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Mathematical analysis 
and molecular descriptors of two 
novel metal–organic models 
with chemical applications
Shahid Zaman 1, Mehwish Jalani 1, Asad Ullah 2, Wakeel Ahmad 1 & Ghulamullah Saeedi 3*

Metal–Organic Networks (MONs) are made by chemical molecules that contain metal ions and 
organic ligands. A crystalline porous solid called Metal–Organic Networks (MONs) is made up of a 3D 
metal network of ions held in place by a multidentate ligand. (MONs) can be used for gas storage, 
purification drug delivery, gas separation, catalysis, and sensing applications. There is enormous 
potential for effective integration and research of MONs in diverse applications. Molecular descriptors 
are arithmetic measures that reveal a chemical substance’s physical and chemical characteristics in 
its foundational network in a natural relationship. They demonstrate an important role in theoretical 
and ecological chemistry, and in the field of medicine. In this research, we calculated various recently 
discovered molecular descriptors viz. the modified version of second zagreb index, harmonic index, 
reciprocal randic index, modified version of forgotten topological index, redefined first zagreb 
topological index, redefined second zagreb topological index and redefined third zagreb topological 
index for two separate metal–organic networks. The numerical and graphical comparative analysis of 
these considered molecular descriptors are also performed.

Every heavenly body is a combination of several constituents that significantly contributes to the composition 
of the earth. The three-element hydrogen, oxygen and nitrogen are the most significant ones on the  planet1,2. 
Massively used compounds made by chemically like metal–organic network (MON) are thus made up of alloy 
ions/metallic ions and organic linkers. With the aid of the hydrothermal method, new MONs composed of zinc 
considered metal ions and benzene 1, 3-dicarboxylic acid as the organic  linker3. Biography of MONs is their 
superficial alteration and as well as their particle control six  division4. Devices with luminous properties could be 
created using Zn-related MONs, are chemical  sensors1. In reality,Zn+2 an astringent, anti-dandruff, antibacterial, 
and anti-inflammatory autogenous simple powerless noxious conversion metal cation, is frequently worked in 
homoeopaths as a scarring catalyst and face  ointment5. Additionally, the production processes of MONs related 
to zinc have lately been documented, and as well their toxicity, biological uses, and  biocompatibility6. In modern 
chemistry, graph theory offers essential tools that depict chemical compounds’ heats of formation, evaporation, 
flash points, temperatures, pressures, densities, and partition  coefficients7. Zinc oxide is a white powder that is 
insoluble in water. Nanostructure of Zinc oxide (Zno) can be synthesized into a range of different morphologies. 
A variety of skin conditions can be treated with zinc oxide. In marine environments, zinc silicate coating can 
provide long-term protection of steel and is used in rapid coating work for over fifty years. Zinc oxide is also used 
in toothpastes to prevent plaque. These metals also help the human body, it is present in the red blood cells and 
causes several reactions related to carbon dioxide metabolism. Zinc silicate networks are economical because 
they are relatively thin coating.

The zinc oxide and zinc silicate exhibit physicochemical characteristics including grafting active  groups8, 
incorporating appropriate active  material9, ion  exchange10, creating composites using various  materials11, modi-
fying organic ligands, photosynthetic ligands, and improving the selectivity, sensitivity, and response times of 
biosensors.Yap et al.12 and Lin et al.13 presented the most current developments in precursors for a variety of 
nanostructures and MON-related applications, including lithium ion batteries, super capacitors, photocatalysis, 
electrocatalysis, and catalysts for the manufacture of fine chemicals. The field of modern chemistry can benefit 
from using graph theory to represent the physical and chemical characteristics of chemical compounds, such as 
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their heats of formation and evaporation, flash points, melting points, boiling points, temperatures, pressures, 
densities, retention times in chromatography, tensions, and partition  coefficients14,15. In order to investigate 
many characteristics of chemical compounds (such as the boiling point of paraffin), Wiener first developed the 
distance-based topological index (TI) in 1947. Gutman and Trinajsic’s highly regarded first-degree-based TI was 
developed to test the chemical plausibility of the total π-electron energy of the chemical compounds (alternant 
hydrocar-bons).

The Zagreb type indices contributed tremendously in the various fields which can be seen  in16–21. The details 
on other degree based molecular descriptors and structures are given  in22–27. In 2021, the authors  of28 computed 
the connection-based Zagreb indices such as first Zagreb connection index (ZCI), second ZCI, modified first 
ZCI, modified second ZCI, modified third ZCI, and modified fourth ZCI. We extended those results for other 
degree based topological indices as Modified version of second Zagreb index M2(G) , Harmonic index H(G)29, 
Reciprocal Randic index RR(G) , the Modified version of Forgotten topological index F∗N , the Redefined First 
Zagreb topological index ReZG1(G)

30, the Redefined Second Zagreb topological index ReZG2(G)
31 as well as the 

Redefined third Zagreb topological index ReZG3(G)
32 for MONs, namely Zinc oxide (ZNOX(n)) and zinc silicate 

(ZNSL(n)) as regards to the expanding layers,n ≥ 3 . Our outcomes fascinate not only mathematician but also 
of theoretical chemists. The results of this study can be used to examine numerical quantities and guide future 
research into the physical properties of molecules. As a consequence, it is a beneficial procedure to eliminate 
costly and time-consuming laboratory studies. The findings of this research depict that ReZG3(G) achieved higher 
values than other classical Zagreb indices, which may have better correlation with the thirteen physicochemical 
characteristics of octane isomers.

Main results
Here, we initially present some significant definitions of the degree based molecular descriptors which will be 
useful to obtain the main results. In the whole study, we denote the adjacent vertices by p and q , i.e. pq ∈ EG .

Definition 1 The molecular descriptor M2(G) denotes modified version of second zagreb index that is described 
 as33,

Definition 2 The molecular descriptor H(G) denotes harmonic index which is defined  in34 as,

Definition 3 The molecular descriptor RR(G)  denotes reciprocal randic index which is explained  as35,

Definition 4 The molecular descriptor F∗N denotes modified version of forgotten topological index, that is 
described  as36,

Definition 5 The molecular descriptor ReZG1 denotes redefined first zagreb topological index, which is defined 
 by36,

Definition 6 The molecular descriptor ReZG2(G) denotes the redefined second zagreb topological index, that 
is described  as31,

Definition 7 The molecular descriptor ReZG3(G) denotes redefined third zagreb topological index, which is 
explained  by31,

Theorem 1 Let H ∼= ZNOX(n) is a zinc oxide network as depicted in Fig. 1, then

Proof Based on the Definition 1 and Table 1, we have
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Theorem 2 Let H ∼= ZNOX(n) be a zinc oxide network as shown in Fig. 1, then

Proof Based on the Definition 2 and Table 1, one has

Theorem 3 Let H ∼= ZNOX(n) be a zinc oxide network as shown in Fig. 1, then

Proof Based on the Definition 3 and Table 1, one has
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Figure 1.  Zinc oxide network (ZNOX (n) ∼= H), where n = 3.

Table 1.  Edge partition of ZNOX in relation to the degrees.

Ed
p,q Ed

2,2 Ed
2,3 Ed

3,3 Ed
3,4

|Edp,q| 6n+ 16 52n+ 28 9n+ 3 8n+ 8
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Theorem 4 Let H ∼= ZNOX(n) be a zinc oxide network as shown in Fig. 1, then

Proof Based on the Definition 5 and Table 1, we have

The following corollary is a direct consequent of Theorem 4.

Corollary 5 Let H ∼= ZNOX(n) be a zinc oxide network as depicted in Fig. 1, then

Theorem 6 Let H ∼= ZNOX(n) be a zinc oxide network as shown in Fig. 1, then

Proof Based on the Definition 7  and Table 1, we have

Theorem 7 Let H ∼= ZNOX(n) be a zinc oxide network as depicted in Fig. 1, then

Proof Based on the Definition 4 and Table 1, one has
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Figure 2.  Zinc silicate network (ZNSL (n) ∼= K), where n = 3.
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Theorem 8 Suppose K ∼= ZNSL(n) be a zinc silicate network as depicted by Fig. 2, then

Proof Based on the Definition 1 and Table 2, we have

Theorem 9. Suppose K ∼= ZNSL(n) be a zinc silicate network as shown by Fig. 2, then

Proof Based on the Definition 2  and Table 2, we have

Theorem 10 Suppose K ∼= ZNSL(n) be a zinc silicate network as shown by Fig. 2, then

Proof Based on the Definition 3 and Table 2, one has

Theorem 11 Suppose K ∼= ZNSL(n) be a zinc silicate network as depicted by Fig. 2,

Proof Based on the Definition 5 and Table 2, one has
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Table 2.  Edge partition of ZNSL in relation to the degrees.
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|Edp,q| 10n+ 14 64n+ 32 21n+ 7 8n+ 8
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The following corollary is a direct consequent of Theorem 11.

Corollary 12 Suppose K ∼= ZNSL(n) be a zinc silicate network as shown by Fig. 2, then

Theorem 13 Suppose K ∼= ZNSL(n) be a zinc silicate network as shown by Fig. 2, then

Proof Based on the Definition 7 and Table 2, one has

Theorem 14 Suppose K ∼= ZNSL(n) be a zinc silicate network as shown by Fig. 2, then

Proof Considering Table 2 and Definition 4, we can write
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Figure 3.  The comparison of n and M2(G).
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Figure 4.  The comparison of n and . H(G)

Figure 5.  The comparison of n and . RR(G)

Figure 6.  The comparison of n and . ReZRG1(G)
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Graphical interpretations
In this part, we worked out all indices numerically and presented the results in the table below. From Figs. 3, 4, 
5, 6, 7, 8, 9 and Table 3, it is easy to see a positive relationship between n and the considered topological indi-
ces. As we increase n, the topological indices also increase. The comparative graphs of M2(G) , H(G) , RR(G) , 
ReZG1(G) , ReZG2(G) , ReZG3(G) and F∗N(G) indices of ZNOX for various values are presented in Fig. 10. Thus, 
Fig. 10 describe that all indices for ZNOX increase for increasing value of n. The increasing rate of ReZG3(G) 
is higher than that of other topological indices. This depict that, ReZG3(G) achieved higher values than other 

Figure 7.  The comparison of n and . ReZRG2(G)

Figure 8.  The comparison of n and . ReZRG3(G)

Figure 9.  The comparison of n and F∗
N
(G).
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Table 3.  Comparison of M2(G) , H(G) , RR(G) , ReZG1(G) , ReZG2(G) , ReZG3(G) and F∗N(G) for ZNOX.

[n] M2(G) H(G) RR(G) ReZG1(G) ReZG2(G) ReZG3(G) F∗

N (G)

[1] 21.628 51.44 330.56 105.94 163.424 4744 1832

[2] 33.556 80.45 524.12 165.94 259.034 7558 2918

[3] 45.484 109.46 717.68 225.91 354.648 10, 372 4004

[4] 57.412 138.47 911.24 285.88 450.26 13, 186 5090

[5] 69.34 167.48 1104.8 345.85 545.872 16, 000 6176

[6] 81.268 196.49 1298.36 405.82 641.484 18, 814 7262

[7] 93.196 225.5 1491.9 465.79 737.096 21, 628 8348

[8] 105.124 254.51 1685.4 525.76 832.708 24, 442 9434

[9] 117.052 283.52 1879.04 585.73 928.32 27, 256 10, 520

[10] 128.98 312.53 2027.6 645.7 1023.93 30, 070 11, 606

Figure 10.  Comparison of topological indices for various values of n in ZNOX.

Figure 11.  The comparison of n and M2(G).
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Figure 12.  The comparison of n and . H(G)

Figure 13.  The comparison of n and . RR(G)

Figure 14.  The comparison of n and . ReZG1(G)
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Figure 15.  The comparison of n and . ReZG2(G)

Figure 16.  The comparison of n and . ReZG3(G)

Figure 17.  The comparison of n and F∗
N
(G).
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classical Zagreb indices, which may have better correlation with the thirteen physicochemical characteristics 
of octane isomers.

From Figs. 11, 12, 13, 14, 15, 16, 17 and Table 4, it is easy to see a positive relationship between n and the con-
sidered topological indices. As we increase n, the topological indices also increase. Meanwhile, the comparative 
relationship of M2(G) , H(G) , RR(G) , ReZG1(G) , ReZG2(G) , ReZG3(G) and F∗N(G) indices of ZNSL for various 
values are presented in Fig. 18. Thus, Fig. 18 describe that all indices for ZNOX increase for increasing value of 
n. The increasing rate of ReZG3(G) is higher than that of other topological indices. This depicts that, ReZG3(G) 
achieved higher values than other classical Zagreb indices, which may have better correlation with the thirteen 
physicochemical characteristics of octane isomers.

Conclusion
In this research, we calculated various recently discovered molecular descriptors for two separate metal–organic 
networks. The molecular descriptors which we considered are M2(G) , H(G) , RR(G) , F∗N (G) , ReZG1(G) , ReZG2(G) 
as well as ReZG3(G) . The two metal–organic networks we considered are, Zinc oxide (ZNOX(n)) and zinc sili-
cate (ZNSL(n)) . The numerical and graphical comparative analysis of the considered molecular descriptors are 
also performed. The obtained results depict that ReZG3(G) achieved higher values than other classical Zagreb 
indices, which may have better correlation with the thirteen physicochemical characteristics of octane isomers. 

Table 4.  Comparison of M2(G) , H(G) , RR(G) , ReZG1(G), ReZG2(G) , ReZG3(G) and F∗N(G).

[n] M2(G) H(G) RR(G) ReZG1(G) ReZG2(G) ReZG3(G) F∗

N (G)

[1] 26.45 64.29 421.6 132.01 208.62 6120 2344

[2] 42.62 104.17 688.44 214.01 340.63 10, 006 3834

[3] 58.79 144.05 955.28 296.01 472.64 13, 892 5324

[4] 74.96 183.93 1222.12 378.01 604.65 17, 778 6814

[5] 91.13 223.81 1488.96 460.01 736.66 21, 664 8304

[6] 107.3 263.69 1755.8 542.01 868.67 25, 550 9794

[7] 123.47 303.57 2022.6 624.01 1000 29, 436 11, 284

[8] 139.64 343.45 2289.4 706.01 1132.6 33, 322 12, 774

[9] 155.81 383.33 2556.3 788.01 1264.7 37, 208 14, 264

[10] 171.98 423.21 2823.1 870.01 1396.71 41, 094 15, 754

Figure 18.  Comparison of topological indices for various values of n in ZNSL.
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It is quite motivating to study the distance based topological indices for the Metal–Organic Networks. In the 
near future we will carry it out.

Data availability
All data generated or analysed during this study are included in this article.
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