimal siting and sizing of PV-base DG for 
loss minimization. In Ref.12, the authors proposed a novel hybrid optimization-based algorithm for both single 
and multi-objective functions with optimal DG allocation in distribution networks. Authors in Ref.13 proposed 
a network reconfiguration algorithm for reliability enhancement, minimizing power losses and thereafter inte-
grated DG. In addition, loss sensitivity factor (LSF) method was adopted for the best combinations of switches 
as well as placement of DG for minimization of losses. The proposed algorithm was implemented for an IEEE 
33-bus RDS. The authors in Ref.14 proposed an objective function to find the optimal size and location of solar 
PV to improve voltage at all the nodes within permissible limits and to reduce power losses in RDS using the 
PSO algorithm. In Ref.15, the authors presented an analytical method for the optimal placement and sizing of 
DG to minimize power loss and improve voltage profile with fixed DG size and P-type DG and also used IEEE 
33 bus for testing the method. The authors in Ref.16 proposed a method which precisely identified the optimal 
location and sizing of DG using three indexes: the Index Vector Method (IVM), the Voltage Deviation Index 
(VDI), and the Voltage Stability Index (VSI). The Grey Wolf Optimization (GWO), Whale Optimization Algo-
rithm (WOA), and PSO algorithms were used to optimize DG placement and size for power loss reduction. 
The proposed method was validated using IEEE 33 and 69 bus systems. In order to optimize voltage profile and 
lower active power losses, the authors in Ref.17 proposed an enhanced PSO method for sizing and positioning of 
DG units in an electrical power system. The MOHTLBOGWO approach was suggested by the authors in Ref.18 
for determining the best size and placement of DGs in order to minimize power loss and increase the system 
reliability. A fuzzy-based approach was used to analyze the problem using both single- and multi-objective 
optimization. In Ref.19, the authors used four alternative algorithms, namely, GWO, WOA, PSO, and Teaching 
Learning Based Optimization (TLBO) to discover the best location and size for DG. Additionally, a comparison 
of active strategies for reducing power loss was offered. For the best allocation of several DG types in a RDS, 
the authors in Ref.20 presented a hybrid analytical and sine cosine algorithm (SCA), which uses loss sensitivity 
factor to condense the search space.

Research gaps.  From the reviewed literature, the optimal placement and size of DG is mostly determined 
by considering a single objective function on an IEEE standard distribution system, while the effect of multiple 
DGs was not considered. Some of the literature did not use the Backward forward load flow method which is 
the best load flow technique for a radial distribution system (RDS). Almost all literatures reviewed didn’t use 
a practical distribution network for analysis of the effect of different algorithms for the optimal placement and 
sizing of DGs.

Contribution of the study.  There have been numerous studies on the integration of renewable energy 
based DG into a distributed network for the purpose of achieving technical, economic, and environmental ben-
efits. The main challenge is how to optimally integrate it. The main contribution of the paper is that the PV-DGs 
are optimally sized and located using the proposed hybrid GWO-PSO, as well as the optimal number of DG to 
minimize power loss and improve voltage profile was determined to maintain the equality and inequality con-
straints. The contribution of this paper is listed as follows:

1.	 A novel hybrid GWO-PSO technique was proposed for the optimal placement and sizing of multiple DGs 
in a distribution network.

2.	 The superiority of the proposed hybrid GWO-PSO to other four applied techniques was experimented and 
compared.

3.	 Performance comparison of integrating one (1), two (2), three (3), and four (4)-DG to the distribution 
network to reduce power loss and improve voltage profile is presented.

4.	 This study employed a practical utility network for testing the system which is located in Dilla Ethiopia. The 
distribution network has a high-power loss and poor/low voltage profile.

Modeling of distribution network and PV‑DG
This section presents the modeling of distribution system including, single line diagram, line data and load 
data of the feeder and PV-DG modeling. In Fig. 1, the graphical abstract of the proposed approach is presented.
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Distribution network.  The Dilla distribution system was chosen as a case study for the investigation. The 
distribution substation is located in Gedio zone, South Nation Nationality and People (SNNP) Region, Ethiopia. 
Three winding power transformers with rated output voltages of 132/633/15 kV, as well as other power system 
components, make up the distribution substation. Dilla distribution system consists of five outgoing feeders of 
which three have a rated output voltage of 15 kV and two have a rated output voltage of 33 kV. In this study, only 
one of the 15 kV feeders which is Dilla one (feeder-1) was considered due to its long-distance coverage which 
leads to low voltage profile and high-power loss. The Feeder has 137 buses and a total load of 15.793 MW and 
9.792 MVAr. Bus one is the slack bus, whereas eighty-three buses are connected to loads with the help of a dif-
ferent sizing distribution transformer and the remaining fifty-three are common coupling nodes as indicated in 
Fig. 2.

The total length of the overhead distribution line of the Dilla feeder is 30.83 km. The type of conductor used 
for the distribution lines are stranded conductors of type AAC-50 and Cu-35. These overhead conductors are 
used to distribute 15 kV voltage from the Dilla substation to the eighty-three distribution transformers. The 
line impedance is dependent on the length of the sections and the conductor type. The stranded conductors 
used are AAC 50 mm2, where R = 0.5785 Ω/km and X = 0.347 Ω/km, and Cu 35 mm2, where R = 0.659 Ω/km 
and X = 0.374 Ω/km.

The following assumptions are used for the load model.

	 i.	 The P & Q of each node is taken as 0.85*kVA and 0.527*kVA of the transformer rating respectively.
	 ii.	 The effect of line charging capacitance was neglected due to the short length of the distribution system.

PV‑DG modeling.  Load flow analysis of the distribution system considering DG was performed by mod-
eling the DG. The DG is modeled as either constant active and reactive power (P & Q) or constant active power 
and voltage (PV) model21. The P & Q DG model is identified with a constant power load model except that 
current is absorbed in the load model and injected into a bus for the DG model. Distributed generation is repre-
sented in this model as a negative load that changes the direction of the current flow in the radial system (acting 
as a generator)22. Constant active power and constant voltage models have the capability of controlling their 
reactive power within some limit, to be able to control their voltage within the bus in which they are located. 
When modeled as a constant active power and constant voltage source, the total reactive power keeps the voltage 
at a specific value. For this study, PV-DGs are modeled as a constant P & Q model. If Pli and Qli are active and 
reactive power absorbed by the load at bus i before the integration of DG, then after integration, the new active 
and reactive power absorbed at bus i can be formulated as:

where Pnli and Qnli are the new real and reactive powers consumed at bus I, respectively.
PDG and QDG are the real and reactive powers of DG but QDG is zero because the DG units for this study is 

solar-based and operating at unity power factor (pf).

(1)Pnli = Pli − PDG ,

(2)Qnli = Qli − QDG ,

Figure 1.   Graphical abstract of the proposed hybrid GWO-PSO based optimal placement and sizing approach.



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6903  | https://doi.org/10.1038/s41598-023-34057-3

www.nature.com/scientificreports/

Problem formulation
The backward forward sweep (BFS) approaches utilized for the distribution system power flow analysis, as well 
as the defined objectives and restrictions, are presented in this section. The goal of this research is to discover 
the best position and sizing of DG units for the current Dilla-1 system by minimizing the objective functions 
in real time.

Distribution system power flow analysis.  Consider the following n-branch radial distribution network 
without a PV unit as shown Fig. 3a. Pbi and PDi are the active power flow through branch i and active power 
demand at the bus i respectively, while Qbi and QDi are the reactive power flow through branch i and reactive 
power demand at bus i respectively. In the absence of a PV unit, the total active and reactive power loss (PL and 
QL) in the distribution system can be calculated using Eqs. (3) and (4) 23–25.

where Ri is the resistance of branch i, Xi is the reactance of branch I, and |Vi| is the voltage magnitude at bus i.
We assumed that the inverter-based PV technology is capable of delivering active power and delivering or 

consuming reactive power. The relationship between the active and reactive power (PPVk and QPVk) of PV at 
integrated bus k is given by Eq. (5) 26.

where αk = ± tan(cos−1(pfpvk )). Its value is positive for the PV unit supplying reactive power and negative for 
the PV unit consuming reactive power; and pfpvk is the operating power factor of the PV unit at bus k.

The active and reactive power flowing from the source to bus k are lowered due to the PV unit’s active and 
reactive power injected at bus k as shown in Fig. 3b 25, while the power flow in the remaining sections are 
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Figure 2.   Single line diagram of Dilla one feeder.
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unaffected. Accordingly, the active power loss defined by Eq. (3) and reactive power defined by Eq. (4) can be 
rewritten as follows:

Substituting Eqs. (3) and (5) into Eq. (6), we obtained Eqs. (7) and (8):

For this study, the PV system has unity power factor which means it generates only active power or αk = 0.

Objective function and system constraints.  This subsection presents the formulation of the objec-
tive function which consists of loss minimization and voltage profile improvement and also system constraints 
including the equality and inequality constraints.

Objective function.  The objective functions for this study are power loss minimization and voltage profile 
improvement.

A.	 Loss minimization

The feeders total active power losses can be calculated using Eq. (9).
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Figure 3.   Radial distribution system: (a) without PV unit and (b) with PV unit.
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Similarly, the feeders total reactive power losses can be computed using Eq. (10).

where f1 and f2 are the first and second objective functions associated with the system power loss minimization.
Ii is the current of line i, Ri is the resistance of the ith line, nb is the number of system branches.
The percentage of total power loss reduction can be calculated using Eqs. (11) and (12).

B.	 Voltage profile improvement

The second objective function is improving the voltage profile of the distribution network which is the com-
mutative voltage deviation index described as follows:

Vi is the voltage of the ith bus, N is the number of the system buses.
The formulation of the general multi-objective function (MOF) and its conversion into a single objective 

using the weight sum method is given by:

where
3
∑

i=1

wi = 1.

The advantage of using the weighted sum method includes its ease of use, specifically when working with 
convex problems. Its disadvantage includes not being able to find all solutions in a non-convex solution space 
and not having a straightforward way of assigning the weights of the objectives. The determination of the proper 
weighting factors is also dependent on the experience and concerns of the system planner. For this study, our 
major concern is active power loss due to its impact on utility profit as it accounts for 50% or more of utility 
profit loss and unsatisfaction of the consumers. Different weight probabilities are tested, and one weight factor 
combination that provides a minimum objective function as presented in the result section.

System constraint.  The system constraints are categorized as follows:

A.	 Equality constraints

The active and reactive power flow in the RDS is included in the equality constraints and are calculated in 
Eqs. (15) and (16).

where,Ps and Qs are the supplied active power and the supplied reactive power at the substation, respectively. 
PD and QD are the active load and reactive load, respectively, while nl is the number of lines in the RDS.

B.	 Inequality constraint
(a)	 Bust voltage limits

where Vmin and Vmax are the lower and the upper voltage limits. Where Vmin = 0.95 pu and Vmax = 1.05 pu.

(9)f1 =
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∑
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Ri × I2i .

(10)f2 =
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∑

i=1

Xi × I2i ,

(11)%Active loss reduction =
PL − PLPV
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× 100,
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QL − QLPV
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× 100.

(13)f3 =

N
∑

i=1

(1− Vi)
2.
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(17)Vmin ≤ Vi ≤ Vmax,
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(b)	 Total injected active power limit

The active power of the PV should be equal to or less than the active power load. In this case, the maximum 
limit of the total capacity of DG units is 60% of the total kW loading of the network, while its minimum limit is 
zero. This can be calculated using Eq. (18).

where, PD is the active load and Ppv is injected active power of the PV units.

(c)	 Line thermal units

The line thermal unit can be calculated using Eq. (19).

where Nb is the number of branches in the network.

Optimization algorithm.  This section describes the fundamental principle and mathematical modeling of 
the grey wolf optimizer (GWO) and particle swarm optimization (PSO) method and also the proposed hybrid 
GWO-PSO including the flowchart of proposed method.

Grey wolf optimizer.  The Grey wolf optimizer (GWO) algorithm was developed by Mirjalili and Lewis27. Grey 
wolves are social animals with strict social hierarchy. There are four types of grey wolves within the leadership 
hierarchy of the GWO algorithm. These are alpha, beta, delta, and omega wolves. In the GWO algorithm, alpha 
wolves represent the solution with the best result. Beta and delta wolves represent the second and third best solu-
tions in the population. Omega wolves are the best solution candidates. The mathematical modelling of GWO 
is based on the social hierarchy and hunting behavior of grey wolves. Grey wolves’ hunting tactics includes the 
following three main parts: (1) Tracking, chasing, and approaching the prey. (2) Pursuing, encircling, and har-
assing the prey till it stops moving. (3) Attacking the prey. Encircling the prey is modeled mathematically using 
the following equations:

where, ‘t’ is the number of current iterations, ‘Xp’ is the position of the prey, ‘X’ is the location of the grey wolves, 
and ‘A’ and ‘C’ are the coefficients for the vectors. The coefficients ‘A’ and ‘C’ are calculated using Eqs. (23) and 
(24).

where, the number of ‘a’ is linearly decreasing from 2 to 0 as the number of iterations decreases. r1 and r2 represent 
uniformly selected random numbers between [0, 1]. In the hunting process of grey wolves, alpha is considered 
the optimal applicant for the solution, while beta and delta are expected to be knowledgeable about the prey’s 
possible position. Therefore, the three best solutions that are achieved are kept until a certain iteration which 
forces others (e.g., omega) to modify their positions in the decision space consistent with the best place. The 
position is updated as follows:

where X1, X2, X3 are calculated as follows:

The values Xα ,Xβ , andXδ represent the best three wolves in each iteration, respectively. Where, A1, A2, and 
A3 are calculated as in Eq. (26). Dα ,Dβ ,Dδ are calculated as in Eq. (27).
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where C1, C2, C3 are calculated based on Eqs. (24) and (27). Grey wolves finish their hunting by attacking the 
prey. To achieve this, they must get close enough to the prey. When Eq. (23) is examined, ‘A’ takes values that 
vary from [− 2a, 2a], while ‘A’ takes decreasing values from 2 to 0. When |A| value is greater than or equal to 1, 
the existing hunts are abandoned to find better solutions. Assuming that the prey gets close enough for values 
less than 1, the grey wolves are forced to attack the prey. This approach prevents the wolves from getting stuck on 
the local minimum. When the GWO algorithm reaches the desired number of iterations, the search is completed.

Particle swarm optimization.  Particle Swarm Optimization (PSO) is a population-based algorithm that was 
developed by R. Eberhart and J. Kennedy in 199528. It was inspired by the movement of organisms such as bird 
flocking and fish schooling. The randomly generated population is called a swarm and it consist of individuals 
named particles. Every particle in the swarm indicates a probable explanation of the optimization problem. 
Each particle moves with a random velocity through a D-dimensional search space29,30. The particle (Xi) is the 
position representation of each individual with N-dimensional search space which is described using Eq. (28).

Then each particle moves to become a new particle position ( X(t+1)
i  ) by updating the velocity through a new 

speed variable ( V (t+1)
i  ) with the following equation:

where C1and C2 are individual and group acceleration coefficients respectively, r1 and r2 are random values 
between [0–1].w(t) is the weight value of the inertia at iteration t, w(t) is calculated using Eq. (31) 31.

Hybrid GWO and PSO.  In Ref.32, the hybrid GWO-PSO algorithm was presented for improving the perfor-
mance of convergence. Authors have used the GWO-PSO to combine the capacity of both methods and to 
explore PSO with the ability to exploit GWO in order to reach their optimized strengths33. Instead of utilizing 
the traditional mathematical equations, the first three agents’ positions in the search space are updated in the 
proposed hybrid GWO-PSO, and the grey wolf ’s exploitation and exploration were governed by inertia constant. 
The overall flowchart for the optimal placement and sizing of the PV-DGs is shown in Fig. 4.

Result and discussion 
The analysis and simulation was performed using MATLAB 2021a with an Intel(R) Core (TM) i5-4300U CPU 
@ 1.90 GHz, 8 GB RAM on a personal computer. By testing different probability of weighting factors as shown 
in Table 1, we selected w1 = 0.5, w2 = 0.4, and w3 = 0.1 which give a minimum objective value.

The input parameters of the different optimization algorithms and boundary condition of the decision vari-
ables are presented in Table 2.

In the existing or base case, the total active and reactive load demands are 15.793 MW and 9.792 MVAr 
respectively. The real power loss of the system is 888.9041 KW, whereas its reactive power loss is 531.4082 kVar 
at the base case. The minimum voltage is 0.906 p.u at bus number 125 which is below the limit of 0.95pu and 
also seventy-nine buses are below the required voltage level (57.66%). Multiple PV-DG units are integrated into 
the system to analyze the performance of the feeder.

The system inputs data like base MVA = 100 and base kV = 15 which are used to change the base value into a 
per-unit value. Four cases are used for the integration of PV-DG units which are from one up to 4-DG in number 
by applying five optimization algorithms, namely, PSO, GWO, SCA, WOA, and hybrid GWO-PSO. The four 
cases are: Case 1: One DG (1-DG) integration; Case 2: Two DG (2-DG) integration; Case 3: Three DG (3-DG) 
integration; Case 4: Four DG (4-DG) integration.

For case 1, the overall performance measurement is shown in Fig. 5 and Table 3.
Figure 6 shows the result obtained when integrating 2-DG with different algorithms. It was observed that each 

algorithm has a different number of iterations to reach its optimal solution, whereas GWO and WOA converge 
rapidly with less than 15 iterations. Also, PSO and GWO-PSO converge after 30 iterations and PSO achieves a 
minimum multi-objective function value. The overall performance is illustrated in Table 4.

As shown in Fig. 7, all algorithms converged with few iterations (less than ten) and also the PSO, WOA, SCA 
and GWO based optimization gives minimum and the same objective function values. While the hybrid GWO-
PSO gives higher values. All algorithms except the hybrid GWO-PSO give bus 17 and 9475 kW as the optimal 
location and size of the DGs. The percentage real and reactive power loss reduction are 48.5814 and 48.874 
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respectively. Also, the minimum voltage improved from 0.906 p.u to 0.95893 p.u, while the hybrid GWO-PSO 
achieves bus 16 and 9475 kW as optimal location and size which gives a 46.5722% real and 46.9556% reactive 
power loss reduction as well as a minimum voltage of 0.95884 p.u.

The voltage profile for 2-DG integration with different algorithms is shown in Fig. 6. The results show that 
bus 1–7 and bus 27–73 have the same voltage profile for different algorithms. However, other buses have different 

Figure 4.   Flowchart of the proposed hybrid GWO-PSO for optimal sizing and location of DG.

Table 1.   Effect of weights on the fitness value.

w1 w2 w3 Best objective function value

0.5 0.1 0.4 0.0181

0.5 0.2 0.3 0.0145

0.5 0.3 0.2 0.0107

0.5 0.4 0.1 0.007

0.6 0.1 0.3 0.0146

0.6 0.2 0.2 0.011

0.6 0.3 0.1 0.0073

0.7 0.1 0.2 0.0111

0.7 0.2 0.1 0.00734

0.8 0.1 0.1 0.0075
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Table 2.   Parameters of the optimization algorithm and boundary of decision variables of the objective 
function.

Parameters of PSO algorithms

Number of particles (No. P) for PSO 30

Number of search agents for GWO, SCA, and WOA 30

Maximum iteration 50

Inertia weight
wmin 0.4

wmax 0.9

Personal best value (c1) 2

Neighborhood best value (c2) 2

Decision variables of objective function Bus number (location) Sizing of DG (MW)

Boundary
Lower bound (Lb) 2 0

Upper bound (Ub) 137 9.476
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Figure 5.   Convergence curve for 1-DG integration with different algorithms.

Table 3.   Performance measurement after 1-DG integration with different algorithms.

Methods
Location (size 
in KW) PLoss (kW) QLoss (kVar) Vmin (p.u.)

Max. voltage 
deviation (%)

% P loss 
reduction

% Q loss 
reduction MOF

PSO 17 (9475) 455.9757 271.1165 0.95893 4.1072 48.5914 48.874 0.00723

GWO 17 (9475) 455.9757 271.1165 0.95893 4.1072 48.5914 48.874 0.00723

GWO-PSO 116 (9475) 473.8856 281.2894 0.95884 4.1163 46.5722 46.9556 0.00722

SCA 17 (9475) 455.9757 271.1165 0.95893 4.1072 48.5914 48.874 0.00723

WOA 17 (9475) 455.9757 271.1165 0.95893 4.1072 48.5914 48.874 0.00723
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Figure 6.   Convergence curve for 2-DG integration with different algorithms.
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voltage profiles. The maximum voltage is achieved at bus 82 with a value of 1.00444 p.u using the GWO algorithm, 
while the minimum voltage is achieved at bus 91 with a value of 0.9581 p.u using WOA. Algorithm like PSO and 
GWO-PSO have nearly the same voltage profile except bus 20–26 and bus 132 to last bus.

The convergence characteristics of the different optimization algorithms for the optimal integration of multi-
ple (three) PV-based DG units in the Dilla one distribution system is shown in Fig. 8. Figure 8 shows the results 
obtained when the different optimization algorithms are applied to the test system. It was observed that each 
algorithm has a different number of iterations to reach the optimal solution, whereas the GWO, SCA, and hybrid 
GWO-PSO converge rapidly with less than 18 iterations. In fact, the hybrid GWO-PSO algorithm converges 
faster compared to the other algorithms, taking less than seven iterations, and having the least value of MOF. 
Also, it was observed that the PSO and hybrid GWO-PSO algorithms converge with the same value of objective 
function (0.005388) using the Dilla one feeder test system considered in this paper. The optimization results of 
three PV-DGs using different optimization algorithms for the Dilla one feeder are tabulated in Table 5.

Table 4.   Performance measurement after 2-DG integration with different algorithms.

Methods
Location (size 
in kW) PLoss (kW) QLoss (kVar) Vmin (p.u.)

Max. voltage 
deviation (%)

% P loss 
reduction

% Q loss 
reduction MOF

PSO
14 (4738)

401.735 240.3636 0.95921 4.079 54.7067 54.6732 0.006878
19 (4738)

GWO
82 (4738)

442.295 264.6681 0.9705 2.95 50.1339 50.09 0.007275
137 (4738)

GWO-PSO
132 (4738)

411.512 246.2272 0.95916 4.0841 53.6044 53.5675 0.00692
14 (4738)

SCA
106 (4738)

418.084 250.1675 0.95913 4.0875 52.8635 52.8244 0.007156
19 (4738)

WOA
129 (4533)

463.597 275.4597 0.9581 4.19 47.732 48.0549 0.00732
122 (4738)
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Figure 7.   Voltage profile of base case and 2-DG integration with different algorithms.
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Figure 8.   Convergence curve for 3-DG integration with different algorithms.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6903  | https://doi.org/10.1038/s41598-023-34057-3

www.nature.com/scientificreports/

Figure 9 shows the voltage profiles before and after the integration of 3-DG units into the Dilla one feeder 
test system. The voltage profiles of bus numbers 1–6 and 27–66 are quite similar for all algorithms. On the other 
hand, for the rest of buses, there are noticeable variations in the voltage profiles.

Figure 10 shows the boxplot of MOF while using different algorithms for the Dilla one feeder by consider-
ing the same parameters such as the number of iterations and population size, and the outcomes of different 
algorithms after 20 runs. The results show that the hybrid GWO-PSO gives the best result of MOF which gives 
the minimum median value.

Table 5.   Performance measurement after 3-DG integration with different algorithms.

Methods
Location (size 
in KW) PLoss (kW) QLoss (kVar) Vmin (p.u.)

Max. voltage 
deviation (%)

% P loss 
reduction

% Q loss 
reduction MOF

PSO

22 (3156)

365.421 218.0724 0.97827 2.1734 58.8009 58.8768 0.0053986 (3156)

123 (3156)

GWO

85 (2880)

390.914 233.0712 0.97814 2.1856 55.9267 56.0484 0.0059137 (3156)

125 (3156)

GWO-PSO

86 (3156)

371.4827 221.5613 0.97826 2.1737 58.1175 58.2189 0.00536119 (3156)

133 (3156)

SCA

80 (3156)

344.9114 205.9623 0.97177 2.8233 61.1133 61.1605 0.00619127 (3156)

19 (3156)

WOA 137 (3156) 385.117 229.741 0.97814 2.1856 56.5803 56.6764 0.00575
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Figure 9.   Voltage profile of base case and 2-DG integration with different algorithms.
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Figure 10.   Boxplot of MOF using different algorithms.
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The voltage profile is different for different algorithms except for bus 27–66 which is nearly the same as shown 
in Fig. 11. The minimum voltage is 0.9574p.u at bus 91 and the maximum voltage is 1.00749 p.u at bus 137 for 
GWO in both cases. As shown in Fig. 12, the WOA converges rapidly while it has the highest MOF value, except 
for the GWO algorithm, while the PSO has best (minimum) MOF value. Table 6 presents the performance 
measurement after 4-DGs were integrated with different algorithms.

The convergence curve for integration of 4-DG with different algorithms is shown in Fig. 13. From Fig. 14, it 
is observed that 3-DG integration has high percentage of active and reactive power loss reduction and minimum 
voltage deviation index.

Figure 14 shows that GWO gives the best MVDI (%). This indicates that GWO is suitable for voltage improve-
ment and also PSO gives the best APLR (%) and RPLR (%). This indicates that PSO is suitable for power loss 
reduction. However, PSO-GWO gives the best result for both voltage improvement and loss reduction.

The proposed hybrid algorithm is not computationally complex as it achieved a runtime (processing time) of 
2.78 s, while 2.89 s, 2.9 s, 3.12 s, and 3.2 s was achieved using PSO, GWO, SCA, and WOA, respectively.

Conclusion and recommendation for future work 
Conclusion.  This paper presented the integration of Multiple PV-DGs to minimize the multi-objective func-
tion for active and reactive power loss reduction and voltage profile improvement in an Ethiopian distribution 
system in Dilla city (Dilla distribution system). The results of the study show that the percentage real and reactive 
power loss reduction is high at three DG (case-3) almost for all algorithms and less maximum voltage deviation 
and minimum. In addition, the superiority of the proposed hybrid GWO-PSO algorithm was shown compared 
to the other four algorithms (Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), Particle 
swarm optimization (PSO), and sine cosine algorithm (SCA)) in terms of achieving the best result of multi-
objective value (MOF). By integrating three DG using the proposed method, 58.1175% active and 58.2189% 
reactive power loss was reduced, moreover the voltage profile is within permissible limits where the maximum 
voltage deviation is 2.1739%.

Recommendation for future work.  In the future, authors hope to use other meta-heuristic approaches 
for the Optimal Placement and Sizing of Multiple PV-DG Units installing battery energy storage systems (BESSs).

Figure 11.   Branch power loss considering different algorithms.
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Figure 12.   Voltage profile of base case and 4-DG integration with different algorithms.
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Table 6.   Performance measurement after the integration of 4-DGs with different algorithms.

Methods
Location (size 
in kW) PLoss (kW) QLoss (kVar) Vmin (p.u.)

Max. voltage 
deviation (%)

% P loss 
reduction

% Q loss 
reduction MOF

PSO

87 (2569)

377.2116 224.8239 0.97857 2.1425 57.4716 57.6036 0.00442
23 (2569)

128 (2569)

118 (2562)

GWO

128 (2336)

478.4918 285.2436 0.95741 4.2595 46.0528 46.2099 0.00770
137 (2569)

115 (1638)

134 (2569)

GWO-PSO

119 (2569)

387.5865 230.7713 0.97857 2.1428 56.3019 56.4821 0.00451
137 (2569)

86 (2569)

122 (2569)

SCA

21 (2569)

353.0925 211.1298 0.97859 2.141 60.1909 60.186 0.00496
11 (2569)

83 (2569)

22 (2569)

WOA

137 (2293)

379.856 226.437 0.97847 2.1532 57.1735 57.2994 0.00462
120 (2569)

87 (2569)

129 (2569)
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Figure 13.   Convergence curve for 4-DG integration with different algorithms.
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