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Inaccuracies of deterministic 
finite‑element models of human 
middle ear revealed by stochastic 
modelling
Arash Ebrahimian 1,2, Hossein Mohammadi 1,2, John J. Rosowski 3,4, Jeffrey Tao Cheng 3,4 & 
Nima Maftoon 1,2*

For over 40 years, finite‑element models of the mechanics of the middle ear have been mostly 
deterministic in nature. Deterministic models do not take into account the effects of inter‑individual 
variabilities on middle‑ear parameters. We present a stochastic finite‑element model of the human 
middle ear that uses variability in the model parameters to investigate the uncertainty in the model 
outputs (umbo, stapes, and tympanic‑membrane displacements). We demonstrate: (1) uncertainties 
in the model parameters can be magnified by more than three times in the umbo and stapes footplate 
responses at frequencies above 2 kHz; (2) middle‑ear models are biased and they distort the output 
distributions; and (3) with increased frequency, the highly‑uncertain regions spatially spread out 
on the tympanic membrane surface. Our results assert that we should be mindful when using 
deterministic finite‑element middle‑ear models for critical tasks such as novel device developments 
and diagnosis.

The middle ear plays a vital role in our hearing process by converting acoustic energy from the environment to 
mechanical vibrations and conducting them to the inner ear. Many studies have used different methods to model 
middle-ear mechanics in order to improve our fundamental understanding of the hearing  process1–7. Middle-ear 
models can be helpful for other purposes such as predicting the hearing loss from middle ear pathologies and 
injuries, simulating surgeries, and developing and advancing diagnostic and treatment methods.

Different approaches for modelling middle-ear mechanics were reviewed  elsewhere8,9. The finite-element (FE) 
method is a powerful continuum-mechanics-based method that has been extensively used to model middle-ear 
mechanics starting with the pioneering work of Funnell and  Laszlo10. The FE method can deal with complex 
geometries and different material properties and boundary conditions.

In order to obtain reliable results from an FE model, realistic mechanical properties of different structures 
of the middle ear should be known. Several studies attempted to identify the mechanical properties of some of 
the structures in the middle  ear11–17. For instance, laser Doppler vibrometry, stroboscopic holography, and FE 
modelling were used to estimate the viscoelastic properties of the human tympanic membrane (TM)11. Also, 
indentation measurements and inverse FE method were used to estimate the quasi-static Young’s modulus of 
the human  TM12. Recently, a Bayesian inverse method was proposed that can be used to find the material prop-
erties of thin structures including the  TM13 using vibration measurements with holographic  methods18–21. A 
review of the material characterization of the TM can be found  elsewhere22. Additionally, several studies have 
employed sensitivity analysis methods to identify the most influential parameters in the middle ear. In most of 
these studies, local sensitivity analysis was performed by varying the value of one model parameter while keeping 
all other model parameters fixed at their baseline values. These one-at-a-time sensitivity analyses can study the 
local effects of perturbation of parameters around one point in the N-dimensional parameter space (N being the 
number of model parameters) but they cannot investigate the entire parameter space. Maftoon et al. performed 
a local sensitivity analysis of the FE model of gerbil middle  ear6. Motallebzadeh et al. used both local and Morris 
sensitivity analysis methods to study the effects of variations of parameters of a human newborn FE  model23. 
O’Conner et al. studied the effects of varying material properties of the human TM on the sound conduction 
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in the middle  ear24. In general, the focus of these sensitivity analyses was to find the importance of each of the 
model parameters rather than studying the impacts of natural stochastic variabilities of the model parameters 
on the variabilities of the motions in the middle ear.

The mechanical/geometrical properties of middle-ear structures have intrinsic inter-individual variability 
that can be taken into account with stochastic  uncertainties25. Indeed, differences observed in physiological data 
from different individuals (e.g., the normative study by Whittemore et al.26) can be attributed to the probabilistic 
distribution of the morphological features and mechanical properties of the middle-ear structures among indi-
viduals. Since the first FE model of the middle ear in  197810, most FE middle-ear models in the literature were 
deterministic and few systematically considered the effects of these uncertainties in the model parameters on 
its predictions. In deterministic FE models, the value of all model parameters are predetermined (either from 
experimental measurements or model sensitivity analyses) and fixed, and stochastic variations of parameters 
are not integrated in these models. In the present work, we developed a stochastic FE model of the human mid-
dle ear to investigate the effects of different levels of natural variability in the model parameters on its outputs.

Materials and methods
Geometry, model components, and mesh. The 3D geometry was created based on the segmentation 
of µCT image datasets of a 73-year-old male cadaver temporal bone that included 1024 × 1012 × 1014 cubic 
voxels with a voxel size of 18.0828 µm. The scan was done with Xradia MicroXCT-200 at 90 kV and 8W. The 
segmentation process and meshing were done in 3D Slicer (www. slicer. org) software (version 4.11.20200930)27. 
After finalizing segmenting all parts, we used the Segment Mesher toolbox of Slicer for creating the mesh. We 
used Cleaver2 (www. sci. utah. edu/ cibc- softw are/ cleav er. html) meshing library for creating a conformal volumet-
ric mesh for all parts of the model. A sizing field was created manually and was modified several times in order 
to create the desired mesh that consists of coarse elements in the regions where no considerable deformations are 
expected (i.e., bones) and fine elements in other regions. For the TM only, the generated volumetric mesh was 
converted to a surface mesh and only the medial section of the mesh (which is connected to manubrium) was 
used in the FE model. Thus, our model had volumetric mesh for all components in the middle ear except the TM 
for which we had surface mesh. The details about the number of elements will be provided later in this section.

The model included the TM, ossicles, anterior mallear ligament (AML), lateral mallear ligament (LML), 
incudostapedial and incudomallear joints (IMJ and ISJ), superior malleolar ligament (SML), stapedial annular 
ligament (SAL), posterior incudal ligament (PIL), and manubrial fold. The tensor tympani tendon and stapedial 
tendon were not included in the model as these tendons tend to have functional consequences in live ears, while 
the experimental data that were used for validations in this study are from cadaveric temporal bones. Also, our 
model does not include the middle ear cavity. The geometry and mesh of the middle-ear model are shown in 
Fig. 1. In the following, we discuss the motions of the anatomical landmarks highlighted in this figure.

Deterministic finite‑element modelling. The material properties of the baseline model are presented 
in Table 1. We assumed all materials to be isotropic and  elastic6. Besides, we considered nearly incompressible 
material properties (Poisson’s ratio of 0.49) for all soft  tissues6. For the ossicles, the value of Poisson’s ratio was 
set to be 0.35. Moreover, the values of the Young’s modulus of the TM and SAL reported in Table 1 were chosen 
to be in the range of the values reported in the  literature14,22. We used Rayleigh damping considering stiffness-
proportional damping for all structures except for the TM, and manubrial  fold11,28. In Table 1, α1 and α2 are the 
Rayleigh-damping coefficients of mass and stiffness matrices, respectively.

Figure 1.  3D model of the middle ear. Constructed geometry from two different viewing angles (left and 
center) and mesh of the human middle-ear model (right). This model was used in our stochastic FE analysis and 
the motions of the highlighted structures are discussed in this study.

http://www.slicer.org
http://www.sci.utah.edu/cibc-software/cleaver.html
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For modelling the cochlear load, we considered a cochlear impedance of 20 GΩ which is the same value used 
by Gan et al.5. In our model, the surface area of the stapes footplate was measured to be 3.6  mm2 which is also 
in the range reported by Motallebzadeh et al.23. From these values, we calculated a viscous damping coefficient 
of 0.26 Ns/m that we uniformly distributed to four dashpots attached to the stapes footplate and in the direc-
tion parallel to the piston-like  motion6. Using dashpots to model the cochlear load is a common approach in 
the literature of FE modelling of the middle  ear5,6,28. The thickness of the TM was assumed to be uniform and it 
was considered to be 74 μm which is the same as the value used by Gan et al.5. The average TM thickness values 
used in most models in the literature are also close to this value (74 μm)29. The references for the values of the 
Young’s modulus and density of the model components are listed in Table 1. In addition to these a priori mate-
rial properties, we determined the Rayleigh damping coefficients of all the middle-ear structures by manually 
adjusting them to closely replicate the experimental measurements of Voss et al.1.

To excite the model, we applied uniform pressure (with the amplitude of 1 Pa) to the entire TM area laterally. 
The TM annulus was considered to be fully  clamped31. Also, the ligaments (AML, LML, SML, PIL, and SAL) 
were considered to be fixed at their distal ends where they normally connect to the wall of the middle-ear cav-
ity. For all simulations except the full-field vibration patterns, we performed a transient dynamic analysis with 
a uniform pressure step function as the  input6 and used the implicit Newmark-β  scheme32. In order to have 
an unconditionally stable solution, we chose values of β and γ in the Newmark-β scheme to be 0.25 and 0.5, 
 respectively6. To obtain the displacement frequency response function, we found the impulse response by dif-
ferentiating the step response (with respect to time) and then used the fast Fourier transform to construct the 
frequency response function. The full-field vibration patterns were obtained using harmonic vibration analysis. 
The Code_Aster (www. code- aster. org) open-source FE code (version 14.4.0) was used for the computations. We 
modelled the TM using seven-node second-order TRIA7 COQUE_3D shell  elements6, while all other structures 
(ossicles, joints, and ligaments) were modelled using ten-node second-order TETRA10 3D solid tetrahedral 
elements in Code_Aster.

Mesh dependency. The original mesh of our model consisted of 205,322 tetrahedral elements (TETRA10 
3D) for all parts of the model except the TM that was composed of 7778 shell elements (TRIA7 COQUE_3D). In 
order to check the mesh convergence, we used the  Homard33 utility of Code_Aster to refine the original mesh. 
We divided each triangle into four coplanar triangles and as a result, the numbers of tetrahedral elements and tri-
angular elements were increased by factors of eight and four, respectively. It was observed that the refined mesh 
does not result in substantial changes in the trend and the values of the vibration responses of the umbo and 
stapes footplate in the frequency range of 100 Hz to 10 kHz. We compared the results at 405 equally spaced fre-
quencies in this frequency range for the displacement amplitude of the umbo and stapes footplate. For the umbo 
amplitude, the differences between the results obtained from the original and refined meshes were less than 1 dB 
at 354 frequencies, with a maximum difference of 1.40 dB at 1.24 kHz. Additionally, for the displacement ampli-
tude of the stapes footplate, the difference between the results obtained from the original mesh and refined mesh 
was less than 1 dB at 321 frequencies, with a maximum difference of 2.11 dB at 1.17 kHz. As a trade-off between 
the accuracy and computational cost, we chose to perform all calculations with the original mesh.

Time‑step and time‑span dependency. We chose the time span of 25 ms (which provides a frequency 
resolution of 24 Hz). For checking whether the response is affected by increasing this time span, we increased it 
to 50 ms (which provides a frequency resolution of 12 Hz) and observed less than 0.001 dB difference for both 
amplitudes of displacement of the umbo and stapes footplate and for all frequencies in the range of 100 Hz to 
10 kHz.

We chose the time step of 10 μs (the maximum frequency of 50 kHz) and decreased it to 5 μs (the maximum 
frequency of 100 kHz). We observed that in the frequency range of 100 Hz to 10 kHz, decreasing the time step 
caused maximum changes of 0.36 dB (at 7.59 kHz) and 0.44 dB (at 7.59 kHz) in the displacement amplitudes 

Table 1.  Material properties of the baseline model.

Structure E (MPa) Density (kg/m3) Poisson’s ratio α1 (1/s) α2 (s)

TM 12 120011 0.49 700 4 ×  10−6

Malleus 1400024 239024 0.3 0 4 ×  10−7

Incus 1400024 215024 0.3 0 4 ×  10−7

Stapes 1400024 220024 0.3 0 4 ×  10−7

IMJ 3024 110024 0.49 0 13 ×  10−5

ISJ 3024 110024 0.49 0 13 ×  10−5

SAL 1.4 120024 0.49 0 13 ×  10−5

PIL 224 120024 0.49 0 13 ×  10−5

LML 224 120024 0.49 0 13 ×  10−5

Manubrial fold 1.211 120011 0.49 700 4 ×  10−6

SML 4.95 120030 0.49 0 13 ×  10−5

AML 224 120024 0.49 0 13 ×  10−5

http://www.code-aster.org
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of the umbo and stapes footplate, respectively. Therefore, we used the original time step (10 μs) and time span 
(25 ms) for all our calculations.

Uncertainty propagation. We made a baseline conventional deterministic FE model with a priori mate-
rial parameters from the literature and validated this model against existing experimental data. We then con-
sidered the probability distribution of the model parameters, sampled the 32-dimensional parameter space and 
propagated the uncertainties to the model outputs. We considered having uncertainties in the material proper-
ties (Young’s modulus, Poisson’s ratio, and stiffness-proportional damping coefficient) for all of the components 
of the model as well as in the thickness of the TM and in the cochlear load. All these uncertainties existed at the 
same time in our simulations.

We quantified uncertainties using two indices: the coefficient of variation (CV):

and uncertainty amplification (UA) which quantifies the amplification of the uncertainties of the outputs with 
respect to the uncertainties in the model  parameters34:

where n is the number of uncertain model parameters. In our study, we had 32 uncertain model parameters. A 
UA value of greater than one indicates amplification.

The stochastic sets of model parameters were created by the Latin Hypercube Sampling method for each 
scenario (each combination of random parameters sampled from the 32-dimensional parameter space) with 
the mean values equal to values for the baseline model (Table 1 for material properties, TM thickness of 74 μm, 
and cochlear load viscous damping coefficient of 0.26 Ns/m) and CV of 10% and 20%. The ranges of variation 
of each model parameter for both CV values are reported in Supplementary Table S1. We used  UQLab35 (ver-
sion 1.3.0) for creating stochastic sets of model parameters. In the absence of reported probability distributions 
for most parameters of the model, we assumed normal distribution, which is advocated to be a suitable choice 
for many biological  variables36. However, because the value of the Poisson’s ratio was set to 0.49 for soft tissues 
in the baseline model, we considered a half-normal distribution for soft tissues with the mean of 0.49 that only 
resulted in values less than or equal to the mean. Also, in order to reduce the number of parameters, we consid-
ered all three ossicles to have the same Young’s modulus, Poisson’s ratio, and damping in our stochastic model-
ling. Visualization of the sampled 32-dimensional parameter space is not directly possible but Fig. 2a shows the 
distribution of parameters on the planes of some pairs of parameters of the space with CV of 20%. The planes in 
this figure show normal and half-normal distributions as described above.

The uncertainty in the model parameter space was propagated to the output by performing FE analysis for 
each set of the stochastic model parameters described above. We evaluated the FE model with 1992 parameter 
scenarios to cover the 32-dimensional parameter space. All of the FE calculations were performed on the Niagara 
cluster of Digital Research Alliance of Canada (www. allia ncecan. ca) with Intel Skylake (2.4 GHz, AVX512) pro-
cessors running under the CentOs 7 distribution of Linux. Each single simulation of the model with the original 
mesh and original time step and time span (“Results”) was performed on one core using 18 GB memory. Each 
node of the cluster has 40 cores and 188 GiB of memory, allowing 10 parallel simulations on one node and a total 
number of 100 model evaluations on one node took about 14 h to complete.

After propagating the uncertainties to the outputs, statistical analyses were done on the outputs. For the 
output phases, we implemented circular statistics to find values of the mean, standard deviation, skewness, and 
kurtosis using the Circular Statistics Toolbox of  Matlab37. Using circular statistics, we consider the circular nature 
of all of these parameters, which is important for phase values. For instance, the circular standard deviation is 
analogous to linear standard deviation but it considers the cyclic nature of phase values when evaluating their 
variabilities. More details about these parameters can be found in the documentation of the Circular Statistics 
 Toolbox37. To calculate the skewness and kurtosis of the output phase, we employed the methods described by 
 Pewsey38 and  Fisher39, respectively.

Figure 2b provides a summary of the workflow of the stochastic FE analysis that we used in the current work.
We submitted 2000 simulation scenarios on the cluster from which eight faced software issues and we could 

evaluate the FE model with 1992 parameter scenarios to cover the 32-dimensional parameter space.

Results
Middle‑ear model can magnify parameter uncertainties up to more than three times in the 
output. Figure 3a and c, respectively, present the stochastic normalized amplitude and phase of the umbo 
displacement for model parameters with the CV of 10%. The middle-ear resonance frequency, identified by the 
peak in the umbo amplitude response, was about 1.5 kHz in the deterministic baseline response and had a UA of 
about 0.77 in the stochastic model. At low frequencies (below the middle-ear resonance frequency), the uncer-
tainty of the umbo displacement amplitude was not amplified (UA of about 0.6). Also, the value of the circular 
standard deviation of the phase remained close to zero at low frequencies. Above the middle-ear resonance 
frequency, the uncertainties were amplified in the umbo displacement output with the highest UA of 4.38 near 
2.5 kHz for the amplitude and maximum values of the circular standard deviation in the phase (0.06 cycles) hap-
pened near frequencies of 1.9 kHz and 3.5 kHz.

(1)CV =
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Increasing the uncertainty in the model parameters to the CV of 20% (Fig. 3b,d) did not lead to uncertainty 
amplification at low frequencies: the UA of the amplitude remained about 0.6 and the circular standard deviation 
values of the phase remained close to zero. Also, the UA of the middle-ear resonance frequency experienced a 
negligible increase (0.83 vs. 0.77). At frequencies higher than the middle-ear resonance, the increased uncer-
tainty in the model parameters caused more dispersed umbo displacement responses with an average CV of 
about 32% for amplitude (was about 17% when CV of inputs were 10%) and an average standard deviation of 
0.05 cycles in phase (was 0.02 cycles for CV of 10%). Near 1.8 kHz, the circular standard deviation of the phase 
shows its maximum (0.09 cycles). Also, the greatest UA peak (3.19) of the umbo displacement amplitude was in 
the vicinity of 2.5 kHz. In this frequency neighborhood, for some sets of model parameters, an anti-resonance 
occurred as can be seen in Fig. 3b and d. These anti-resonances did not exist in Fig. 3a and c where the CV of 
uncertain model parameters was 10%.

The stapes displacement describes the output of the complete middle ear. Figure 4a and b show the frequency 
response of the stapes footplate with the CV of 10% for all uncertain model parameters. Similar to the umbo 
response, at low frequencies (below the middle-ear resonance at 1.5 kHz), uncertainty amplification did not 
occur: the UA was about 1 for the amplitude and the values of the circular standard deviation were close to zero. 
For frequencies above the middle-ear resonance frequency, the model amplified the uncertainty in the stapes 
response (average amplitude UA: 1.72 and average phase circular standard deviation: 0.02 cycles). The maximum 
UA of 3.12 happened at about 2.2 kHz for the stapes displacement amplitude. Also, for the phase, the maximum 
circular standard deviation of 0.05 cycles happened near frequencies of 1.9 and 3.6 kHz.

Also, the open-cavity stapes footplate velocity data of Voss et al. are presented in Fig. 4. We compared the sta-
pes displacement amplitude of the baseline model with these experimental results and found that the maximum 
difference was less than 1.6 dB for all frequencies below the middle-ear resonance frequency (1.5 kHz). Also, as 
Fig. 4 displays, the middle-ear resonance frequency and the maximum stapes footplate displacement amplitude 
obtained from the model match well with the experimental data.

Figure 3.  Stochastic frequency response function of the umbo displacement. Amplitude and phase of the 
umbo (normalized with respect to excitation pressure) are presented in this figure. The motion of the umbo is 
reported in the direction normal to the manubrium at the umbo. The results of individual simulations (n = 1992) 
are plotted with gray thin lines and because they are all close to each other, the whole response region looks like 
a gray shaded area. Panels (a) and (c): The CV of all uncertain model parameters was set to be 10%. The UA 
(Equation (2)) is about 0.6 for the umbo displacement amplitude below the middle-ear resonance frequency 
(at ~ 1.5 kHz). The maximum UA of about 4.38 happens near 2.5 kHz for the umbo displacement amplitude. 
For the phase, the values of circular standard deviation are close to zero at low frequencies and the maximum 
circular standard deviation happens near frequencies of 1.9 kHz and 3.5 kHz. Panels (b) and (d): The CV of all 
uncertain model parameters was set to be 20%. The UA (Equation (2)) is about 0.6 for the umbo displacement 
amplitude at frequencies below the middle-ear resonance frequency (at ~ 1.5 kHz). For the amplitude, the 
maximum UA (3.19) happens near about 2.5 kHz and for the phase, the maximum circular standard deviation 
(0.09 cycles) happens at about 1.8 kHz.
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Figure 4c and d present the frequency response of the stapes footplate for the CV of 20% for all uncertain 
model parameters. At low frequencies, the UA was about 1.10 for the amplitude and the circular standard 
deviation values of the phase were close to zero. At 2.3 kHz, the amplitude response was most uncertain and 
the uncertainty in the model parameters was magnified by a factor of 2.41 while the circular standard deviation 
of the phase response drastically decreased at this frequency to 0.02 cycles (from 0.07 cycles at 1.8 kHz) and 
went up to 0.07 again near the frequency of 10 kHz. Here the anti-resonances, observed in the umbo response 
(Fig. 3b,d), are not present. Compared to panels (a) and (b) of Fig. 4, the increased uncertainty (CV of 20%) 
in the model parameters, caused an approximately similar average amplitude UA (1.58 vs. 1.72) and a higher 
average phase standard deviation (0.04 cycles vs. 0.02 cycles) and the stapes response was in a better agreement 
with the experimental results. A comparison of the stochastic model results of the stapes footplate (with CV of 
20%) with several experimental measurement results in the literature is also provided in Supplementary Fig. S1.

At low frequencies, middle‑ear models attenuate uncertainties and approximate a robust 
simple lever. Figure 4e presents the stochastic ossicular transfer function of the model with the CV of 20% 
for the uncertain model parameters. This ossicular transfer function is defined as the ratio of the stapes footplate 
displacement amplitude (in the piston-like direction) to the umbo displacement amplitude (in the direction 
normal to the manubrium at the umbo). At low frequencies (below the middle-ear resonance), the transfer func-
tion can be thought as the lever ratio (at low frequencies, the mean value of the lever ratio is less than 0.4 and 
the UA of the lever ratio is about 0.7). However, UA increases up to a maximum of about 3.75 near 2.1 kHz. The 
uncertainties in the model parameters make the transfer function highly uncertain at most frequencies between 
2 and 4 kHz. At the frequencies below 1 kHz, the model robustly attenuates uncertainties and portrays the mid-
dle ear as a highly certain simple lever. The same trend of attenuating uncertainty at low frequencies is evident 
in all results of Figs. 3 and 4 as discussed earlier.

The middle‑ear model is biased. To study the probability distributions of stochastic responses at low, 
mid, and high frequencies, we focused on three frequencies (Flow = 708 Hz, Fmid = 2.51 kHz, and Fhigh = 9.74 kHz). 
Figure 5 presents violin  plots40 of the amplitude and circular histograms of the phase of both umbo and stapes 
footplate displacement at these frequencies (for CV of 20% for uncertain model parameters). The horizontal axes 
in the violin plots show kernel density estimations for each distribution. We used Kuiper’s normality test to check 
whether the distributions shown in Fig. 5 are normal (von Mises for circular  distributions41). We found that for 
all outputs, the null hypothesis was rejected at 5% significance level except for the phase of the stapes footplate at 
Flow. This means that although most of the uncertain model parameters were considered to have normal distribu-
tions, the output distributions may be distorted with non-normal distributions.

The values of skewness (a measure of symmetry of a specific distribution) and kurtosis (a measure of the tail 
weight of a specific distribution with respect to that of a normal distribution) reported in Table 2 also confirm that 
most of the distributions presented in Fig. 5 are non-normal as their skewness and kurtosis values are far from 
the respective values for the normal distribution (skewness of zero and kurtosis of three for the  amplitude42,43 and 
skewness and kurtosis of zero for the  phase37). For the amplitude of the umbo displacement, the absolute value 
of skewness is greater than 0.90 at all three frequencies with a maximum absolute value of 1.59 at Flow. Also, the 
values of kurtosis for the amplitude of the umbo displacement are greater than 4.12 at all three frequencies with 
the maximum value of 7.88 at Flow. For the phase of the umbo displacement, the value of skewness is very close 
to zero at all three frequencies. Additionally, the values of kurtosis of the phase of the umbo displacement are 
about 1.94, 12.70, and 19.72 at frequencies Flow, Fmid, and Fhigh, respectively. These findings are consistent with 
the results of the normality test above.

For the displacement amplitude of the stapes footplate, the value of skewness is greater than 1.17 at all three 
frequencies with a maximum value of 1.27 at Fmid. Furthermore, the values of kurtosis for the amplitude of stapes 
displacement are greater than 4.22 at all three frequencies with a maximum of 5.80 at Flow. Table 2 also shows 
that, like the umbo response, the values of skewness for the phase of the displacement of the stapes footplate are 
very close to zero at all three frequencies. Besides, the values of kurtosis for the phase of the displacement of the 
stapes footplate are greater than 0.88 at all three frequencies with the maximum value of 17.48 at Fmid.

Uncertainties in the vibration patterns of the TM are spread in space with increased fre‑
quency. The previous results showed the propagated uncertainties only for the umbo and stapes footplate. To 
provide a more complete view about the stochastic motions in the model, Fig. 6 presents the vibration amplitude 
of the TM at the same three frequencies. This figure considers the displacement of the baseline and stochastic 
FE model with CV of 20% for the model parameters. For the 15,728 nodes of the TM model, we calculated the 
displacement amplitude and phase in the baseline model as well as their mean and standard deviation in the 
stochastic model. The results of the amplitude are presented in the three left columns of Fig. 6 and the results for 
the phase are provided in the Fig. 7. The rightmost column of Fig. 6 presents the values of CV of the displace-
ment amplitude. We should note that only the CV of the nodes of the TM that have mean displacement values of 
greater than 0.1 nm are plotted in this column. The patterns obtained from the baseline model have similarities 
to the mean stochastic results shown in the “mean” column. At all three frequencies, the manubrium (outlined 
in black at Flow) has the smallest motion in the baseline and has the smallest values of the mean and standard 
deviation. At Flow, the maximum deformation of about 0.25 µm occurred in the posterior side of the TM (left to 
the manubrium in Fig. 6), as  expected44,45. Besides, at this low frequency, the standard deviation plot shows that 
posterior to the TM, the standard deviation of the motion can be as large as the mean or baseline displacement 
(also evident from the CV of about 110%). At Fmid and Fhigh, some features in the baseline pattern (one example is 
marked with the white circle) are not present in the mean pattern because they were smoothed out due to averag-
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Figure 4.  Stochastic frequency response function of the stapes footplate displacement and the stochastic middle-ear transfer 
function. The results of individual simulations are plotted with gray thin lines and because they are all close to each other, 
the whole response region looks like a gray shaded area. The stapes footplate motion is reported in the piston-like direction. 
Also, the green line presents the experimental results of Voss et al.1 (Bone 25) converted to displacement and corrected for 
the viewing angle of 35°; the mean of their reported viewing angle range of 20°–50° degrees. Panels (a) and (b): Amplitude 
and phase of the stapes footplate (normalized with respect to excitation pressure) with the CV of of 10% for all uncertain 
model parameters. At frequencies below the middle-ear resonance frequency (at ~ 1.5 kHz), the UA (Equation (2)) is about 
1 for the stapes displacement amplitude. The maximum UA (3.12) happens near 2.2 kHz for amplitude and the maximum 
circular standard deviation (0.05 cycles) happens near the frequencies of 1.9 kHz and 3.6 kHz for the phase. Panels (c) and 
(d): Amplitude and phase of the stapes footplate (normalized with respect to excitation pressure) with the CV of 20% for all 
uncertain model parameters. The UA (Equation (2)) is about 1.1 for amplitude at frequencies below the middle-ear resonance 
frequency (at ~ 1.5 kHz). The maximum UA (2.41) happens near 2.3 kHz for the stapes displacement amplitude and the 
greatest circular standard deviation happens (0.07 cycles) near frequencies of 1.8 kHz and 10 kHz for the phase. Panel (e): 
Stochastic middle-ear transfer function calculated using the stochastic model with CV of 20% in model parameters (Fig. 3b 
and Fig. 4c). The maximum UA of the lever ratio (3.75) happens at about 2.1 kHz.
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ing and due to the high variations in the results at these locations. At the middle frequency (Fmid), the major area 
of the TM shows standard deviations of more than 0.02 µm except in the superior region of the TM where stand-
ard deviations of down to 0.001 µm dominate the region. Consistently, the CV plot at Fmid shows that regions 
with high CV (≥ 50%) are apparent in all regions of the TM. Increasing the frequency to Fhigh leads to nearly even 
distribution of regions with high standard deviations and high CV on the entire TM, especially in comparison to 
the vibration patterns at Flow. The mean values of CV of the TM nodes (Fig. 6) are about 46%, 56%, and 38% for 
the Flow, Fmid, and Fhigh, respectively. This shows that although by increasing the frequency the regions with high 
CV are spatially spread out on the TM, the mean value of the CV does not follow any specific trends.

The stochastic phases of vibration patterns of the TM are presented in Fig. 7. Compared to the displacement 
amplitude, the displacement phase has a more evenly distributed standard deviation at Flow. Also, at Flow, the 
vibration phase is nearly constant and highly certain over the entire TM except in a small circular region in the 
TM anterior with concentrated uncertainty and a maximum standard deviation of about 102°. The displacement 
phase pattern becomes more uncertain as the frequency increases and at Fmid several hot spots with concentrated 
uncertainty are present in the standard deviation plot. As the frequency increases to Fhigh the uncertainty is 
dispersed in the entire TM. The average values of the circular standard deviation at Fmid and Fhigh (38° and 20°, 
respectively), are much greater than that at Flow (4°).

Discussions and conclusions
In this study, we presented a stochastic FE model of the human middle ear that instead of generating deterministic 
vibrations and model outputs, provides a probabilistic description of middle-ear vibrations to account for the 
natural variabilities in the human middle ear. Current FE models do not have enough accuracy to be considered 
as acceptable tools for diagnosis and surgical  planning46,47. This study is a step toward increasing the accuracy 
and reliability of the predictions of FE models by considering the uncertainty in the model parameters.

Figure 5.  Violin plots and circular histograms for the amplitude and phase of the umbo and stapes footplate. 
The results are presented at frequencies  Flow,  Fmid, and  Fhigh. The CV of uncertain model parameters was set to 
be 20%. The horizontal axes in the violin plots show kernel density estimations for each distribution. The values 
of skewness and kurtosis of the distributions shown in this figure are presented in Table 2. We used Kuiper’s 
normality test to check whether the distributions shown in this figure are normal (von Mises for circular 
 distributions41). Based on Kuiper test results presented in “Results”, the null hypothesis was rejected at 5% 
significance level except for the phase of the stapes footplate at  Flow.

Table 2.  Values of skewness and kurtosis for the output distributions shown in Fig. 5.

Frequency Flow (708 Hz) Fmid (2.51 kHz) Fhigh (9.74 kHz)

Statistical information Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

Umbo amplitude 1.59 7.88 1.25 4.12 0.90 4.63

Umbo phase 0.00 1.94 − 0.06 12.70 0.05 19.72

Stapes footplate amplitude 1.17 5.80 1.27 5.15 0.69 4.22

Stapes footplate phase 0.00 0.88 − 0.01 17.48 0.07 14.27
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Figure 6.  Stochastic full-field vibration patterns of the TM. Vibration patterns of the baseline model and 
the spatial distribution of the mean and standard deviation of the displacement amplitude of the tympanic 
membrane at three frequencies  Flow,  Fmid, and  Fhigh are presented in the three left columns. The vibration 
patterns are reported in the direction normal to the manubrium at the umbo. Comparing the mean and 
baseline patterns shows that at  Fmid and  Fhigh, some high-frequency features are not present in the mean pattern 
due to the averaging and high variations in the stochastic results. The white circle shows one example of such 
high-frequency features. The right column shows the distribution of the coefficient of variation, excluding 
points where the mean values are close to zero. The manubrium is outlined in black. The purple line shows the 
tympanic annulus.

Figure 7.  Stochastic full-field vibration phase of the TM. Distribution of the displacement phase of the baseline 
model and the spatial distribution of circular mean and circular standard deviation of the phase of the tympanic 
membrane. The results are presented at three frequencies  Flow,  Fmid, and  Fhigh. The manubrium is outlined in 
black.
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To take the variability in individual ears into account, the stochastic model considered uncertainty in the 
mechanical parameters as well as the thickness of the TM. We demonstrated that the middle-ear model can 
magnify the uncertainties in the model parameters to more than 300% in the outputs. For both CV values of 
10% and 20% of the model parameters, the highest UA happened in the frequency range of 1–5 kHz for the 
amplitudes of the umbo and stapes displacements. This new finding enhances our existing  knowledge6,48 about 
the sensitivity of the middle ear to variability. Uncertainty amplification that we report here was also observed 
in models of other organs of the body (e.g., left  ventricle49).

Also, for the model with the CV of 20%, for some sets of model parameters, we saw an additional anti-
resonance in umbo displacement at frequencies around 2–3 kHz that does not exist in the baseline model. Based 
on our results, for the sample sets that lead to these anti-resonances in the umbo response, the values of the 
thickness or the Young’s modulus of the TM (or both of them for most samples) are small (below mean values). 
However, the values of other model parameters and their interactions may also have some effects in the pres-
ence of these anti-resonances. The presence of anti-resonances for some sets of model parameters is consistent 
with the presence of similar antiresonances in some ears in experimental observations of populations of middle 
 ears26,50. Additionally, the noisy behaviour of the transfer function (Fig. 4e) can be due to these anti-resonances 
for some sets of model parameters.

All the observations described above have important implications for FE models of the middle ear because in 
addition to inter-individual variability that makes the model parameters intrinsically uncertain, most material 
parameters of the models were not and cannot be measured accurately in vivo, at least with the existing methods. 
If conventional deterministic FE models of the middle ear are to be used for developing new medical devices or 
for planning therapeutic interventions, the ignored error in the values of material and geometrical parameters 
(uncertainty) may be amplified as errors in the model results. We observed that the umbo and stapes footplate 
responses and the middle-ear transfer function are less uncertain at low frequencies. This suggests that if, despite 
uncertainties, a deterministic model is used, the model predictions at low frequencies are more reliable than those 
at high frequencies. Moreover, by investigating stochastic vibration patterns of the TM, we observed that as the 
frequency of excitation increases, the regions with high uncertainty spread out more evenly on the entire TM 
surface and the vibration pattern becomes less certain. This suggests similar implications to what we discussed 
for the umbo, stapes footplate and the middle-ear transfer function.

Although the current study reveals the importance of considering using stochastic models to study the 
mechanics of the middle ear, these models require a significantly higher computational cost in comparison to 
conventional deterministic FE models. One way to deal with the high computational cost is to develop and train 
surrogate  models51 that can be used in lieu of the real FE model for stochastic simulations for some specific out-
put quantities of interest. Future studies should study development and effectiveness of such surrogate models.

One of the limitations of our current stochastic FE model is that we only considered normal and half-normal 
distributions for the model parameters. We chose these distributions based on the fact that normal distributions 
are suitable choices for many biological  variables36. However, the exact distribution of each of the model param-
eters should be determined by performing further experiments on a large number of human ears.

In the absence of more accurate estimates of the value of the CV of most of the uncertain model parameters, 
we considered the CV values of 10% and 20%. However, additional experimental measurements should be car-
ried out in order to quantify the CV of each of the model parameters. Recently, Lobato et al. tried to quantify the 
CV of mechanical parameters of the middle  ear52 based on the ranges reported in the literature for each value. 
However, their study does not include all mechanical properties of the middle ear structures. For instance, CV 
of damping, Poisson’s ratio, and cochlear load is not reported in their work. Additionally, as Lobato et al. also 
mentioned in their work, even for the parameters reported in their work, the values of CV were calculated from 
small sample sets and therefore, those values might not be accurate enough. Furthermore, to avoid excessive 
sophistication of performing this study, we only considered the variability in the TM thickness among all mor-
phological parameters of the middle ear because that was the only morphological variability that would not need 
creations of new 3D models. Future studies should explore the effects of morphological variability in interaction 
with material variability.

We have considered some simplifying assumptions to reduce the complexity of our model. For instance, our 
baseline model does not include the tensor tympani tendon, stapedial tendon, and the middle-ear cavity. The 
tendons can be activated in living ears but in ex vivo ears they are not active and the stapedial tendon is often 
removed in temporal-bone preparations. Voss et al. showed that removing the stapedial tendon has small effects 
on the mechanics of the middle ear ex vivo1. Also, the middle-ear cavity is expected to have small effects on the 
motions of the stapes footplate at many  frequencies1,24. Moreover, although some studies have modelled the TM 
as an orthotropic  material22, in this study we modelled the TM as an isotropic material to reduce the complexity 
of our model. O’Connor et al. modelled the TM using both orthotropic and isotropic materials and showed that 
the isotopic material model can also lead to results comparable to the ones from the orthotropic model and close 
to experimental  measurements24. All these simplifications may have some effects on the predictions of the present 
stochastic finite-element analysis and they should be further investigated in follow-up studies.
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