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Shallow shotgun sequencing 
reduces technical variation 
in microbiome analysis
Alex J. La Reau 1*, Noah B. Strom 1, Ellen Filvaroff 2, Konstantinos Mavrommatis 2, 
Tonya L. Ward 1 & Dan Knights 1,3,4*

The microbiome is known to play a role in many human diseases, but identifying key microbes and 
their functions generally requires large studies due to the vast number of species and genes, and the 
high levels of intra-individual and inter-individual variation. 16S amplicon sequencing of the rRNA 
gene is commonly used for large studies due to its comparatively low sequencing cost, but it has poor 
taxonomic and functional resolution. Deep shotgun sequencing is a more accurate and comprehensive 
alternative for small studies, but can be cost-prohibitive for biomarker discovery in large populations. 
Shallow or moderate-depth shotgun metagenomics may serve as a viable alternative to 16S 
sequencing for large-scale and/or dense longitudinal studies, but only if resolution and reproducibility 
are comparable. Here we applied both 16S and shallow shotgun stool microbiome sequencing to a 
cohort of 5 subjects sampled twice daily and weekly, with technical replication at the DNA extraction 
and the library preparation/sequencing steps, for a total of 80 16S samples and 80 shallow shotgun 
sequencing samples. We found that shallow shotgun sequencing produced lower technical variation 
and higher taxonomic resolution than 16S sequencing, at a much lower cost than deep shotgun 
sequencing. These findings suggest that shallow shotgun sequencing provides a more specific and 
more reproducible alternative to 16S sequencing for large-scale microbiome studies where costs 
prohibit deep shotgun sequencing and where bacterial species are expected to have good coverage in 
whole-genome reference databases.

The human gut microbiome is the community of microbes inhabiting the gastrointestinal tract, and variation 
in these microbes is known to be associated with numerous human  diseases1,2. Recent studies have made pro-
gress in understanding potential causal roles for microbiome constituents in these disease  states3. However, 
these efforts face challenges stemming from the multidimensional and variable nature of the microbiome, with 
substantial variation occurring between individuals and over time within  individuals4. In addition to the high 
amount of biological variation seen in the microbiome, sources of technical variation from sample storage, DNA 
extraction, library preparation and type of sequencing all affect the microbiome composition determined in any 
given  study5–8.

One important consideration in microbiome characterization is whether to perform 16S rRNA gene ampli-
con or metagenomic sequencing. 16S sequencing has been used widely for over a decade to characterize diverse 
microbial communities at the taxonomic level and is cost-effective, allowing for very large cohorts with well-
powered, complex study designs. However, 16S sequencing lacks the ability to classify microbiomes below the 
genus level in most  cases9 and only provides approximate profiles of microbial genes and  functions10–12. Deep 
shotgun metagenomic sequencing (DS), defined here by depths greater than 10 million reads per sample, provides 
detailed characterization of taxonomic composition at the species and strain levels as well as directly observed 
gene  profiles13,14. However, it can be cost-prohibitive for large studies and is most often used in biomarker dis-
covery studies with relatively small sample sizes.

An alternative to both 16S amplicon and DS metagenomic sequencing is shallow shotgun metagenomic 
sequencing (SS)15. SS, defined here by depths between 2 and 5 million reads per sample, shows high concord-
ance with DS in both taxonomic and functional gene content at a cost comparable to 16S  sequencing15. Similar 
to DS, SS can resolve taxa to the species or even strain levels, can provide directly observed gene profiles, and 
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has been leveraged to perform robust taxonomic and functional characterization of the microbiome in a cohort 
with dense longitudinal  sampling16. However, the reproducibility of SS has not been explicitly compared to 16S.

In order to design and perform robust analyses of microbiome associations in health and disease, it is impor-
tant to understand the sources of variability in microbiome measurement methods as well as the relative contribu-
tions of temporal and interpersonal variability. Here, we sought to compare the efficacy of SS sequencing to 16S 
amplicon sequencing for recovering species-level taxonomic and functional profiles of the human microbiome, 
and to assess whether each method can distinguish biological variation from technical variation using an experi-
mental design with nested technical replicates (Fig. 1). Specifically, we aimed to compare interpersonal microbi-
ome variation, daily and weekly intrapersonal microbiome variation, and technical variation resulting from DNA 
extraction or library preparation and sequencing. Our aim was to explore whether each method could quantify 
these separate sources of variation, as well as to determine whether 16S or SS had higher technical variation.

Results
SS sequencing recovers individualized microbiome profiles with higher precision than 16S 
sequencing
To assess changes in the composition of the microbiome within each subject across sampling time points, we 
first determined the 20 most abundant taxa (regardless of taxonomic level) across subjects for both 16S and 
SS sequencing separately (Supplementary Table 1). Overall, we found moderate agreement in taxonomic clas-
sification for the top 20 taxa between 16S and SS sequencing, with several taxa shared between the two using 
exact taxonomic string matching, and others matching through inference of shared taxonomy (e.g. species-level 
assignment falling within a known genus-level assignment) (Supplementary Table 1). To directly compare 16S 
and SS microbiome profiles, we then plotted the relative abundances of the top 20 most abundant genera across 
the sampling period within each subject for both 16S and SS. Samples were ordered to illustrate changes between 
consecutive weeks and consecutive days, between DNA extraction replicates within each day, as well as between 
sequencing run replicates within each extraction. For both 16S and SS sequencing, we found that microbiome 
composition within individuals was highly individualized, but that profiles for the same subjects were similar 
between sequencing types at the genus level (Fig. 2).

When we quantified the degree of concordance between 16S and SS, we found that the relative abundance 
profiles of shared taxa identified at the genus level were correlated at r = 0.93 and ρ = 0.73 with Pearson and Spear-
man correlation, respectively, counting absent genera as zeroes (Supplementary Fig. 1).

SS and 16S sequencing varied in the taxonomic resolution of the top 20 most abundant taxa. SS was success-
ful in classifying 14/20 of the top 20 most abundant taxonomic groups to the species level, representing 44.7% 
mean relative abundance across samples. Conversely, the deepest 16S resolution was at the genus level for the 
top 20 taxa despite an attempt to assign species-level taxonomy using exact amplicon-sequence-variant (ASV) 
matching. Similarly, a majority (~ 62.5%) of reads were assigned to the species or strain levels using SS, while 
only ~ 36% of reads were assigned to the species level using 16S (Supplementary Fig. 2). In both cases, ~ 85% of 
reads were assigned to at least the genus level.

SS directly measures functional variation that mirrors taxonomic variation
To explore individualized functional composition of the microbiome for each subject, we analyzed inter-subject 
diversity using Bray–Curtis dissimilarity. Figure 3a–c shows principal coordinate analysis (PCoA) ordinations 
of KEGG Enzyme Bray–Curtis dissimilarities, highlighting the ability of SS to capture distinct groupings of 
subjects based on the functional repertoire of their respective microbiomes. To test whether differences between 
subjects were significant, we first performed a beta dispersion test and found unequal variance in different 
subjects (“betadisper” in the vegan R package; p = 0.001). To accommodate unequal group variances, we per-
formed testing for group differences with PERMANOVA (“adonis” in the vegan R package) and found that dif-
ferences in functional profiles were significant between subjects (PERMANOVA; R = 0.9661, p = 0.001). These 
results were mirrored at the taxonomic level for SS sequencing (Fig. 4a–c; PERMANOVA: R = 0.9202, p = 0.001) 
and 16S amplicon sequencing (Supplementary Fig. 3a–c; PERMANOVA: R = 0.8515, p = 0.001). Similarly, we 
analyzed within-subject functional diversity using three alpha diversity metrics (Shannon index, Chao1 and 
Observed features). For each metric, group-wise KEGG enzyme alpha diversity differed significantly across 

Figure 1.  Schematic representation of experimental design. Depicted are the methods used to derive samples 
from 5 volunteer donors. Biological variation was examined temporally by day/week as well as by subject, while 
technical variation was examined through replicate extraction (n = 2) and library preparation/sequencing (n = 2).
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subjects (Supplementary Fig. 4a–c; Kruskal–Wallis: p < 0.0001). Results were similar for taxonomic alpha diversity 
for both 16S (Supplementary Fig. 5a–c) and SS sequencing (Supplementary Fig. 6a–c).

Technical variation is lower in SS versus 16S sequencing
Our nested sampling design allowed us to compare potential sources of technical variation to each other and 
to sources of biological variation, using both 16S and SS. We accomplished this comparison by partitioning 
beta diversity dissimilarities into various categories which isolated one variable at a time: those between DNA 
extractions on the same sequencing run, subject, and day; those between library preparations of the same DNA 
extraction, subject, and day; those between consecutive days within the same subject; those between consecutive 
weeks within the same subject; and those between subjects (Fig. 4a–c).

Overall, we found that sources of technical variation were significantly lower than sources of biological varia-
tion at the taxonomic level for both 16S sequencing and SS sequencing (Dunn’s Test, padj < 0.05) (Supplementary 
Fig. 7). Library prep replicate and DNA extraction replicate variation was lowest, followed by daily and weekly 
variation within a subject, and finally between-subject variation. In both 16S and SS, all sources of variation were 
significantly different from one another (Dunn’s Test, padj < 0.05) except for library prep vs extraction variations, 
as well as daily vs weekly variation. To specifically test our a priori hypothesis that SS had less technical variation 
than 16S sequencing, we compared these two within both library prep and extraction categories. Consistent 
with our previous results, we found using two-way ANOVA that sequencing type (i.e. 16S or SS) was significant 
(p = 0.0116) as well as category (i.e. library prep or extraction; p = 0.005). Furthermore, SS was significantly lower 
in variation than 16S sequencing for both library prep (Student’s t-test: p = 0.0003) and extraction (Student’s 
t-test: p = 0.0351) (Fig. 4d). For SS KEGG enzyme profiles, pairwise comparisons of sources of variation were 
the same as with taxonomic profiles (Fig. 3d).

Discussion
In this study, we compared the degrees of technical reproducibility and taxonomic precision of 16S amplicon and 
shallow shotgun metagenomic sequencing for profiling human microbiomes. Overall, we found good general 
agreement in the most abundant taxa identified through both sequencing methodologies, and the individual-
ized microbiome profiles captured through SS here agree with previous SS work at the taxonomic level for larger 
sample  sizes16. As expected, we found that SS recovered species-level classifications to a much greater degree 
than 16S amplicon sequencing. Interestingly, we found that, of the top 20 most abundant taxa across all subjects, 
the majority were classified to the species level with SS while none were classified beyond genus level despite an 

Figure 2.  Area plots depicting individualized microbiome profiles at the genus level for the five subjects 
(denoted by facets on the plot) across their respective sampling periods on the x-axis (days). Plots show 
relative abundances across sampling for the top 20 most abundant genera detected in 16S amplicon (top) 
and shallow shotgun metagenomic (bottom) sequencing. Samples were ordered to illustrate changes between 
consecutive weeks and consecutive days, between DNA extraction replicates within each day, as well as between 
sequencing run replicates within each extraction. The most resolved taxonomic level for each taxon is plotted. 
Classifications for 16S were performed using DADA2 against the SILVA database (v132), while classifications 
for shallow shotgun sequencing were performed using BURST against a custom database of bacterial genomes 
derived from RefSeq.
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attempt to do so with exact ASV-matching for 16S. While there were ASVs classifiable to the species level, none 
of them were part of the most abundant taxonomic groups (Supplementary Table 2).

It is known that short regions of the 16S rRNA gene usually are not able to resolve taxa to the species  level9. 
An alternative approach would be to use longer portions of the 16 s rRNA gene spanning multiple variable 
regions. We used the fourth variable region (V4) of the gene, in concordance with the Earth Microbiome Project 
 protocol17, which provides good taxonomic coverage but may not provide the highest taxonomic resolution for 
all taxa. We note that there are also approaches for amplicon sequencing of nearly complete 16S rRNA genes such 
as through circular-consensus PacBio  sequencing18 or synthetic long-read  sequencing19. A direct comparison of 
these methods to shotgun metagenomics is outside the scope of this study. We expect such long-read methods 
to provide species-level taxonomic profiling comparable to that of shallow shotgun sequencing, but at the time 
of writing these approaches are not cost-effective when compared to shallow shotgun sequencing, and they also 
do not provide direct functional profiling.

We also confirmed the ability of SS metagenomic sequencing to detect unique functional profiles between 
individuals that mirror those seen at the taxonomic level. We saw similar patterns of beta diversity with directly 
observed KEGG enzymes and taxonomic profiles. These were both in agreement with the 16S data, suggesting 
that these subjects harbor both distinct taxonomic and functional profiles, making them distinguishable in beta 
diversity space with either data type. Taken together with the taxonomic data, these results highlight the utility 
of SS metagenomics in higher precision taxonomic information than 16S surveys while also offering enhanced 
resolution of the functional capabilities of the microbiome. Although it is possible to predict functional profiles 

Figure 3.  Principal coordinates analysis (PCoA) plot showing the Bray–Curtis dissimilarity of KEGG Enzyme 
profiles between all samples from SS sequencing. Samples are colored by subject. Percent of variation explained 
by PC1 and PC2 are shown in parentheses. The same PCoA is plotted showing the clustering of each subject’s 
samples, depicting (A) day-to-day variation, (B) extraction replicate variation, and (C) library prep replicate 
variation. Lines connect samples from shared replicates to visualize variation more clearly. (D) Comparative 
sources of microbiome variation depicted using boxplots with all sample data plotted for SS sequencing. Sources 
of variation are colored by category. Statistical significance letters are annotated above each category from the 
results of Dunn’s post-hoc test with Benjamini–Hochberg multiple hypothesis correction.
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from 16S sequencing with approximately 80–90%  accuracy11,12,20, we have previously found that direct observa-
tion of functional profiles in shallow shotgun data had higher concordance with functional profiles from deep 
shotgun  metagenomics15.

Another major goal was to directly compare the ability of SS and 16S sequencing to discriminate biological 
variation (day/week of sampling and subject) from technical variation (DNA extraction and sequencing). We 
have shown previously that amplicon sequencing, including 16S, is subject to certain intractable bias due to the 
amplification  process21, yet to our knowledge no one has directly compared the technical reproducibility of 16S 
sequencing to that of shallow shotgun sequencing. For both types of sequencing, we found that technical varia-
tion was significantly lower than biological variation, in agreement with previous work for both 16S  amplicon22 
and DS metagenomic  sequencing8 separately. However, by directly comparing the same samples sequenced 
with 16S amplicon and SS sequencing, we found that SS sequencing was subject to significantly lower technical 
variation than 16S. This was true even though we used methods designed specifically to minimize technical bias 
in 16S  sequencing21.

It is important to note that SS sequencing has certain limitations in comparison to 16S. For example, while 
metagenomics in general is well-suited for use in high-biomass samples (e.g. human feces), it may not be a good 
substitute for 16S in the characterization of certain low-biomass samples such as blood, urine, or biopsy speci-
mens. Amplicon sequencing also benefits from a better ability to characterize microbial composition in those 
environments with fewer cultured and sequenced isolate genomes than are available for the human gut, such as 
soil or water  environments23,24. There are also cases where DS is preferable to SS: SS can only provide strain-level 

Figure 4.  Principal coordinates analysis (PCoA) plot showing the Bray–Curtis dissimilarity of taxa profiles 
between all samples from SS sequencing. Samples are colored by subject. Percent of variation explained by PC1 
and PC2 are shown in parentheses. The same PCoA is plotted showing the clustering of each subject’s samples, 
depicting (A) day-to-day variation, (B) extraction replicate variation, and (C) library prep replicate variation. 
Lines connect samples from shared replicates to visualize variation more clearly. (D) Comparative sources of 
microbiome variation depicted using boxplots with all sample data plotted for 16S vs SS sequencing. Sources 
of variation are colored by category. Statistical significance is annotated above relevant tested groups from the 
results of t-tests with Benjamini–Hochberg multiple hypothesis correction.
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microbiome profiles for strains with known genomes, cannot be used for de novo metagenome assembly, and 
relies on species being present in a reference database. As such, while SS is useful in large epidemiology-scale 
studies for profiling microbiomes with known species and genes, DS will be required for discovering novel 
strains and genes. For these reasons, there is no question in our minds that deep sequencing is preferred when 
research funding is not a limiting factor. Finally, we note that our study demonstrated the superiority of shallow 
shotgun sequencing over 16S sequencing for measuring only a certain kind of biological variation: microbiome 
variation between individuals.

Overall, we found that shallow shotgun sequencing is a less noisy and more information-rich alternative to 
16S sequencing for taxonomic and functional biomarker discovery in large-scale human microbiome studies. 
In our direct comparison, shallow shotgun sequencing provided more species-level classification of dominant 
members of the microbiome, and it showed higher reproducibility, with lower technical variation, than 16S 
sequencing, making it a reasonable choice for large-scale studies and meta-analyses.

Methods
Participant selection and sample collection
Informed consent was obtained for five adult volunteers. The study protocols were reviewed and approved by 
the Advarra Institutional Review Board (Advarra, Inc., Columbia, MD). All analyses were performed according 
to the relevant guidelines and regulations. Fecal collection was completed by self-sampling, which has proven to 
be highly successful in previous  work25. Briefly, participants each collected a small quantity of fecal material into 
90% ethanol using a sterile swab once per day during each day of the planned collection period. Subjects collected 
one sample to begin their sampling cycle (day 1), with another sample taken on day 2. Subsequent samples were 
taken exactly one week after the first samples (days 8 and 9). Participants were given postage-paid pre-addressed 
boxes and asked to drop samples in the US postal service mail to return samples to Diversigen for processing 
after all four samples were collected. After shipping, all samples were stored at − 80 °C prior to processing.

DNA extraction, library preparation and sequencing (16S amplicon)
Samples were extracted using a QIAamp PowerFecal DNA Kit (QIAGEN, Germantown, MD, USA) automated 
for high throughput on a QiaCube, with bead beating in 0.1 mm glass bead plates. Samples were then quanti-
fied via qPCR using primers for hypervariable region 4 (V4) (515f/806r) of the 16S rRNA gene. Libraries were 
prepared using a protocol derived from previous  methods21 using KAPA HiFi Polymerase to amplify the V4 
region (515f/806r). Samples were indexed using Illumina Unique Dual Indexes (UDI), followed by pooling of 
libraries. The resulting pooled libraries were denatured with NaOH, diluted to a loading concentration of 8 pM 
in HT1 buffer (Illumina Inc., San Diego, CA, USA), and spiked with 15% PhiX. The final libraries were sequenced 
on an Illumina MiSeq instrument using paired-end 2 × 250 reads and the MiSeq Reagent Kit v3 (Illumina). 
Sequences were demultiplexed on the sequencer and then converted to FASTQ files using bcl2fastq (Illumina). 
DNA sequences were filtered for low quality (Q-Score < 20) and length (< 50 bp), and adapter sequences were 
trimmed using cutadapt26.

DNA extraction, library preparation and sequencing (shallow shotgun metagenomics)
Samples were extracted in the same manner as above for amplicon sequencing, followed by quantification using 
a Quant-iT PicoGreen dsDNA assay kit (Thermo Fisher Scientific, Waltham, MA, USA), with fluorescence 
measured on a TECAN plate reader (Tecan Group Ltd., Männedorf, Switzerland). Samples were indexed using 
Illumina Unique Dual Indexes (UDI), followed by pooling of libraries. Libraries were pooled, followed by SPRI 
bead purification and concentration using SpeedBead Magnetic Carboxylate Modified Particles (GE Healthcare 
Life Sciences). The resulting pooled libraries were denatured with NaOH, diluted to a loading concentration of 
1.8 pM in Illumina’s HT1 buffer, and spiked with 2% PhiX. Shotgun metagenomic sequencing was performed 
on an Illumina NextSeq 500 instrument using a NextSeq 500/550 High Output 150 cycle kit (1 × 145 bp reads). 
Sequence reads were demultiplexed and quality filtered in the same manner as above for amplicon sequencing. 
Finally, FASTQ files were merged and converted into a single FASTA using SHI727. All sequences were trimmed 
to a maximum length of 100 bp prior to alignment.

Sequence alignment and annotation (16S amplicon)
Amplicon Sequence Variants (ASVs) were determined using DADA2 (v1.12)28 with default parameters except 
where specified. Briefly, filterAndTrim(…truncLen = c(240,150)) was run to trim low-quality tails from sequence 
reads, followed by learnErrors to learn error rates of the full dataset. ASVs were inferred using the dada algorithm, 
and reads were then merged using mergePairs. Chimeras were removed using removeBimeraDenovo. Finally, 
ASVs were assigned taxonomies via classification to the Silva reference database (v132)29,30 using assignTaxonomy, 
and, where possible, species level assignments using exact matching were made using addSpecies. ASVs with 
identical taxonomic assignments in the ASV table were collapsed to create a taxa table. This collapsed taxa table 
was used in all downstream analyses.

Sequence alignment and annotation (shallow shotgun metagenomics)
DNA sequences were aligned to a curated database containing all representative genomes in RefSeq (release 81) 
for  bacteria31, with additional manually curated strains (i.e. Diversigen’s Venti database). Alignments were made 
at 97% identity against all reference genomes. Every input sequence was compared to every reference sequence 
in Venti using fully gapped alignment with  BURST32. Ties were broken by minimizing the overall number of 
unique Operational Taxonomic Units (OTUs) based on taxonomic assignments (i.e. “CAPITALIST” method in 
BURST). Specifically, each input sequence was assigned the lowest common ancestor that was consistent across 
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at least 80% of all reference sequences tied for best hit. The number of counts for each OTU was normalized to 
the average genome length. OTUs accounting for less than one millionth of all species-level markers and those 
with less than 0.01% of their unique genome regions covered (and < 1% of the whole genome) were discarded. 
Samples with fewer than 10,000 sequences mapping to the database were also discarded. Count data was then 
converted to relative abundance for each sample. The normalized and filtered tables were used for all downstream 
analyses. For functional annotation, Kyoto Encyclopedia of Genes and Genomes Orthology groups (KEGG 
KOs)33–35 were observed directly using alignment at 97% identity against a gene database derived from the strain 
database used above. The KO table was used to derive the downstream KEGG Enzyme table by collapsing KOs 
to the enzyme level, followed by conversion to relative abundances. This KEGG enzyme table was used for all 
downstream analyses.

Diversity metrics calculations, statistical analyses and visualization
Alpha diversity (Chao1, Shannon index and Observed features) and beta diversity (Bray–Curtis dissimilarity) of 
taxa and functions were calculated using the  R36 package vegan (v2.6-4)37, using the ASV/OTU/KEGG Enzyme 
tables rarified to the lowest sample depth for their respective sequencing types (amplicon vs. shallow shotgun). 
To assess differences in alpha diversity between subjects, the nonparametric Kruskal–Wallis one-way analysis of 
variance followed by Dunn’s post-hoc test were used. False discovery rate (FDR) correction was used to account 
for multiple hypothesis testing. Differences in beta diversity between groups of interest was assessed via multi-
variate homogeneity of groups dispersions, followed by permutational multivariate analysis of variance (PER-
MANOVA) as implemented in vegan’s betadisper and adonis functions, respectively. To quantify the magnitude 
of variation from different sources, the Bray–Curtis dissimilarity matrix was subset to include only samples for 
each given source of interest as follows: (1) technical variation caused by DNA extraction of the same sample, (2) 
technical variation caused by the same extraction replicate prepped into separate libraries and run on separate 
sequencing runs, (3) biological variation caused by day of sampling, (4) biological variation caused by week of 
sampling, and (5) biological variation caused by subject-to-subject variation. Differences in variation by source 
were assessed using Kruskal–Wallis followed by Dunn’s post-hoc test. Specific differences in technical variation 
between 16S and shallow shotgun sequencing were assessed using two-way ANOVA followed by student’s t-tests. 
All visualizations were generated using the R package ggplot2 (v3.3.6)38.

Data availability
The datasets generated and analyzed during the current study are available in the NCBI SRA repository for both 
shotgun metagenomic and 16S rRNA gene amplicon data under BioProject accession number PRJNA917645.
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