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Many retinal diseases involve the loss of light-sensing photoreceptor cells (rods and cones) 
over time. The severity and distribution of photoreceptor loss varies widely across diseases and 
affected individuals, so characterizing the degree and pattern of photoreceptor loss can clarify 
pathophysiology and prognosis. Currently, in vivo visualization of individual photoreceptors requires 
technology such as adaptive optics, which has numerous limitations and is not widely used. By 
contrast, optical coherence tomography (OCT) is nearly ubiquitous in daily clinical practice given 
its ease of image acquisition and detailed visualization of retinal structure. However, OCT cannot 
resolve individual photoreceptors, and no OCT-based method exists to distinguish between the loss 
of rods versus cones. Here, we present a computational model that quantitatively estimates rod 
versus cone photoreceptor loss from OCT. Using histologic data of human photoreceptor topography, 
we constructed an OCT-based reference model to simulate outer nuclear layer thinning caused by 
differential loss of rods and cones. The model was able to estimate rod and cone loss using in vivo 
OCT data from patients with Stargardt disease and healthy controls. Our model provides a powerful 
new tool to quantify photoreceptor loss using OCT data alone, with potentially broad applications for 
research and clinical care.

Photoreceptor loss is a shared feature of many retinal diseases that cause vision loss, including common condi-
tions such as age-related macular degeneration and rare conditions such as Stargardt disease. The two main 
subtypes of human photoreceptor cells are rods and cones. Differential death of rods versus cones can produce 
distinct visual symptoms even among individuals with the same disease. These differences arise, in part, from 
the contrasting physiology and function of the two cell types, but also from their differential distribution in the 
retina. Cone photoreceptors are tightly packed in the fovea and progressively less concentrated more peripher-
ally, whereas rods predominate in the peripheral retina, reach their greatest density in a ring at the eccentricity 
of the optic nerve, and are absent from the very center of the  fovea1.

While some psychometric tests can differentiate rod versus cone loss (for example, Ref.2), current imaging 
methods for visualizing and quantifying rod and cone loss have significant limitations. For example, adaptive 
optics (AO) techniques enable visualization of individual  cones3–8 and sometimes  rods5. However, commercial 
AO systems are not widely available, image only a narrow area of the retina at a time, and are technically chal-
lenging to use.

By contrast, commercially available OCT systems have been widely used in routine clinical practice for almost 
two decades, providing a wealth of longitudinal data for both qualitative and quantitative assessment of changes 
over time. The outer nuclear layer on OCT scans represents photoreceptor nuclei. Nevertheless, OCT can only 
capture bulk trends of total photoreceptor survival since these systems lack the requisite resolution to differentiate 
between single cells. No methods currently exist to estimate the proportions of surviving rods versus cones from 
OCT images. In lieu of individual cell counts, even approximations of rod and cone survival by OCT would be 
useful for assessing disease progression in clinical trials or routine care.

OPEN

1The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver 
College of Medicine, The University of Iowa, Iowa City, IA, USA. 2Casey Eye Institute, Oregon Health and Science 
University, Portland, OR, USA. *email: steven-whitmore@uiowa.edu

http://orcid.org/0000-0003-0161-9625
http://orcid.org/0000-0001-7798-1538
http://orcid.org/0000-0002-2371-727X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-33694-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6896  | https://doi.org/10.1038/s41598-023-33694-y

www.nature.com/scientificreports/

In this study, we developed a strategy for extracting and assessing the relative survival of rods and cones 
from in vivo OCT datasets. Our model leverages previously published histologic data on human photoreceptor 
 topography1 to relate the thickness of the outer nuclear layer on OCT to the expected survival of rods and cones. 
To demonstrate applicability of the model to real-world clinical data, we applied this model to OCTs from a 
cohort of patients with autosomal recessive Stargardt disease (STGD1)9 to estimate the proportional survival 
of rods and cones.

Methods
Our method compares retinal layer thickness data derived from patient OCTs to retinal layer thickness data 
generated from a computational reference model. The computational model simulates a spectrum of rod and cone 
survival scenarios, relating the proportion of surviving rods versus cones to changes in the combined thickness 
of the Henle fiber layer (HFL), outer nuclear layer (ONL), and myoid zone (MZ). For simplicity throughout the 
paper, we refer to the combined HFL–ONL–MZ layers as the ONL.

Building the reference model
Imaging for the reference model. As proof of concept, we imaged the maculas of an unaffected, young 
adult control patient using a Heidelberg Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany). Each 
volume contained 61 B-scans. We exported these volumes from Heidelberg Explorer as VOL files. For each 
volume, we segmented 11 retinal layers using the Iowa Reference Algorithms/OCTExplorer (ver. 3.8.0; Retinal 
Image Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa City, IA)10,11. We adopted the nomenclature 
proposed in Ref.12 to identify the layers segmented by the Iowa Reference Algorithms. We located the fovea and 
the optic nerve within these volumes to serve as common landmarks for registering cell density data to scans.

Data Integration. We used heyexr (ver 0.0.0.9000; https:// github. com/ baref ootbi ology/ heyexr), our custom 
software package, to import the OCT VOL files and segmentation files into R (ver 4.1.313). We registered these 
volumes to published densities of photoreceptor cells from Curcio and coworkers’ landmark 1990 paper on pho-
toreceptor densities (Ref.1; original data available at https:// chris tinea curcio. com/ PRtopo/). We interpolated the 
cell densities at every A-scan using the akima function from the akima package (ver. 0.6–3.314) for R. The akima 
method creates a continuous, smooth interpolation between irregularly spaced sampling points, such as those 
used by Curcio and coworkers, while preserving values at the sampling points. Although the absolute number of 
photoreceptor cells can vary widely across individuals, the relative proportion of rods and cones for a given topo-
graphic location is very similar. As such, we converted the cell density values to proportions of cells by dividing 
the density of rods by the total density of both cell types. The completed reference model for each eye comprises: 
(a) the original OCT volume scan; (b) the layer segmentation surfaces; and (c) the expected proportion of rods 
and cones at every A-scan in the volume.

Deriving proportional thickness values from the reference model
Assumptions. We assumed that the thickness of the outer retina is proportional to the topographic compo-
sition of surviving rod and cone photoreceptor cells. As rods and/or cones die, the thickness of the outer retina 
will decrease relative to the contribution each cell type makes to total retinal thickness at that location. In eyes 
unaffected by disease, we assumed that 100% of photoreceptors survive. We refer to the retinal layer thickness 
of eyes unaffected by disease as the normal thickness. Thus, the normal thickness of the ONL at any given loca-
tion implies survival of all photoreceptor cells at that location. We assumed that the distribution and density of 
photoreceptor cells in a normal eye equals the average distribution and density of photoreceptor cells reported in 
Ref.1, that is, the same data included in the reference model. We also assumed that individual rod and cone cells 
contribute equally to ONL thickness for any given topographic location.

Mathematical framework. Given these assumptions, the observed thickness (Tobserved) of the ONL will be 
proportional to the normal thickness (Tnormal) times the proportion of surviving rods and cones (Pthickness):

The proportional thickness (Pthickness) is a function of the relative composition of cones (Pcones) and rods (Prods) 
at a location and the proportion of surviving cones (Scones) and rods (Srods) at that location:

Since rods and cones are the only cell types in the outer retina (apart from the negligible extension of the 
Müller glia cells), the relative proportion of rods plus the relative proportion of cones equals 1 (100%). Rear-
ranging, we get:

We substitute this term into Eq. (2) and get:

The surviving cones and surviving rods become parameters in the model. By changing the proportion of these 
two parameters (denoted by asterisks, *), we can compute a simulated proportional thickness:

(1)Tobserved = Tnormal × Pthickness

(2)Pthickness = Pcones × Scones + Prods × Srods

(3)Pcones = 1− Prods

(4)Pthickness = (1− Prods)× Scones + Prods × Srods

https://github.com/barefootbiology/heyexr
https://christineacurcio.com/PRtopo/
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and a new simulated thickness:

With this mathematical framework and the reference model, Eqs. (5) and (6) let us simulate a set of thickness 
values for the ONL. By varying the Scones and Srods terms from 0 to 1, we generated a range of hypothetical thick-
ness values for the ONL. From this set of simulated thickness data, we constructed corresponding segmentation 
surfaces and en face layer thickness maps.

Equation (4), solved for a single region of the retina, will not produce a unique solution to the proportion of 
rods and cones, since there are two output variables but only one equation. If a second region is added, which 
has a different expected proportion of rods and cones, then the system of equations will have a unique solution 
for the global estimates of surviving rods and cones.

Layer thickness within the center subfield and outer ring of the ETDRS grid. From our sim-
ulated thickness maps, we computed the average layer thickness in the center subfield and outer ring of the 
ETDRS grid. The ETDRS grid is a familiar clinical tool for standardized assessment of pathological features 
in the macula. The grid is composed of nine subfields: a subfield centered on the fovea, four inner subfields 
arranged in a ring, and four outer subfields arranged in a  ring15. Conveniently, the annular arrangement of these 
rings reflects the photoreceptor organization of the macula: the center subfield is predominantly cones; the inner 
ring includes the transition from cone-dominated retina to rod-dominated retina; and the outer ring is pre-
dominantly rods. While the peak cone density can vary markedly by  individuals1,7, the center subfield is reliably 
a cone-predominant zone with a consistent proportion of cones versus rods across individuals. Similarly, the 
exact location of the transition zone within the inner ring from cone-dominated retina to rod-dominated retina 
varies widely, but the relative proportions of rods and cones is more consistent between individuals in the outer 
ring. For these reasons, we analyzed only the center subfield and outer ring. The outer ring is typically divided 
into four subfields each; however, we chose to treat the ring as a unit. This choice made the analysis invariant 
to the rotation of the retina: we did not need to register the positions of the fovea and optic nerve to a common 
orientation when computing average thickness.

Simulating OCT volumes from the model. From the simulated thickness maps, we can also generate 
simulated OCT volumes and B-scans by reducing the thickness of the outer retinal layers and by increasing the 
thickness of the vitreous. For layers which shrink in response to cell death, (1) we round the thickness values to 
the nearest integer thickness, and (2) we randomly remove voxels from the original layer to achieve the modi-
fied layer thickness. To compensate for the loss of thickness in the image, we increase the vitreous by randomly 
upsampling the voxels within the layer. We provide an illustration of this process at https:// obser vable hq. com/@ 
baref ootbi ology/ resiz ing- segme nted- vecto rs@ 710. An interactive version of the B-scan simulator is available at 
https:// obser vable hq. com/@ baref ootbi ology/ simul ating- rod- and- cone- loss@ 2078.

Comparing observed clinical data to the simulated reference data
To demonstrate the utility of this model for analysis of clinical data, we used estimates of ONL thickness from 
our previous publication on autosomal recessive Stargardt disease (STGD1), which included OCT volume scans 
from 50 STGD1 patients and 40 unaffected  controls9. The research was approved by the Institutional Review 
Board at the University of Iowa, adhered to the tenets of the Declaration of Helsinki, and was conducted in 
accordance with regulations set forth by the Health Insurance Portability and Accountability Act. Informed 
consent was obtained for study participation. For participants under the age of 18 years, informed consent was 
obtained from a parent and/or legal guardian. We chose Stargardt disease because photoreceptor loss occurs 
within the macula and can affect cones and rods to varying degrees across individuals. Briefly, volume OCTs 
were collected under various imaging protocols (20° × 20° to 30 × 20°, with 512, 768 or 1024 (horizontal) × 496 
(vertical) pixel density, and comprised of 19, 25, 31, 37, 47, or 49 B-scans). Follow-up scans were registered to 
baseline scans using TruTrack Active Eye Tracking. Follow-up scans were taken at least 12 months after baseline 
scanning. Layer segmentation was performed using the Iowa Reference Algorithms. Segmentation surfaces 
were corrected by two graders (C.R.F, J.L.C). Graders removed scans which could not be used for analysis. The 
average segmented layer thickness was computed within the center subfield and outer ring of the ETDRS grid. 
The average thickness of each subfield was modeled as a function of years since baseline and STGD1 or control 
status, using linear mixed effects models in R (nlme ver. 3.116,17). Specifics on statistical modeling, demographics 
of the patient and control groups, and exclusion criteria are detailed in Ref.9.

Results
As proof of concept, we built a reference model consisting of (a) the OCT scan of an eye unaffected by disease; (b) 
expected cell densities of rod and cone photoreceptors; and (c) segmentation surfaces for the retinal sublayers, as 
shown in Figs. 1, 2. Figure 1A shows the en face projection of OCT data that we used to build the reference model. 
The subject was a 34-year-old male with no known retinal disease. Using the fovea and optic nerve of each eye 
as landmarks, we registered cell density estimates from Ref.1. In that study, the densities of rods and cones were 
sampled in a spiral pattern (explained in Ref.18) in seven donor eyes, averaged, registered to the fovea and optic 
nerve of an idealized anatomic model  eye19, and reported for a left eye (OS). Since the dimensions of OCT scans 
are recorded in millimeters, we converted the original spherical coordinates (longitude and colatitude centered 
on the fovea) of the cell density  data1 to the planar coordinates (millimeters from the fovea along the vertical and 

(5)Psimulated = (1− Prods)× S
∗

cones + Prods × S
∗

rods

(6)Tsimulated = Tnormal × Psimulated

https://observablehq.com/@barefootbiology/resizing-segmented-vectors@710
https://observablehq.com/@barefootbiology/resizing-segmented-vectors@710
https://observablehq.com/@barefootbiology/simulating-rod-and-cone-loss@2078
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horizontal meridians) of the OCT. The anatomic model adopted by Curcio and coworkers assumes that the fovea 
and the optic disc lie along the same horizontal meridian (0˚ degrees longitude)1; however, the fovea typically lies 
slightly below the horizontal meridian passing through the optic disc. Furthermore, the relative position of these 
two anatomic landmarks may vary based on the positioning of the subject during OCT imaging, as illustrated in 
Fig. 1A. To account for differences in the position of the fovea and optic nerve within an OCT scan, we registered 
the cell density sampling points to the optic nerve and fovea in the control OCTs and flipped the points along 
the vertical axis for the right eye (OD) (Fig. 1B). The published sampling points of photoreceptors, however, do 
not align with the A-scan positions of the OCT (that is, every pixel position in the en face projection shown in 
Fig. 1A). To account for this difference, we generated cell density maps by smoothly interpolating the average 
cell densities of cones (Fig. 1C) and rods (Fig. 1D) across every A-scan position in the OCTs.

Next, we segmented the retinal layers of the control OCT using publicly available  software10,11. Figure 2A 
shows the central B-scan for each eye without segmentation, and Fig. 2B shows the central B-scan overlaid with 
the segmented layers.

The aim of the reference model is to relate observed retinal thickness to the expected proportions of surviv-
ing rods and cones. From the expected photoreceptor densities (Fig. 2C), we computed the expected proportion 
of rods and cones at each A-scan (Fig. 2D). Assuming that the rod cell bodies and cone cell bodies make equal 
contributions to the thickness of the ONL, we can visualize the thickness of the ONL as coming from two com-
ponents, with each component proportional to the percentage of rods and cones at a given eccentricity from 
the fovea (Fig. 2E).

The assembled reference model simulates the change in thickness that would occur if rods or cones were 
lost. Figure 3A shows thickness maps of the ONL for the right eye. The map in the upper right corner of 3A cor-
responds to the segmented layer thickness in the control eye. We assumed that all photoreceptors are living in 

Figure 1.  Registering OCT volumes to publicly available photoreceptor cell density data. (A) OCT scans of 
right (OD) and left (OS) eyes from a healthy adult control, represented as an en face projection (that is, the sum 
of voxel intensities in each A-scan). The coordinate space is centered on the fovea, and the center of the optic 
nerve is marked by a white ‘x’. The purple horizontal line indicates the B-scan in each eye which passes through 
the fovea (see Fig. 2). The y-axis of each pair of panels is aligned to the fovea, accounting for the slight offset 
between the left and right columns. (B) Sampling points from Ref.1 (described in Ref.18) which fall within the 
extent of the OCT. Points have been rotated and scaled to align with the fovea and optic nerve in each OCT. 
(C–D) Density of cone photoreceptor cells (C) and rod photoreceptor cells (D) interpolated for each A-scan 
position using Akima  interpolation14.
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the control eye. The other thickness maps in 3A are simulated from the reference model, showing the change in 
thickness as a function of the independent loss of either cell type. Cones comprise the major photoreceptor cell 
type of the center subfield of the ETDRS  grid15, whereas rods comprise the major photoreceptor cell type of the 
outer ring (see “Layer thickness within the center subfield and outer ring of the ETDRS grid” section of Methods). 
Figure 3B shows the center subfield and outer ring overlaid on the thickness map from the upper right corner of 
Fig. 3A. For each of the thickness maps shown in Fig. 3A, we computed the average thickness of the ONL for the 
center and outer subfields and plotted these subfields along their respective cell survival parameters (Fig. 3C).

Since clinicians are most familiar with considering the thickness of the retina rather than proportions, we 
transformed the reference model from a graph of proportional survival (Fig. 3C) to a graph of regional thick-
ness (Fig. 3D). Within Fig. 3D, the relationship between thickness and cellular composition becomes apparent 
in the skewed arrangement of points. (If the center subfield was composed entirely of cones and the outer ring 
composed entirely of rods, then the points in Fig. 3D would instead form a rectangle.) In other words, the skewed 
graph reflects that these two regions are skewed mixes of both cell types, with the center subfield predominantly 
composed of cones and the outer ring predominantly composed of rods.

Figure 2.  The reference model relates ONL thickness to expected proportions of rods and cones. (A) Central 
B-scans from the control eyes shown in Fig. 1A. (B) Segmentation surfaces identified by Iowa Reference 
Algorithms correspond to 10 layers. The red layer comprises the Henle fiber layer (HFL), the outer nuclear layer 
(ONL), and the myoid zone (MZ). (C) Interpolated photoreceptor densities registered to the central B-scan. (D) 
Proportional composition of rods and cones across the B-scan. (E) The expected proportional composition of 
the ONL.
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Thus, this model translates in vivo measurements of regional ONL thickness into estimated proportions of 
surviving rods and cones.

To illustrate the clinical utility of this model, we plotted ONL thickness values from 50 patients with autosomal 
recessive Stargardt disease (STGD1) and 40 controls (Fig. 3E), the subset of the cohort we published  previously9 
which have thickness estimates for the center subfield and outer ring of the ETDRS grid. STGD1, as a genetic 
condition, affects both eyes similarly. For this reason, in our previous paper we used mixed effects modeling 
to estimate a per-person thickness and rates of disease  progression9. Thus, each point in Fig. 3E represents the 
per-person thickness at the baseline visit, estimated using linear mixed effects models based on one or two eyes 
and two visits per  eye9. Separate models were fit for the center and outer subfields.

To highlight the ability of the model to differentiate between patients based on degrees of rod and cone loss, 
we selected three patients (P1–P3, Fig. 3E) with different estimates of photoreceptor loss. Figure 4 illustrates 
the correspondence between their B-scan data and estimated rod versus cone proportions. As shown in the first 
example, the model detected not only the obvious severe central cone loss in P1 but also subtle parafoveal rod loss, 
which was not easy to perceive qualitatively on the B-scan (Fig. 4A). As shown for P2, mild loss of the parafoveal 
rods was clinically apparent due to disruption of the outer retinal layers (e.g., ellipsoid zone band), which draws 
attention to pathological thinning. However, the model also detected mild cone loss, which was not as obvious 
on initial qualitative assessment given the preservation of the subfoveal outer retinal layers on B-scan (Fig. 4B). 
In P3, severe loss of both cones and rods was readily apparent (Fig. 4C), and the model provided a quantitative 
estimate of the degree of loss for each cell type. In lieu of orthogonal imaging data, we used the model to simu-
late OCT volumes with the global rod and cone survival parameters as the inferred estimates for each patient. 
The simulated B-scans (Fig. 4A′′,B′′ and C′′) are strikingly similar to the patient data in overall ONL thickness.

Figure 3.  The reference model estimates rod versus cone survival based on ONL thickness. (A) En face 
thickness maps of the ONL from the right control eye used for the reference model. (B) Center subfield and 
outer ring of the ETDRS grid registered to the observed thickness map from the control used as input for the 
simulation. This panel is the same data represented in the upper right corner of (A). (C) Mean thickness in the 
center subfield and outer ring of the ETDRS grid for the observed (upper right corner) and simulated (all other 
locations) loss of rod and cone photoreceptor cells. (D) Cell survival mapped onto ETDRS subfield thickness 
coordinates. (E) ONL thickness values for 50 autosomal recessive Stargardt disease (STGD1) patients and 40 
controls at baseline visit. Each point represents the fitted mean at baseline for each person (two eyes and two 
visits; visits at least 1 year apart; fitted using linear mixed effects  models9). The three patients labeled (P1, P2, 
P3) are shown in Fig. 4. Abbreviations: NFL nerve fiber layer; GCL ganglion cell layer; IPL inner plexiform layer; 
INL inner nuclear layer; OPL outer plexiform layer; ONL Henle fiber layer, outer nuclear layer, and myoid zone; 
EZ ellipsoid zone; OS outer segments; IZ interdigitation zone; RPE retinal pigment epithelium.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6896  | https://doi.org/10.1038/s41598-023-33694-y

www.nature.com/scientificreports/

Discussion
In this paper, we present a new computational method for utilizing in vivo retinal layer thickness data captured 
by optical coherence tomography (OCT) to estimate the degree of rod and cone photoreceptor loss. Our model 
is registered to photoreceptor density data from landmark literature on human photoreceptor  topography1 and 
takes advantage of freely-available  software10,11 that performs retinal sublayer segmentation to isolate the ONL 
thickness for quantification of photoreceptor survival. Rather than attempting to quantify the absolute density 
of photoreceptor cells, which varies widely from person to person, the model uses the relative proportion of 
rods and cones because these relative proportions are much more consistent across individuals. In doing so, the 
relative loss of rod and cones can be estimated by comparing ONL thickness to healthy controls. To demonstrate 
potential clinical utility of this model, we used it to estimate the degree of photoreceptor loss using a dataset of 
patients with molecularly confirmed STGD1. Leveraging retrospective OCT data acquired during routine clini-
cal care, the model estimates survival of each photoreceptor cell type in STGD1 patients and reveals subtle loss 
that may not be readily apparent on qualitative analysis even by expert clinicians.

Rods and cones exhibit differential survival patterns across various forms of retinal degeneration, including 
age-related macular degeneration and rarer conditions such as inherited retinal diseases. Distinguishing between 
cone death and rod death can help the clinician narrow the range of considered  diagnoses20, unravel mechanisms 
of  progression2, and categorize patients by disease stage. Despite the importance of this problem, quantifying the 
degree of rod and cone loss in vivo remains a substantial challenge using available retinal imaging. Advances in 
adaptive-optics (AO) coupled with existing modalities, such as OCT, scanning laser ophthalmoscopy (SLO) or 
flood-illuminated ophthalmoscopy, have enabled quantification of photoreceptor cells. However, AO systems 
are expensive, not widely available, technically challenging to use, easily subject to artifacts such as patient 
movement, and typically restricted to visualizing a few degrees of the retina at a time. Moreover, commercially 
available AO systems can only reliably count cones but not  rods21–23. Furthermore, due to optical limitations, 
these systems have difficulty resolving cones in the fovea, where cone density is highest and the most important 
for visual prognosis.

Figure 4.  Estimated photoreceptor survival and foveal B-scans for three STGD1 patients and their 
corresponding B-scan simulations. Patient P1 (female, 27 years old, best corrected visual acuity [BCVA] 20/100 
OD) shows reduced foveal thickness with near normal parafoveal thickness (A), corresponding to severe cone 
loss and minimal rod loss (A′). Patient P2 (female, 58 years old, BCVA 20/20 OD) shows relative subfoveal 
preservation of the outer retinal layers with patches of parafoveal thinning (B), corresponding to slightly 
reduced cones and rods (B′). Patient P3 (female, 10 years old, BCVA 10/160 OD) shows widespread outer 
retinal loss (C), corresponding to nearly complete loss of cones, with some rods remaining (C′). The estimates 
of photoreceptor survival are computed with respect to the reference model. B-scans have been cropped to the 
extent of the ETDRS outer ring. Each patient is labeled in Fig. 3E. Rod and cone survival estimates can be fed 
back into the model to generate simulated B-scans (A′′, B′′, C′′).
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Compared to AO-imaging, OCT offers a wider field of view, faster acquisition, and greater familiarity among 
physicians and photographers due to its widespread use. The model proposed in this paper enables the estima-
tion of rod and cone loss using readily available OCT data alone. An OCT-based computational model of pho-
toreceptor loss has numerous advantages compared to AO, including its ability to analyze large, retrospectively 
collected OCT datasets acquired during routine clinical practice, the availability of longitudinal OCT data (in 
many cases over a decade or more) to compare changes over time, and clinician familiarity with this technology 
to facilitate interpretation of model data with structural information conveyed in the OCT B-scans (e.g., Fig. 4).

Our model proposed here relies on several assumptions. We chose to build our model on the publicly avail-
able mean cell density data from Curcio and coworkers’ landmark 1990 study of retinal  anatomy1. The accuracy 
of this dataset was recently confirmed using a larger  cohort7 and imaged with a custom AO-SLO  system24. This 
follow up study concluded that, while the average cell densities originally reported in Ref.1 are slightly higher 
than those measured by AO-SLO, especially within 300 µm of the fovea, the overall pattern of cell densities were 
highly concordant between the two  studies7. It is possible that registration to other density datasets might yield 
different estimations of rod and cone loss. Our model could readily register to alternative datasets or incorporate 
variability in expected cellular composition as well as averages for a study.

As a first approximation of rod and cone loss for this model, we focused on two regions based on the ETDRS 
grid, the central subfield and the outer ring. Clinicians are familiar with using the ETDRS grid for evaluating 
macular pathologies since the grid was first introduced in  199115. Cones predominate in the center subfield 
and rods predominate in the outer subfield, allowing these two regions to serve as biomarkers for cone and rod 
health, respectively. By excluding the inner ring covering the perifoveal region, we bypassed the region where 
the proportion of rods and cones is expected to vary the most between individuals. Future versions of our model 
could refine the areas beyond just the center subfield and outer ring. For example, instead of analyzing changes 
within ETDRS regions, which can be subject to floor  effects25, our model could be extended to estimate expected 
rod and cone survival for all A-scans, making the model more robust for modeling regional changes or patchy 
areas of loss. Our current model presupposes that the proportional loss of rods and cones is globally consistent. 
For some diseases, such as AMD, however, the pattern of loss is localized, either through secondary cell death 
(i.e., loss of support from CC and RPE, as in patchy loss observed in choroideremia), or in patterned, local loss of 
rods in early  AMD26,27. Thus, our current model is better suited to cases where cell death is relatively symmetric 
and continuous across the retina.

Our model also makes simple assumptions regarding the direct correlation between retinal thickness and 
proportion of rod and cone loss per region. However, the process of retinal degeneration is complex and non-
linear, involving multiple processes. Scarring and macular edema, for example, can increase retinal thickness, 
suggesting that obvious gliosis or edema are exclusion criteria for our model. Even apart from retinal disease, the 
gradual loss of cones in normal aging may result in paradoxical thickening of the retina. A recent study paired 
OCT with AO-SLO to compare the combined thickness of the HFL and ONL to photoreceptor density in a group 
of younger eyes (8 subjects, mean age 27.2 years) to a group of older eyes (8 subjects, mean age 56.2 years)28. That 
study indicated that, contrary to expectation, the combined HFL and ONL thickens with age, despite the loss of 
cones. (However, a different group, using flood illuminated AO, failed to observe a statistically significant loss 
of cone density in a comparison with similar ages and larger sample  size29.) Neither of these studies, however, 
presented a null model of the expectation of ONL thickness lost under cell loss. For similar study designs, our 
model can be used to construct a null model of ONL thinning based exclusively on expected cell loss. Future 
versions of the model can also utilize larger datasets including from healthy control patients to make the estimates 
of photoreceptor loss more statistically robust.

A model similar to ours was implemented by Cideciyan and coworkers (see Supplementary Information  in30). 
Unlike our model, which is based on histology, their prediction model incorporates OCT data from 3 CEP290-
LCA patients, where only cones survive. They computed the difference in ONL thickness between these patients 
and the thickness of controls. This difference represents the proportion of the ONL occupied by rods (see Sup-
plemental Fig. 3  in30). They were then able to compare measurements of rod function in RP patients (as assessed 
by a custom system for two-color dark-adapted perimetry) against the predicted number of surviving rods.

In summary, we developed a computational model to estimate the proportion of surviving rods and cones 
using in vivo OCT data alone, without the need for advanced retinal imaging such as AO. Our model has many 
potential broad applications for research or clinical use. For example, future automated estimation of rod and 
cone loss could facilitate diagnosis of rod- or cone-specific diseases by OCT alone. Characterizing the rate and 
pattern of photoreceptor loss may help identify patient outliers within age classes of inherited retinal diseases 
such as STGD1 to provide new insights into pathophysiology or focus investigations of genetic disease modifiers.

 Data availability
All de-identified data produced in the present study are available upon reasonable request to the corresponding 
author.
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