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Data integration reveals 
dynamic and systematic 
patterns of breeding habitat use 
by a threatened shorebird
Kristen S. Ellis *, Michael J. Anteau , Garrett J. MacDonald , Rose J. Swift , Megan M. Ring , 
Dustin L. Toy , Mark H. Sherfy  & Max Post van der Burg 

Incorporating species distributions into conservation planning has traditionally involved long-term 
representations of habitat use where temporal variation is averaged to reveal habitats that are 
most suitable across time. Advances in remote sensing and analytical tools have allowed for the 
integration of dynamic processes into species distribution modeling. Our objective was to develop 
a spatiotemporal model of breeding habitat use for a federally threatened shorebird (piping plover, 
Charadrius melodus). Piping plovers are an ideal candidate species for dynamic habitat models because 
they depend on habitat created and maintained by variable hydrological processes and disturbance. 
We integrated a 20-year (2000–2019) nesting dataset with volunteer-collected sightings (eBird) 
using point process modeling. Our analysis incorporated spatiotemporal autocorrelation, differential 
observation processes within data streams, and dynamic environmental covariates. We evaluated the 
transferability of this model in space and time and the contribution of the eBird dataset. eBird data 
provided more complete spatial coverage in our study system than nest monitoring data. Patterns of 
observed breeding density depended on both dynamic (e.g., surface water levels) and long-term (e.g., 
proximity to permanent wetland basins) environmental processes. Our study provides a framework for 
quantifying dynamic spatiotemporal patterns of breeding density. This assessment can be iteratively 
updated with additional data to improve conservation and management efforts, because reducing 
temporal variability to average patterns of use may cause a loss in precision for such actions.

Evaluating spatial and temporal patterns in species occurrences has been a challenging but necessary endeavor 
in macroecology and conservation biology, particularly for rare or declining species that rely on dynamic or 
patchily-distributed habitats. Approximating species’ distributions or densities often involves relating presence-
only, detection/non-detection, or count data to biotic and abiotic characteristics of the  environment1. These 
predictions can be valuable for assessing habitat suitability or informing the conservation of rare species at loca-
tions where occupancy information is  uncertain2. One approach commonly used in conservation planning is to 
produce static realizations of species’ distributions by pooling spatial data across time, because there may not 
be enough occurrence data to build models of species’ responses to fluctuating  conditions3. However, ecological 
processes underlying species’ distributions are complex, and averaging temporal variation in habitat suitability or 
occurrences of highly mobile species may lead to a loss in precision needed for adaptive conservation  planning2,4.

Linkages between environmental factors and species’ distributions or densities may vary over time for 
many reasons, including climate shifts, changes in population dynamics (e.g., rates of dispersal), or community 
 interactions5–8. For example, phases of substantial dry or wet weather conditions can induce variable occurrence 
patterns across a diversity of avian  species9,10. Further, spatial covariation caused by the geographic proximity of 
occurrences can vary as organisms  move11. If unaccounted for, such unobserved processes can bias estimates of 
habitat associations, consequently decreasing the predictive ability of species distribution  models12,13. The practi-
cal utility of a species distribution model for resource managers and conservation practitioners therefore largely 
depends on prediction  accuracy14, which can influence land-use  planning15 and the management of  populations16.

Often, the scope of interest for understanding patterns in species occurrences extends beyond the temporal 
or spatial limits of an established survey or monitoring  program1. The transferability of predictions into new 
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locations or time periods can depend on a balance between over-parameterized models with high predictive 
accuracy and models with limited  complexity17,18. Transferability can further depend on species’ life histories, 
spatial extent of distributions, habitat heterogeneity, and degree of  extrapolation19. The development of pro-
cedures that integrate multiple sources of data into species distribution models has become increasingly more 
common, because this allows researchers to improve parameter estimates, generalize patterns across monitoring 
schemes, and extend the scope of  inference1,20–24. A common theme within data integration research involves the 
use of openly available, opportunistic data collected by members of the  public23. Opportunistic data are typically 
plentiful and can resolve spatial gaps where structured surveys do not occur, yet generally suffer from detection 
 biases25,26. Therefore, methods accounting for differential observation processes while estimating a latent species 
distribution provide opportunities to incorporate data with diverse strengths and  weaknesses21.

We applied an integrated point process  model21 to evaluate annual dynamics in the breeding habitat use and 
density of an uncommon migratory bird of high conservation interest across a broad region. Point process models 
are used to describe point locations in continuous space and estimate an intensity surface of the density of obser-
vations (or patterns of relative abundance) within an  area27. Moreover, point process models simplify potential 
issues around scale dependence when integrating data from multiple sources, as the measured spatial accuracy 
of points can be retained, eliminating the need to discretize the study area into spatial  units21. Using both nesting 
locations and opportunistic observations (eBird)26, we modeled piping plover (Charadrius melodus) breeding 
densities in the United States Prairie Pothole Region (PPR) across a 20-year period. Piping plovers (hereafter 
‘plovers’) are a federally (USA) listed migratory shorebird and a portion of the species breeds on unvegetated 
shorelines of PPR wetlands. The availability of these breeding habitats is sensitive to changes in precipitation 
and temperature, and the persistence of unvegetated wetland shorelines in the PPR is uncertain due to interact-
ing effects of changes in land use and  climate28. Therefore, this study system offers an opportunity to assess the 
degree of spatiotemporal variability in breeding habitat use and density in response to the dynamic availability 
of habitats. Further, we developed procedures for continued monitoring of plover habitats in the PPR, allowing 
for more dynamic approaches to conservation when and where it is needed most.

Methods
Study area. The PPR covers more than 700,000  km2 of the North American midcontinent. This region 
was historically characterized by millions of small, depressional wetlands and perennial grasslands, although 
wetland drainage and conversion of grasslands to agricultural fields has altered much of this  ecosystem29,30. The 
abundance and diversity of wetlands in the PPR provide critical breeding and stopover habitats for a myriad of 
waterfowl, shorebird, and other wetland-dependent  species31–33. Our study focused on private and public lands 
in the PPR in eastern Montana, North Dakota, and South Dakota (Fig. 1). This area included the Aspen Park-
land/Northern Glaciated Plains and Northwestern Glaciated Plains North American Level III ecoregions. We 
excluded regions that are often considered to be within the PPR including Minnesota, Iowa, the Lake Agassiz 

Figure 1.  Study area in the north central United States including North Dakota, South Dakota, and eastern 
Montana. The white polygon indicates the extent of the Prairie Pothole Region included in our study. Points 
indicate the spatial distribution of data used from piping plover (Charadrius melodus) nest locations and 
eBird observations collected between 2000 and 2019. Each point represents a 300 m circular area and the 
color indicates the average number of data locations per year in each area across our study period. Maps were 
generated using R (version 4.1.3)55.
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Plain ecoregion of North Dakota, and western Montana from our study extent because observations of plovers 
in these areas across our study period were nonexistent or too infrequent to model.

Nesting data. We collected piping plover nest locations from surveys conducted by the U.S. Fish and Wild-
life Service (USFWS) and the U.S. Geological Survey (USGS) between 2000 and 2019. Nest surveys were con-
ducted at approximately 180 wetlands within the Alkali Lakes Core  Area34, as these wetlands had relatively 
consistent monitoring efforts across our study period (Fig. S1). Between late April and early August, USFWS 
(2000–2019) and joint USFWS—USGS (2014–2019) crews searched shoreline habitats within the Alkali Lakes 
Core Area and used behavioral cues of adults to locate nest sites. We defined a nest site as a scrape with at least 
one egg being incubated by an adult. Once located, the coordinates of individual nest sites were recorded and 
used as point locations in our analysis.

eBird data. eBird is a publicly-available online repository of bird observations voluntarily reported by mem-
bers of the  community26. Observers submit records as checklists with counts of species that were seen. We 
used checklist metadata to obtain spatial coordinates, survey dates, and information about the sampling effort 
(checklist duration, distance traveled, and number of observers). We retrieved eBird data on 1 February 2022 
and restricted data to the breeding season (May–July) for the period 2000–2021. We filtered eBird data according 
to best  practices35. These practices included only considering checklists where the distance traveled was < 5 km, 
surveys were conducted between 5:00 a.m. and 9:00 p.m., were collected over a period of less than 5 h, and with 
no more than 10 observers. We included incomplete checklists where plovers were observed because the data 
were treated as presence-only locations (see modeling details below). For our analysis, eBird locations repre-
sented sightings of adults that were presumed breeders, and not actual nest locations. We assumed that eBird 
sightings of plovers indicated suitable breeding habitats because previous work in the Great Plains has shown 
that breeding and nonbreeding plovers are routinely observed during breeding season  surveys36,37. Therefore, 
habitats selected by nonbreeding plovers during the breeding season are likely similar to those used for nesting. 
However, during the breeding season, nonbreeding plovers on the Atlantic coast use beach habitats at a fine-
scale differently than breeding  plovers38.

Remotely sensed explanatory layers. We tested the explanatory strength of a suite of habitat charac-
teristics that were considered a priori to be associated with plover breeding intensity (Table 1; Fig. S2). Plover 
nest and eBird locations were primarily located near wetlands that were classified as lakes according to the 
USFWS’s National Wetlands Inventory. The mean distance to lake edges was 102  m for nests (s.d. = 311  m; 
range = 0–4288 m) and 1,770 m for eBird locations (s.d. = 3,844 m; range = 0–18,513 m). Reduced spatial accu-
racy of eBird observations (e.g., routes varied in distance traveled) relative to nest locations likely contributed 
to their difference in mean distances to lake edges. We created a distance-based raster where each 30 m pixel 
indicated the distance from the center of the pixel to the nearest lake edge, and we included this layer as a 
covariate (Table 1). We anticipated that the effect of lakes would decline at increasing distances, and additionally 
calculated the distance to lakes using an exponential function, 1− exp(−d/µ) , where d was the distance, and μ 
was the mean distance value from all eBird and nest  points39.

Table 1.  Candidate covariates used to develop piping plover breeding density models and their data sources. 
Site accessibility and checklist effort covariates were only applied to the eBird observation process and 
remaining covariates were applied to the latent species distribution process. Temporal resolution refers to the 
frequency at which data layers were produced across our study period. DEM Digital elevation model; DSWE 
Dynamic surface water extent; NWI National wetlands inventory; NDVI Normalized difference vegetation 
index; NLCD National land cover database. a These covariates were considered at multiple spatial extents: 30 m, 
all adjacent pixels, 90 m, 150 m, 300 m, and 750 m. b These covariates included a candidate quadratic effect.

Category Source Temporal resolution Candidate covariates

Site accessibility Gravel and paved  roads50 Static Road density within 5 km

Checklist effort eBird26 Annual Checklist duration;
Checklist distance

Anthropogenic Gravel and paved  roads50 Static
Distance to roads (m);
Binary classification: > 100 m from 
roads = 1, < 100 m from roads = 0

Anthropogenic Settlements50 Static
Distance to human settlements (m);
Binary classification: > 1 km from settle-
ments = 1, < 1 km from settlements = 0

Topography DEM (U.S. Geological Survey National Map) Static Slopea

Hydrology DSWE43 Annual Percent surface  watera,b

Hydrology NWI Static
Distance to permanent lake features (m);
Distance to permanent lake features—exponen-
tial function

Vegetation NDVI (Landsat) Annual NDVIa,b

Land cover NLCD49 Every 2–3 years Percent crop and hay  pasturea;
Distance to trees (m)
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Breeding activities of plovers primarily occur along unvegetated  shorelines40–42, and we expected that accu-
rately classifying surface water and vegetation coverage would be crucial in predicting breeding habitats. Develop-
ing dynamic predictions for each year of our study required annual data layers describing water-level conditions 
and vegetation coverage. Because data collection for this project began in 2000, we obtained annual water and 
vegetation coverage layers using successive Landsat mosaics within the breeding season, as the Landsat record 
facilitated a continuous source of data across our study period (Landsat 5: 2000–2011, Landsat 7: 2012–2013, 
Landsat 8: 2014–2021). To describe annual water-level conditions, we used the Dynamic Surface Water Extent 
(DSWE)  product43 from Landsat imagery (acquisition dates: 1 April–30 September). The DSWE algorithm 
produces a raster layer where pixel values can be integers ranging between 0 and 4 representing varying levels of 
confidence in the presence of water (0 = not water, 1 = water–high confidence, 2 = water–moderate confidence, 
3 = partial surface water–conservative, 4 = partial surface water–aggressive). We reclassified DSWE layers to 
only include high confidence water (pixels with a value of 1 at any point during the imagery acquisition window 
remained 1 and all other pixels were reclassified to 0). To identify unvegetated or sparsely vegetated patches, we 
used the Normalized Difference Vegetation Index (NDVI) as a representation of vegetation  coverage40, using 
the maximum NDVI value from Landsat mosaics across all cloud-free observations of Landsat for the breeding 
season (acquisition dates: 1 May–31 August).

We expected that plover breeding activities would occur on substrates with a flat  slope40,44,45. We applied the 
slope tool in Google Earth  Engine46 to measure the degree of inclination of a 30 m resolution digital elevation 
model obtained from the U.S. Geological Survey National Elevation Dataset (http:// viewer. natio nalmap. gov/ 
viewer/). We hypothesized that land cover characteristics surrounding wetlands could influence plover breed-
ing habitat use, potentially due to agricultural land use changes influencing wetland  dynamics47 or avian nest 
predators using trees for perching near wetlands (although effects of trees may be more relevant to reproductive 
success than habitat use)48. We used the National Land Cover Database (NLCD) layers, which were generated 
from 2001 to 2019 at 2–3-year  intervals49. We summarized NLCD layers into crop and pasture layers (if a raster 
cell was categorized as pasture/hay or cultivated crops, it received a value of 1, all others were 0) and the Euclidean 
distance to trees (deciduous forest, evergreen forest, or mixed forest). Lastly, we hypothesized that plovers would 
avoid wetlands near human  settlements38; therefore, we generated two distance-based rasters to characterize 
effects of human developments from TIGER/Line shapefiles representing (1) human settlements and (2) gravel 
and paved  roads50. We processed all raster imagery using Google Earth  Engine46.

Preliminary covariate selection. We summarized explanatory data layers into multiple candidate covari-
ates (Table 1). Ecological patterns can be sensitive to the scale of  measurement51, so we considered six spatial 
scales when suitable to identify a spatial scale that was most influential for each covariate on plover breeding 
densities. The candidate spatial scales we considered ranged from site- to landscape-level which were: (1) at the 
30 m pixel, (2) neighboring pixels (all 30 m pixels adjacent to the focal 30 m pixel), (3) 90 m radius, (4) 150 m 
radius, (5) 300  m radius, and (6) 750  m radius. We summarized varying spatial scales (radii) via a moving 
window analysis. For slope covariates, we summarized multiple pixels using their standard deviation and for all 
other covariates, we summarized multiple pixels using their average value. All candidate covariates were scaled 
to have a mean of 0 and standard deviation of 1. For effects of roads or human settlements, we considered the 
distance to these features in addition to a simpler binary classification of within 1 km of settlements or 100 m 
of roads.

While an objective of this research was to evaluate environmental associations with plover breeding habitat 
use and densities, an additional objective was to create annual spatially explicit predictions, which could be used 
to inform conservation and management of the species. Therefore, we used a statistical regularization framework 
to optimize model selection for predictive ability rather than strictly  inference14,52. We used the least absolute 
shrinkage and selection operator (LASSO)53 as a method for variable selection to determine a final model for 
predictions. We fit LASSO models using a downweighted Poisson generalized linear regression to approximate 
an inhomogeneous Poisson point process with a set of 200,000 random points distributed across our study area 
to serve as quadrature  locations27. Preliminary sensitivity analyses indicated that 200,000 points were sufficient 
for convergence of the log-likelihoods27. To select the optimal spatial scale for each covariate, we ran univariate 
linear models with the regularization penalty set to 0. Once covariates were scale-optimized using the small-
est RMSE, we ran five global LASSO models to determine the most-supported form of related variables (e.g., 
binary versus continuous predictors and continuous versus exponential predictors; Table S1). We hypothesized 
that certain covariates would have nonlinear effects on plover breeding densities (e.g., intermediate levels of 
surface water may be preferred), therefore we tested a quadratic effect on percent water and NDVI. None of the 
predictor variables in each of the five global models were highly correlated (|r|> 0.70). We evaluated predictive 
performance of each candidate model by partitioning the data into 10 random subsets and using cross valida-
tion to calculate root mean squared errors (RMSE) and area under the receiver operating characteristic curve 
(AUC). A list of candidate models and their associated performance measures are in Table S1. Variable selection 
and cross validation with LASSO were conducted with the cv.glmnet function in the glmnet  package54 in the R 
programming  environment55, using methods described by Gerber and  Northrup14. We conducted this variable 
selection process on nest locations alone because this process did not allow for the estimation of a joint-likelihood 
with eBird observations.

Integrated spatiotemporal model. To predict the density of breeding plovers across the PPR, we used 
an integrated species distribution  model21 which was fit using integrated nested Laplace approximation in R 
(R-INLA)56. INLA is an efficient alternative to Markov chain Monte Carlo for estimating Bayesian inference and 
avoiding convergence issues that are often associated with large spatiotemporal  data56. Species distributions are 
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commonly modeled as a log-Gaussian Cox  process57, which can be computationally expensive. We modeled this 
process in INLA using stochastic partial differential equations (SPDE)58 to model spatial and temporal autocor-
relations across a triangular mesh. We used SPDE to model a spatial random field with mean 0 and a Matérn 
covariance  function58. To define the mesh design and triangle size, we started with a low-resolution mesh and 
iteratively fit smaller triangles to identify an optimal resolution that balanced computational cost and quality of 
 approximation59. Modeling temporal variation in species distributions can be achieved by allowing environmen-
tal associations or residual spatial variation to fluctuate over time. Therefore, we modeled temporal autocorrela-
tion with an autoregressive AR1 process for residual annual error.

Because we lacked information about true absences from nest site data, we modeled both datasets as pres-
ence-only locations. For nests, the intensity defined the expected number of points at location s and year t: 
�(s, t) = eη(s,t) . The latent plover distribution was modeled as a space–time inhomogeneous Poisson point 
 process60. The intensity varied as a function of ecological covariates X(s), and a random spatiotemporal field 
u(s,t) to account for unmeasured covariates and spatiotemporal autocorrelation:

and β was a vector of regression coefficients. We assumed eBird observations emerged from a thinned intensity 
 surface21,61. eBird observations were treated as a thinned-out version of the complete distribution of plover 
individuals in our study area, with survey effort and site accessibility covariates Z(s) on the observation process 
(Table 1). Covariates for survey effort included checklist distance and duration, and these were obtained from 
eBird metadata. To account for site accessibility, we used TIGER/Line shapefiles representing  roads50 and calcu-
lated the density of roads within 5 km of eBird points. The thinned latent species distribution was modeled with 
intensity �(s, t)b(s) , where b(s) was the thinning probability:

and δ was a vector of coefficients on the observation process. We used default settings in R-INLA for non-inform-
ative prior distributions for fixed effect coefficients, which were normally distributed with mean of 0 and precision 
of 0.001. We used a penalized complexity prior for the spatiotemporal random  effects62 and informed a nominal 
range for the SPDE mesh based on the distance at which residual autocorrelation declined to approximately 0.163.

Spatial predictions. We generated spatial predictions at a 30 m resolution for each year of our study as an 
exponential function of ecological explanatory layers and the estimated year-specific random field. We summa-
rized annual layers by delineating the study area as high or low habitat suitability to serve as a rapid assessment 
tool in addition to continuous predictions. We calculated sensitivity and specificity and identified a habitat suit-
ability threshold value using the Symmetric Extremal Dependence Index (SEDI)64. SEDI is an evaluation metric 
that was developed for meteorological studies but has been shown to perform well in evaluating species distribu-
tion models when the frequency of presence points is  low65. For our purposes, the habitat suitability threshold 
represented a practical yet conservative threshold at which plover presence was likely. We summarized annual 
layers based on the expected intensity of plover presence points and interpreted these values as relative indices 
of plover  abundance27. We summed all cell values that were greater than the habitat suitability threshold in each 
year across our study area to represent relative plover abundance. We calculated bootstrapped 95% confidence 
intervals (CI) around plover abundance by recalculating abundance 10,000 times based on random samples of 
the data.

Model validation. Because validating integrated models using data with different quality and observation 
processes is not always  straightforward21,66, we used multiple approaches to assess prediction error. Evaluating 
the predictive performance of a species distribution model is best accomplished with out-of-sample data that are 
not used to estimate  parameters67. Therefore, we additionally generated spatial prediction surfaces for 2020 and 
2021 with explanatory layers from those years and an averaged (across the study period) spatial random field. 
We evaluated these predictions against eBird observations from 2020 and 2021 to serve as an out-of-sample 
model validation. The point accuracy of eBird observations was likely coarser than 30 m resolution predictions 
(i.e., exact locations of observed plovers were not recorded). Therefore, we buffered each eBird checklist using 
the survey distance to represent the area that was surveyed. We then used these buffers to validate 2020 and 2021 
predicted surfaces using the maximum raster value that fell within the buffer (i.e., if any pixel within a buffer had 
high predicted intensity, the model would be considered accurate in that instance).

Cross-validation techniques can also be used to approximate the predictive ability of a model when out-of-
sample data are sparse or  unavailable68. Randomly selecting subsets of the data may underestimate model error 
because it does not force the model to extrapolate into new spatiotemporal  structures17,18,68. Further, the nesting 
data we used to identify a final model for predictions were spatially restricted to a portion of the entire region 
of interest. Therefore, we considered both temporal and spatial block cross validation to assess these structures 
within our  data68. For the temporal cross validation, we partitioned the eBird and nesting data into 3 time periods 
(2000–2006, 2007–2012, and 2013–2019; Fig. S1). For spatial block cross validation, we considered two scenarios: 
partitioning the data into 3 sets of 100 km blocks and 5 sets of 50 km blocks. We used the blockCV package in 
R to create spatial  blocks69. Block sizes were selected based on the effective range of spatial autocorrelation in 
the explanatory data layers by fitting variograms to continuous  rasters69. Lastly, we compared models with and 

η(s, t) =

N∑

i=1

βX i(s)+ u(s, t)

log(�(s, t)b(s)) =

N∑

i=1

βX i(s)+ u(s, t)+

Q∑

j=1

δZj(s)
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without eBird observations using random tenfold cross validation to assess if predictive ability improved with 
the inclusion of eBird data in addition to the nest locations. We compared out-of-sample and cross validation 
strategies using RMSE and AUC.

Results
Nest locations were collected in North Dakota and eastern Montana, with no spatial coverage in South Dakota 
(n = 4,621). The average number of nest locations collected per year was 231 (range = 120–386; Fig. S1). We 
included 487 eBird records in our analysis that were collected between 2000 and 2019 and these points had 
spatial coverage throughout the study region (Fig. 1), thus filling spatial gaps from nest locations. The number 
of eBird records per year increased over time, particularly after 2013 (Fig. S1).

We conducted a preliminary covariate selection procedure using LASSO regularization and found that the 
optimal spatial scale of effect varied among covariates (Table S1). Slope and NDVI were most supported at the 
30 m pixel scale, whereas the percentage of surface water (DSWE) was most supported with a 90 m moving 
window. The effect of crop and hay pasture was most supported at the scale of neighboring pixels. We found that 
LASSO regularization consistently removed the effect of distance to trees by constraining it to zero, therefore we 
generated an additional model without this parameter. The final model with the most support and best predic-
tive ability included percent water (90 m scale), NDVI (30 m scale), slope (30 m scale), crop and hay pasture 
(neighbor scale), distance to lakes as an exponential function, 100 m to roads (binary), and 1 km to settlements 
(binary) (Table S1). Further, we found support for quadratic effects for percent water and NDVI.

The final integrated point process model included seven ecological covariates and three observation covariates 
(Table 2). Parameter estimates for site accessibility and checklist effort indicated that eBird points increased in 
intensity with greater road density, and checklist duration and distance, although 95% credible intervals over-
lapped 0 for both checklist effort covariates. Plover breeding intensity was highest when the percentage of surface 
water and NDVI values were both low, but not at their minimum values (Table 2). We found a strong negative 
relationship between the distance to lakes and breeding intensity, where intensity was highest close to lakes. 
Roads and settlements had similar effects, where plover breeding intensity was lower near these features (Table 2).

We used an SPDE mesh with 63,840 vertices. The random spatiotemporal field predicted hotspots of high 
intensity (visually related to nest or eBird clusters) that covariates alone did not explain (Fig. 2, Fig. S3). The 
median nominal range of spatial autocorrelation was 116 km (95% CI: 104–130 km). Annual autocorrelation of 
point intensities was high (0.94, 95% CI: 0.92–0.95) yet there was variation across years in the spatial distribution 
and intensity of predicted nesting habitats (Fig. 3, Figs. S4, S5). The predicted plover abundance (point intensity) 
across the PPR averaged 2,417.48 (95% CI: 1,657.67–3,313.27, total prediction area = 235,464.50  km2; Fig. 4).

The mean AUC across spatial and temporal block cross-validation procedures was greater than 0.80 (Table S2), 
and RMSE metrics were in general agreement with AUC. Model accuracy was similar between 3- and 5-block 
spatial cross-validation (3-block AUC = 0.83, 5-block AUC = 0.82, 3-block RMSE = 0.22, 5-block RMSE = 0.28; 
Table S2, Fig. S6), whereas the highest model accuracy was associated with temporal cross validation (AUC = 0.97, 
RMSE = 0.14). Out-of-sample model validation using exclusively eBird locations from 2020 and 2021 (n = 187) 
had the lowest model accuracy (AUC = 0.64, RMSE = 0.36), compared to cross-validation approaches that used 
a combination of nest and eBird locations (Table S2). Random tenfold cross validation indicated that excluding 
eBird locations from the model reduced prediction accuracy (RMSE = 0.15 with eBird and 0.42 without eBird; 
Table S2).

Table 2.  Log-scale posterior median effect sizes and Bayesian credible intervals of a multiscale integrated 
point process model for breeding piping plovers. Slope and normalized difference vegetation index (NDVI) 
were measured at the 30 m pixel scale, crop and hay pasture were measured with a mean of neighboring pixels 
moving window analysis, and percent surface water was measured with a mean of 90 m moving window 
analysis.

Parameter 2.5% 50.0% 97.5%

Ecological model

 Intercept − 1.91 − 1.90 − 1.88

 Slope − 0.42 − 0.40 − 0.39

 NDVI 0.07 0.08 0.09

  NDVI2 − 0.23 − 0.22 − 0.21

 Crop and hay pasture − 0.54 − 0.52 − 0.49

 Percent surface water 2.22 2.24 2.27

 Percent surface  water2 − 0.40 − 0.39 − 0.38

 Dist. to lake (exponential) − 9.44 − 9.40 − 9.37

 Settlement (> 1 km from settlements = 1, < 1 km from settlements = 0) 0.15 0.18 0.20

 Road (> 100 m from roads = 1, < 100 m from roads = 0) 0.61 0.64 0.67

eBird observation model

 Effort distance − 0.08 0.02 0.10

 Effort duration − 0.06 0.04 0.05

 Road density 0.11 0.12 0.22
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Discussion
Spatial and temporal patterns of breeding distributions in dynamic landscapes can be highly variable for many 
migratory bird  species31,70,71. We applied an integrated species distribution model and predicted breeding habi-
tat use and density of an uncommon species across broad spatial and temporal extents. Our model had greater 
temporal transferability than spatial transferability, indicating that predictions are likely to be more robust when 
extrapolating to new time periods compared to new spatial regions. Collecting annual nesting data is costly, 
therefore natural resource managers may benefit from using spatial predictions as an inexpensive tool for estimat-
ing annual breeding habitats and relative abundances, or for directing sample-based monitoring efforts. While 
spatial predictions can be informative, there are still uncertainties regarding the reliability of predictions when 
forecasting based on our 20-year nesting dataset, as climate and future land use changes will likely continue 
to alter plover habitats in the  PPR47. Such uncertainties indicate that continuing to collect nesting data, while 

Figure 2.  Average (a) and standard deviation (b) of predicted piping plover (Charadrius melodus) breeding 
habitat use and density across our nest data collection period (2000–2019). To allow for improved visualization, 
maps were aggregated to 900 m resolution using the mean of pixel values and normalized by rescaling values 
between 0 and 1. Maps were generated using R (version 4.1.3)55.
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expanding efforts outside of the core nesting regions will likely be valuable in assessing temporal limitations 
of our predictions. Further, our results did not indicate that eBird observations served as a robust alternative 
to nesting locations during our study period, although model fit was better than a random sample. Therefore, 
relying on these data exclusively in the future would benefit from further assessment.

Preliminary filtering of eBird data can be useful for removing outliers but is often inadequate at completely 
accounting for observational  noise25,26. Of the observational covariates, road density had the greatest effect, 
indicating that site accessibility was more influential than survey effort on eBird plover sightings. Many regions 
within our study extent were on private lands and distant from large population centers, and community science 
data can often be clustered around popular locations with established access and human  settlements25,26. Despite 
these observational biases, the benefit of including the eBird database in our study was that these sightings had 
greater spatial coverage than nest monitoring efforts, thus providing an improved basis for prediction outside 
the spatial footprint of the monitoring data.

Assessing model fit when using multiple streams of data in an integrated framework is often not 
 straightforward21,59,66. Our process for measuring model error was to use both out-of-sample data and cross-
validation approaches. While we did not generate a model using exclusively eBird data, we suspect that it would 
have been difficult to extract reliable ecological signals because out-of-sample model validation using only eBird 
observations showed the lowest agreement with model predictions. An explanation for the reduced accuracy 
we observed may be that many eBird points fell outside of core nest monitoring regions (i.e., hotspots generated 

by the 20-year spatial random effect). eBird observations outside of nesting hotspots would have been in areas 
with a lower predicted breeding intensity, which is presumably indicative of true patterns in this system (plover 
breeding intensity is not evenly distributed throughout the PPR). While community science data are typically 
plentiful, the number of eBird observations across the PPR was low in the earlier years of our study and their 

Figure 3.  Log-scale median estimates with 95% credible interval of annual autocorrelation in point intensity 
(autoregressive, AR1 lag effect). The dashed line indicates a lag effect of 0.

Figure 4.  Piping plover (Charadrius melodus) relative abundance (sum of predicted point intensities) across the 
U.S. Prairie Pothole Region in each year. Estimates were calculated using pixels that were greater than the habitat 
suitability threshold. Estimates from 2020 and 2021 were based on an average spatial random field and habitat 
associations generated from nesting data collected between 2000 and 2019 (denoted by the dashed vertical line). 
The shaded area indicates 95% confidence intervals.
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contributions to the spatial random effect in those years were likely minimal. This out-of-sample validation 
additionally indicates that there may be a loss in model accuracy associated with relying on the 20-year aver-
aged spatial effect compared to year-specific effects. There are numerous complexities when determining what 
types of data to include, yet a general philosophy of integrated modeling is to take advantage of the maximum 
amount of  information21,22.

Plover breeding densities in the PPR showed high spatial and temporal autocorrelation. Accounting for this 
autocorrelation carries distinct advantages over non-explicit alternatives when modeling mobile species that 
select habitats based on behavioral or other cues of the environment that can be difficult to account  for31,59. 
Avian species may shift their breeding distributions across time to take advantage of suitable  habitats71,72, yet 
high site fidelity can lead to greater reproductive  success73 or population  persistence74 when site quality is tem-
porally correlated. However, rapid environmental changes may also lead to instances where high site fidelity 
is disadvantageous because species’ abilities to respond to habitat alteration can be relatively  slow75. Plovers 
typically show high site fidelity across their range, and rates can vary annually and as a function of age, sex, or 
prior reproductive  success37,76–79. There are tradeoffs when considering the computational costs of processing 
annual datasets and generating dynamic predictions versus the loss in precision that may be associated with a 
long-term representation of breeding distributions. Understanding variation in site fidelity or factors influenc-
ing dispersal probabilities and distances could provide a basis for when dynamic predictions may be preferred 
over static predictions for management and conservation decisions, particularly when habitat availability varies. 
For example, distances between individual plover nesting sites across successive breeding seasons were greater 
when other known breeding areas were farther  away80. This pattern indicates that when breeding areas are more 
isolated or disjointed, spatiotemporal autocorrelation in plover density may be lower and breeding densities may 
therefore be more dependent on the availability of habitats. In these instances, dynamic habitat predictions may 
be more informative than a long-term average.

Our model of plover breeding habitat use and density was informed by dynamic data layers, including surface 
water, vegetation coverage, and land use, yet distance to permanent lakes was also supported by the data as a static 
measurement that was invariant across time. Shorebird distributions have previously been shown to depend on 
both dynamic and long-term environmental  conditions3, consistent with relationships observed widely across 
avian  taxa70. The PPR typically experiences cyclic precipitation patterns with drought and wet phases, which 
can influence water levels in prairie  wetlands81, and subsequently the abundance and distributions of birds using 
these  habitats10,32,82. Moreover, water-level dynamics in the PPR contribute to the maintenance of unvegetated 
 shorelines83, which are essential for breeding activities of plovers and other shorebird species in the  region33. 
Land use practices in the PPR have promoted fewer, but larger and fuller wetlands that do not draw down as 
 easily84, and fuller wetlands are associated with a lower probability of plover  presence47. Future climate change 
projections in the PPR predict wetter conditions during the spring and summer, and warmer temperatures may 
promote longer growing seasons and vegetation  encroachment85. Therefore, plovers breeding in prairie wetlands 
may be highly sensitive to climate change because of their requirements for unvegetated, shallow wetlands. While 
we found that the predicted abundance and density of nests varied with habitat availability, we did not detect 
a consistent increasing or decreasing trend throughout our study, despite an increase in the quantity of plover 
eBird observations.

Plovers and other shorebirds in the PPR use widely dispersed wetlands that often occur on private lands where 
agriculture is a dominant land  use10,33. Conservation and land use planning to accommodate dynamic habitat 
changes in the PPR would require planning in a highly uncertain future over a broad spatial  extent10,47. There-
fore, dynamic and long-term predictions of plover breeding intensity may have separate value for conservation 
and management decisions, in terms of when and where suitable habitats occur. However, portions of the PPR 
remain understudied and additional sampling in areas where habitats are intermittently available would aid in 
assessing the magnitude of change in breeding density outside of the core monitoring areas, and potentially the 
ability of plovers to adapt to climate changes. Annual predictions generated from our model could serve as a tool 
for directing monitoring efforts to unmonitored regions with suitable habitats. Future research that focuses on 
past and future climate conditions to identify regions that are likely to be robust for concentrating conservation 
actions will likely provide a basis for developing effective long-term management  strategies85.

Data availability
Nesting data generated during this study are available as a USGS data release (https:// doi. org/ 10. 5066/ P9FZJ 
ZXU). Remotely sensed data layers can be acquired using Google Earth Engine code included in the Supple-
mental Materials. eBird data are publicly available (eBird.org).
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