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High‑dimensional spatiotemporal 
visual analysis of the air quality 
in China
Jia Liu , Gang Wan *, Wei Liu , Chu Li , Siqing Peng  & Zhuli Xie 

Air quality is a significant environmental issue among the Chinese people and even the global 
population, and it affects both human health and the Earth’s long‑term sustainability. In this study, 
we proposed a multiperspective, high‑dimensional spatiotemporal data visualization and interactive 
analysis method, and we studied and analyzed the relationship between the air quality and several 
influencing factors, including meteorology, population, and economics. Six visualization methods 
were integrated in this study, each specifically designed and improved for visualization analysis 
purposes. To reveal the spatiotemporal distribution and potential impact of the air quality, we 
designed a comprehensive coupled visual interactive analysis approach visually express both high‑
dimensional and spatiotemporal attributes, reveal the overall situation and explain the relationship 
between attributes. We clarified the current spatiotemporal distribution, development trends, and 
influencing factors of the air quality in China through interactive visual analysis of a 25‑dimensional 
dataset involving 31 Chinese provinces. We also verified the correctness and effectiveness of relevant 
policies and demonstrated the advantages of our method.

In China, the acceleration of urbanization has driven the development of industrialization and centralization 
of society and the economy. At the same time, the excessive use of land and natural resources has caused vari-
ous serious ecological degradation and environmental pollution problems, threatening both human health and 
sustainable urban development. One of the more prominent environmental pollution problems is air pollution. 
Frequent haze weather has caused notable concern among  people1, has significantly and persistently impacted 
all aspects of society, and has become a hot issue concerning the public, government, and  academia2.

The world’s largest population can be found in China, which encompassed a land area of 9.6 million square kil-
ometer. By the end of 2021, the urban population reached 914.25 million people, the rural population amounted 
to 498.35 million people, and the gross domestic product (GDP) reached 114,366.97 billion yuan, of which 
industrial production accounted for 39.4% of the total amount. From 20.5317 million units in 2002 to 294.1859 
million units in 2021, the number of civilian automobiles has grown. Several dangerous substances can be found 
in vehicle exhaust, including harmful gases, suspended particulates and heavy metals. The consumption of 
various fossil fuels is also increasing year by year, and large amounts of aerosols, particulate matter and harm-
ful gases are emitted into the atmosphere. Overall, Chinese industrial development more notably depends on 
the consumption of fossil energy, during which many harmful pollutants are discharged into the  atmosphere3. 
However, the levels of public health services and environmental supervision are unsatisfactory, which has been 
difficult to control for a long time, resulting in ecological destruction and a threat to human health.

According to statistical data, air pollution significantly increases the chance of the development of respira-
tory conditions and death resulting from cardiorespiratory  causes4. High levels of aerosol particles can result in 
oxidative damage to human DNA and can exert a major negative impact on human  health5. High ozone levels fre-
quently coexist with high aerosol levels during pollution events, raising additional health  concerns6. Air pollution 
imposes obvious and immediate effects on human health, not only increasing the incidence of respiratory and 
cardiovascular diseases among  people7 but also affecting the climate and causing more extreme weather events, 
including floods and  droughts8. In conclusion, air pollution negatively impacts the lives and health of the Chi-
nese people, deteriorates the natural environment and reduces the sustainable competitive advantages of cities.

Therefore, it is necessary to further analyze of the spatial and temporal attributes of pollutants in the atmos-
phere and the influencing factors of the air quality and reasonably predict the air quality to provide a level of 
protection for both humans and  nature9, improve the urban air quality, create a more livable urban  environment10, 
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offer a more reliable scientific foundation for the formulation of both environmental and health policies, and 
provide helpful recommendations, which is also the main focus of contemporary urban  development11.

In the current literature, the visual method is frequently utilized in analytical studies to perform spatiotempo-
ral visual analysis of air pollution. Shindell et al. studied Arctic air pollution attributed to the flow of atmospheric 
pollutants in  space12, and used maps, box plots, and line charts to assist the analysis. Sanderson et al. examined 
the global flow of airborne nitrogen  oxides13 in conjunction with the use of maps for visualization-assisted 
research. Cui et al. used a map to visualize the annual average change in  NO2 in 341 prefecture-level Chinese 
cities from 2005 to  201614 and analyzed its temporal and spatial variations, to establish more effective regional 
emission reduction policies for sustainable development. In regard to spatial analysis, Cai et al. constructed 
a high-resolution database of Chinese pollutant emissions, thereby laying a solid foundation for the study of 
Chinese environmental emissions and emission reduction  policies15. In this study, maps were adopted as visual 
representations of spatial information. Bennett et al. examined the health hazards of particulate matter with an 
aerodynamic diameter smaller than 2.5 µm (PM2.5), specifically its impact on lifespan, and they further con-
sidered the effect of PM2.5 reduction on the U.S.  population16. Map and scatterplot visualization methods were 
employed in this study. In these studies, the visual analysis method was inconsistently used for research, thereby 
employing a single visualization approach, with no or insufficient interaction analysis. As a result, visual analysis 
of air pollution has remained at the auxiliary stage. Furthermore, high-dimensional spatiotemporal visual analysis 
has been less frequently coupled with other potentially associated influencing elements, and concentration vari-
ations, impacts, and causes have only been examined for one or more air pollutants.

Qu et al. introduced a comprehensive system for meteorological data visualization combining novel tech-
niques with tried-and-true visualization technologies, including the improved parallel coordinates plot (PCP) 
with S-shaped axes, circular pixel bar graphs integrated in polar systems, and weighted full diagrams. This method 
was used to examine the air pollution issue in Hong  Kong17. Thomas et al. interpreted the content of particles 
in an air pollution dataset using the PCP  method18. In this study, they mainly visualized high-dimensional data 
of air pollutant concentrations and weather conditions. Bachechi et al. conducted dimensionality reduction and 
spatial clustering of air pollution datasets and then visualized these data in 2D  space19. Yanosky et al. performed 
a spatiotemporal analysis of PM2.5 and respirable particulate matter (PM10) with map visualization as the analy-
sis  method20. Deng et al. studied the propagation patterns of particulate matter in the atmosphere via a visual 
analysis  method21. Engel et al. designed an interactive visualization framework for a high-dimensional air quality 
 dataset22. Li et al. visualized air quality variation regulations and related meteorological attributes in different 
cities, thereby revealing the relationship between smog and meteorological  attributes23. Lu et al. developed two 
visualization tools for multigranularity time series to study urban air quality  data24. The air pollution datasets 
in these studies exhibit high dimensions, and some datasets contain incorporated weather elements with visual 
analytic methods for analysis purposes, but the influencing factors remain inadequately understood. Moreover, 
high-dimensional, temporal, and spatial visual analysis research remains rare.

Based on previous research, we employed various visual channels, interactive analysis technologies, and spa-
tiotemporal and high-dimensional visual encoding methods in this study to investigate the potential influencing 
factors, temporal and spatial variation characteristics, and development trends of air pollution from distinct 
viewpoints. The primary contributions of this study can be described as follows: (1) creating a high-dimensional 
spatiotemporal air quality dataset by gathering relevant data and associated meteorological, demographic, eco-
nomic, and other parameters and (2) performing interactive visual analysis from distinct perspectives. To specifi-
cally address the challenges of our air quality dataset analysis approach involving various interactive technologies, 
the kernel density curve was adopted to expand the histogram for attribute distribution visualization. To reflect 
the temporal change in attributes, a kernel density ridgeline chart was generated. To detect the relationships 
between paired attributes, the Pearson coefficient was introduced. (3) We designed and implemented a visual 
analysis system that can simultaneously analyze high-dimensional, temporal, and spatial data. We demonstrated 
how to effectively visualize the evolution of multiple dimensional attributes of air pollution data over time and 
space by using maps, PCPs, and time axes and customizing scatterplot matrices.

The investigation of our interactive visualization technique produced certain beneficial results. First, research 
and analysis of high-dimensional spatiotemporal datasets could yield promising findings. Moreover, interactive 
visual analysis of high-dimensional spatiotemporal datasets from multiple perspectives not only produces sat-
isfactory visual effects but also provides a greater display power of data details. Second, in this study, we focused 
on supporting the visualization and interactive exploration of high-dimensional spatiotemporal air pollution 
datasets, extending the research methods and fields of previous work, thereby providing assistance to decision-
makers in the formulation of air pollution control and health hazard prevention strategies, which has important 
practical implications for subsequent knowledge-based decision-making processes and auxiliary research.

In this study, we first reviewed relevant spatiotemporal visual analysis, high-dimensional visual analysis, and 
air pollution studies. Next, the research contents were described in detail, including visualization methods and 
visual interactive analysis methods. We arranged the air pollution data and related or possibly related factors, 
organized these data and factors from temporal and spatial perspectives, and finally established a high-dimen-
sional spatiotemporal air pollution dataset. Finally, with the use of the enhanced visual approach in conjunction 
with the interactive analysis method, we thoroughly examined the established high-dimensional spatiotemporal 
air quality dataset from various perspectives, obtained certain findings, and formulated recommendations.

Materials and methods
Study area. We analyzed the air quality features of 31 Chinese provinces in this work.
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Data source. We used air quality monitoring data of 369 urban areas in the 31 Chinese mainland provinces 
from January 2014 to December 2021, including the observation time, air quality index (AQI), and ambient 
concentration of the six main components of PM2.5,  NO2,  O3,  SO2, CO, and PM10, where the concentration unit 
of CO is mg/m3, and that of the other five main components is μg/m3. These data are calculated and displayed 
in https:// www. aqist udy. cn/ histo rydata/ and have been compiled monthly since December 2013. There are two 
reasons for selecting this online air quality dataset. First, the dataset covers a wide time range and a comprehen-
sive range of cities and regions. Second, this dataset is based on a monthly time scale, which is convenient for 
creating monthly and yearly visualizations, and requires less data calculation.

We also obtained information available to the general  public25 regarding additional elements that might 
impact the air quality, including population, per capita disposable income, gross regional product, per capita 
gross regional product, level of education, urban green area, total afforestation area, fossil energy consumption, 
natural gas consumption, electricity consumption, secondary industry GDP, and number of civilian automobiles. 
We collected the above data for 31 provinces in China from 2014 to 2021, and the data were retrieved from the 
National Bureau of Statistic (http:// www. stats. gov. cn/ tjsj/).

China meteorological data, i.e., data on meteorological elements, including temperature, wind speed, and 
precipitation, from 2014 to 2021 were obtained, covering more than 400 stations, and the data were retrieved 
from the National Climatic Data Center (NCDC) (https:// www. ncei. noaa. gov/).

After processing the aforementioned data, a 25-dimensional air quality dataset of China with high-dimen-
sional general and spatiotemporal attributes was created.

Dataset preparation. Before visualization and analysis, the collected datasets were preprocessed for their 
direct application to visual analysis tools. We developed a code in the Python language for data cleaning and 
preparation.

First, we collated the raw air quality data and grouped the selected cities into their respective provinces, and 
strictly in accordance with the urban scale concentration calculation standards of the evaluation items noted 
in Ref.26, the monthly concentration of each air index in each province was calculated. Then, according to the 
annual evaluation calculation method, the annual mean value of each index was obtained.

The annual average concentrations of  NO2, CO, PM10,  SO2, and PM2.5 in the atmosphere were measured for 
review. The 90th percentile of the daily maximum 8-h average of  O3 and the 95th percentile of the 24-h average of 
CO were used in the annual evaluation process. The percentile can be calculated by arranging the pollutant con-
centration data in ascending order. The sorted concentration sequence can be denoted as {X(i), i = 1, 2, . . . , n} . 
First, the ordinal number k of the pth percentile mp can be obtained as follows:

where k is the ordinal number corresponding to the pth percentile, and n is the concentration value in the pol-
lutant concentration series. Then, the pth percentile mp can be calculated as follows:

where s is the integer part of k, and s is equal to k when k is an integer.
Then, based on the 31 provinces, the AQI for the 12 months of each year was collated, and this dataset was 

stored in JSON format to facilitate spatiotemporal map visualization. Then, conversion into another format was 
performed, and the dataset was stored in CSV format to facilitate ridgeline chart generation.

Third, time information, geographic location (latitude and longitude) information, and other attributes related 
to the air quality were collated and compiled into a comprehensive high-dimensional spatiotemporal dataset, 
which could facilitate the establishment of maps, PCPs, scatter plots, and data tables.

Finally, a correlation coefficient dataset was generated using the most commonly employed Pearson correla-
tion  coefficient27,28, via the corr() function in the Python package, thereby excluding any nan values. The Pearson 
correlation coefficient was denoted as ρ(x, y) . Then, the Pearson correlation coefficient between two attributes 
x and y can be defined as:

where σx and σy are the standard deviation, and −1 ≤ ρ(x, y) ≤ 1 , with a value less than 0 suggesting a negative 
correlation and a value greater than 0 suggesting a positive correlation.

Methods. Visual analysis is based on the classical visualization technique and involves the use of interac-
tive methods to explore and analyze complicated  datasets29. Regarding high-dimensional spatiotemporal data, 
the visual analysis method is especially suitable for research and exploration. Visual analysis methods can not 
only consider geospatial information but can also ignore high-dimensional attributes and intuitively express 
the change and development of variables over time. In particular, different visual interaction techniques can be 
adopted for rapid and efficient exploration.

Spatiotemporal map. In visual analysis, maps are the most commonly used spatial visualization tools because 
the presentation of maps enables both professional and nonprofessional analysts to achieve preliminary assess-
ment of the evolution of events in geospatial  areas30. Accurate AQI forecasting benefits the local economy, envi-
ronment, and public  health31. Therefore, we created a spatiotemporal map to reveal the monthly changes and 
developments in the air quality across the 31 Chinese provinces between 2014 and 2021, thereby employing 

(1)k = 1+ (n− 1)× p%

(2)mp = X(s) + (X(s+1) − X(s))× (k − s)

(3)ρ(x, y) =
cov(x, y)
σxσy

https://www.aqistudy.cn/historydata/
http://www.stats.gov.cn/tjsj/
https://www.ncei.noaa.gov/
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color channels to display the AQI and a time drop-down list to visualize the time sequence. Moreover, we added 
highlighting interaction and mouse hover prompt box interactive analysis. The highlighting interaction process 
here marks the boundary line of the current administrative division in bold to realize the exploration of a single 
specific value. As a result, overall spatiotemporal exploration could be conducted, and all the details could be 
grasped, as shown in Fig. 1. A demo of the spatiotemporal map is available at http:// 18. 223. 136. 39: 8080/ aqi/ 
page1. html.

Kernel density estimation curve. Kernel density estimation is a nonparametric estimation  technique32,33. In con-
trast to commonly used parameter estimation methods, such as likelihood estimation, a better model can be 
obtained by fitting the probability distribution of the dataset according to the data characteristics and properties 
without adding any prior knowledge. Therefore, in this study, we proposed the use of kernel density curves to 
visualize air quality datasets. Let f be the probability density function of the independent identical distribution F 
with n sample points x1, x2 · · · xn , in which the kernel density can be estimated as:

where K(·) is a kernel function. There are several varieties of kernel functions, such as uniform and Epanech-
nikov kernel functions. The smoothing parameter referred to known as the bandwidth must be specified for 
h > 0 . Kh(x) =

1
hK

(

x
h

)

 is the scaled kernel. In this study, the Epanechnikov function was chosen as the kernel 
function, which exhibits the best mean square error and suffers little efficiency loss. The Epanechnikov function 
can be expressed as follows:

(4)f̂h(x) =
1
n

n
∑

i=1

Kh(x − xi) =
1
nh

n
∑

i=1

K
(

x−xi
h

)

Figure 1.  Spatiotemporal maps of the air quality index.

http://18.223.136.39:8080/aqi/page1.html
http://18.223.136.39:8080/aqi/page1.html
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In this study, we proposed the visualization of the monthly AQI data of each year via a kernel density curve, 
which can be arranged by month to display the data information of the whole year. Because the shape is similar 
to that of continuous mountains, the graph is referred to as a ridgeline chart. The properties of the data prob-
ability distribution cannot be fully captured by the kernel density curve alone, and the number of visual encod-
ing channels should be kept to a minimum. We added a visual channel involving a continuous color hue to the 
internal area of the curves to reflect the distribution through a gradual change in colors to produce a visually 
prominent effect, enhance the numerical expression, and increase the intuitiveness of the visualization effect, 
as shown in Fig. 2, which is similar to the above spatiotemporal map in which the visual representation of time 
series is further implemented in the form of a drop-down list. A demo of the ridgeline chart is available at http:// 
18. 223. 136. 39: 8080/ aqi/ page2. html.

In addition, in this study, we used a kernel density curve on the diagonal of the scatter matrix to visualize the 
numerical distribution of each attribute. Here, this was used with a histogram to display the attribute distribu-
tion in a continuous manner.

Pearson correlation coefficient matrix. The correlation is a statistical indicator of the relationship between 
paired attributes. The correlation coefficient is a statistical metric indicating the degree of connection between 
variables. A positive correlation suggests that both attributes concurrently increase, while a negative correlation 
suggests that one characteristic improves while the other deteriorates. There are other ways to define the correla-
tion coefficient, but the most commonly used method is the Pearson correlation coefficient. In the high-dimen-
sional spatiotemporal dataset collated in this study, there are 22 general attributes. To investigate the aspects 
that influence the air quality, analyze the relationship between the various indicators, and examine the causes 
of air pollution, we proposed to visualize the correlation coefficients of these 22 dimensions and display them 
in the form of a matrix. The diagonal line was designed to display attribute names, and the lower triangle of the 
matrix shows the value of the relationship between the pairwise attributes with a color visual channel. The upper 
triangle of the matrix cooperatively encodes the correlation coefficient value using the circular area and color 
visual channels. While the color of the circle indicates the occurrence of a positive or negative correlation and 
the correlation degree, the size of the circle area reflects the magnitude of the correlation level. This design is 
succinct, understandable, and effective and adheres to the visual encoding concept. As shown in Fig. 3, the color 
gradient also serves as a legend to explain the numerical significance of the color channel. A demo of the Pearson 
correlation coefficient matrix is available at http:// 18. 223. 136. 39: 8080/ aqi/ page3. html.

PCP. For high-dimensional datasets, the  PCP34 is a popular exploratory analysis and visualization tool. This 
method expands our capacity to simultaneously display various aspects of high-dimensional datasets in two-
dimensional planes and to visualize high-dimensional data across a wide range of applications, as confirmed in 
a number of disciplines, including computer  science35, health  sciences36, and  ecology37. After the widespread use 
of PCPs, their inherent defects have been exposed. Therefore, many scholars have also implemented a number 
of excellent improved techniques, such as  highlighting38, brushing  technology39, and axis  exchange40, which can 
realize data highlighting, data screening and filtering, and axis sorting according to the importance of attributes, 
to enhance the PCP visualization  performance41.

In this work, the 22 high-dimensional generic attributes were also visually encoded with the PCP method. 
Furthermore, five interactive analytical methods were designed to assist in analysis and exploration. First, in the 

(5)K(x) = f (x) =

{

3
4
(1− x2), |x| ≤ 1

0, otherwise

Figure 2.  Ridgeline chart of the air quality index.

http://18.223.136.39:8080/aqi/page2.html
http://18.223.136.39:8080/aqi/page2.html
http://18.223.136.39:8080/aqi/page3.html
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statistical coloring  approach42, a certain axis was selected as the benchmark, and the polyline was color coded 
in accordance with the attribute value. Second, the highlighting method was adopted. When a given polyline 
is selected, it can be highlighted via thickening with the transparency set to 1, and the position information of 
the current polyline can be displayed with the tooltip. Third, brushing technology enables users to more clearly 
comprehend the change trend of local data and better realize the study of data features by highlighting the chosen 
polyline portion while hiding other polylines. Fourth, the coordinate axis exchange technique was implemented. 
This could allow analysts to tentatively change the order of axes and compare the attributes at adjacent positions 
to obtain the internal relationship, rules and implicit trends between two attributes. Fifth, axis reverse technology 
was applied to display polylines in a satisfactory and easy-to-observe form, rather than in the form of crosses. 
The attribute name above the coordinate axis displayed in reverse order was underlined.

In addition, in joint visual analysis of PCPs and maps, we designed a linkage interaction analysis approach. 
The map and line were concurrently highlighted, and the corresponding administrative divisions in the map 
could be selected while the line is highlighted, as shown in Fig. 4. By clicking the attribute name above the coor-
dinate axis, axis reversal could be realized, while the map color indicates the value of the current attribute, and 
the corresponding legend is displayed.

Figure 3.  Pearson correlation coefficient matrix.
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Scatterplot matrices. The scatterplot  matrix43 is a popular visualization method used to display the relationship 
between pairwise dimensions. The air quality dataset in this study contains a wide range of attributes. This may 
result in display congestion and confusion if presented in a constrained interface in the form of a scatterplot 
matrix. Therefore, we designed a scatterplot matrix that can be customized in terms of attributes. Notably, we 
selected several attributes in the left attribute list to generate a corresponding scatterplot matrix. The number of 
attributes is controlled within 8, and the effect is improved, as shown in Fig. 5.

The diagonal of the scatter matrix is a very efficient way to show the overall distribution of each attribute 
using a  histogram44. To reflect the data distribution more objectively and better, it is necessary to reasonably set 
the value of the main parameter bins. Here, we achieved better results by setting the bin value to 40. However, 
the histogram is affected by its inherent defects, the distribution is not smooth, the shape is discontinuous, and 
different bin parameters can produce varying visual effects. To solve this problem, a one-dimensional kernel 
density estimation curve was added to the histogram in this study to visualize the distribution of attributes 
together with the histogram. The main parameter of the kernel density curve, i.e., the bandwidth, was set to 3.

We also added a scaling factor to the data value so that the histogram and kernel density curve could be 
effectively expressed together. Due to the various dimensional units, the data of the various dimensions exhibit 
various scaling factors, as shown in Fig. 5, and the kernel density curve captures the effect after scaling.

Tables and software package. The visualization methods involved in this study, including PCPs, scatterplot 
matrices, kernel density curves, histograms, and maps, were all implemented using the D3.js visualization 
 library45. D3.js is a notable database and uses a scalable vector graphics file format to generate high-resolution 
web graphics pages, thereby providing a high customization degree, which is suitable for the customization of 
various types of visualization needs and visual interaction technologies.

Moreover, D3.js provides a color scheme, which can mitigate the notable visualization problems caused 
by self-color matching, and the color scheme is very flexible. In addition, the grid of the free and open-source 
jQWidgets  framework46 served as table support to visually display the organized air quality dataset, as shown in 
Fig. 6. The visualization and interaction analysis results were finally realized in the form of web pages in this study.

Results
Spatiotemporal analysis of the AQI. The AQI is a nondimensional indicator used to describe air quality 
conditions, and varying air quality levels are associated with different health implications. According to Ref.47, 
the AQI can be split into five categories from 0 to 300, which reflect excellent, medium, light, moderate, and 
severe pollution, with values exceeding 300 denoting dangerously polluted conditions, and corresponding color 
values were used to represent the various levels. These values could allow us to assess the air pollution degree and 
implement the appropriate precautions to protect people.

Figure 4.  Interrelated highlighting interactions.
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We initially used the map visualization approach to create a spatiotemporal map of the AQI for each month 
of the whole year from 2014 to 2021 to better understand the spatiotemporal variation in the air quality. With the 
provincial administrative division classification as the fundamental analytical unit, each administrative division 
was color filled according to the recommended grading color, and the time axis was used to visualize the time 
series, as shown in Fig. 1. The interactive analysis method involving highlighting and tooltip use was employed 
for exploration, and the legend of the color channel was provided above the map.

The spatiotemporal map of the air quality revealed that the air quality was generally best in summer and worst 
in winter, which may be related to winter heating, and the air quality in spring and autumn was generally average. 
It could be concluded that the air quality was largely related to seasonal variations. Analysts can also select the 
year of choice from the drop-down list to observe the AQI changes for each year. We also discovered that the air 
quality is improving every year, which may be due to various causes, including governmental energy-saving and 
emission reduction initiatives, the usage of new clean energy cars, and afforestation.

To evaluate the air quality changes in China as a whole, in this study, we also introduced a one-dimensional 
kernel density curve to visualize the distribution of the AQI in the 31 administrative divisions, which was 
arranged by month to generate a ridgeline chart with continuous colors according to the AQI distribution. The 
bandwidth parameter was set to 7. As shown in Fig. 2, the higher the kernel density curve is, the higher the 
density, i.e., the occurrence probability is higher. We colored the internal area red. In contrast, the lower the 
curve is, the lower the occurrence probability, and the internal area was colored blue. The color legend is shown 
on the right side. The color is continuous and gradually varies with the change in the density value. The color 
channel was used to encode the inner area of the kernel density curve, which is crucial for revealing the density.

The X-axis of the figure denotes the AQI value, which gradually increases from left to right, indicating that 
the air quality is decreasing. In the figure, a red part can be observed on the left, and the larger the red area is, the 
better the air quality. Analysts can change the time from the drop-down list to observe the temporal evolution 
of the data, and it could be easily found that the red area increased each year and was located farther to the left, 
further verifying that the air quality is improving year by year.

Correlation visual analysis of air pollutants and other related influencing factors. The adminis-
trative division was chosen as the unit of the collated high-dimensional spatiotemporal dataset in this study, and 
the values of each dimension from 2014 to 2021 were obtained to calculate the Pearson correlation coefficient 
value, which was visualized as a matrix, as shown in Fig. 3. Positive and negative correlations were indicated by 

Figure 5.  Scatterplot matrices of the customized attributes.
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various colors, and the size of the circular area could be used to convey the connection degree. Red denotes a 
negative connection, while blue denotes a positive association. The strength of the connection increases with 
increasing absolute value of the correlation coefficient. If the value is 0, irrelevance is indicated, and the transi-

Figure 6.  Comprehensive visualization of the high-dimensional spatiotemporal air quality dataset. PCPs, maps, 
customized scatterplot matrices, and assisted tables are integrated. It is easy to visually analyze spatiotemporal 
datasets from various fields through interactive analysis methods.
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tion color green is used in the middle. Here, the circle area and color channels were used as the key encoding 
channels to reveal the correlation between attributes. The value and color of the lower triangle were used to help 
explain the specific related situation.

With the use of Beijing as an example, it could be readily observed that there exists a substantial link between 
pollutants and air quality, with fossil fuel use as the dominant factor. It could be concluded that the burning of 
fossil fuels is the primary source of atmospheric pollution. There is also a certain positive correlation between the 
air quality and rainfall. In other words, wet days could aggravate air pollution and prevent dangerous particles 
from dispersing into the atmosphere. The air quality was also negatively correlated with the urban green space 
area and the artificial afforestation area to a large extent. Notably, afforestation could effectively reduce air pollu-
tion. Therefore, air pollution could be effectively controlled and prevented by increasing the green area. Moreover, 
natural gas and electricity could be used as clean energy to reduce air pollution occurrence.

Multidimensional spatiotemporal data visual analysis. Figure  6 shows the comprehensive visual 
analysis interface of the high-dimensional spatiotemporal air quality dataset. PCPs were used to display the 
high-dimensional general attributes, a map was used to visualize the geospatial attributes, and the time sequence 
was displayed through the drop-down list. Scatterplot matrices, histograms, and kernel density curves were used 
to assist in realizing the visualization system of the high-dimensional spatiotemporal dataset.

The combination of maps and PCP is a very effective, verified, and general visual analysis method for geospa-
tial high-dimensional data, such as geo-coordinated parallel coordinates (GCPC)48. To better comprehend the 
distribution and association of features, the combination of scatterplot matrices and PCPs has been frequently 
used to depict high-dimensional  information49,50.

On the basis of previous work, we proposed the combined visualization of maps, PCPs and scatterplot matri-
ces, in addition to a time axis, which could simultaneously realize high-dimensional, temporal, and spatial data 
visualization. In addition, we designed joint interactive analysis techniques, which could be applied to better 
understand the influencing factors and development trends of the air quality to offer a scientific foundation for 
air pollution management and ecological environment improvement.

At this stage, PCPs could provide visualization and interactive analysis of high-dimensional general attributes. 
Interactive technologies could help users find information and facilitate the exploration process. To promote 
overall data observation, the drop-down option allows us to change the attribute axis of the statistical coloring 
scheme in this case. Second, the highlighted polylines, highlighted map administrative divisions and prompt 
boxes generated via mouse hovering could elucidate the association between the high-dimensional attributes 
and geographic information by sensing the implicit connections generated by all highlighted matches. Analysts 
can start exploration from high-dimensional attributes as well as geospatial attributes to explain the situation of 
atmospheric pollutants and other factors that may exhibit a causal relationship with these pollutants. To facilitate 
the comparison of pairwise attributes, the axis exchange interaction analysis method and axis reverse interaction 
method were used in PCP generation to analyze the data more conveniently and quickly. By clicking the attribute 
name above the coordinate axis, the data value displayed in the map can be switched to the current attribute, 
combined with the corresponding legend. Users can filter data using brush  techniques51.

Integrating other visualization methods with the PCP technique could facilitate the visual information-seek-
ing process by revealing different data aspects that are difficult to reveal through polyline patterns alone. Scatter 
plots are a popular visualization method to evaluate whether there exists a correlation between two variables.

We established an attribute customization method for the scatter graph matrix due to the high dimension 
and constrained page coverage. Through selection interaction, the selected attributes can be displayed in the 
resulting scatterplot matrix.

As shown in Fig. 6, the selected attributes include PM2.5, AQI, UGA, TAAA, FEC, NGC, and EC. In this 
chart, the distribution of points in each scatter plot and the general trend of variable change can be examined.

On the diagonal, the histogram and kernel density curve jointly show the distribution of the individual attrib-
utes to help users more accurately perceive the data occurrence frequency. Finally, the raw data can be visualized 
in the form of a table, so that analysts can intuitively analyze these data to assist assessment, as shown in Fig. 6.

Additionally, we attached a table below to explain the abbreviations of each attribute, as shown in Fig. 6. A 
demo of the proposed high-dimensional spatiotemporal air quality dataset visual analysis method is available 
at http:// 18. 223. 136. 39: 8080/ aqi/ page4. html.

The time drop-down list can be switched to visualize and analyze the evolution of each attribute over time. 
By observing the polyline changes, we could track the spatiotemporal variation characteristics, spatial distribu-
tion characteristics and variation trends of the air quality and found that the primary pollutants affecting the air 
quality differed in each province, which may be closely related to the local industrial structure, climatic condi-
tions, and geographical location to a certain extent, among which wind was more conducive to the diffusion of 
air pollutants. Moreover, we found that air pollution prone areas were geographically consistent with high fossil 
energy consumption levels, such as Shandong Province and Hebei Province. The use of map visualization to 
achieve comparison among the various administrative division units could play a favorable role in correlation 
analysis because air pollution is not restricted by regional boundaries, let alone national boundaries. Through 
visualization, it could be possible to estimate the degree of responsibility of polluters. Clicking the attribute 
name on the parallel coordinate axes can quickly switch the attributes displayed on the map, allowing us to bet-
ter understand the spatial distribution of the different attributes from a spatial perspective, which is helpful for 
developing strategic strategies for air pollution reduction efforts.

Overall, it is challenging to fully visualize and interactively analyze high-dimensional spatiotemporal infor-
mation. Our design could help governments better understand the causes of the spatiotemporal distribution, 

http://18.223.136.39:8080/aqi/page4.html
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and potential influencing factors of air pollution so that they can formulate and implement important action 
plans to curb its development.

Discussion
Air pollution poses notable hidden risks to the global ecology and exerts potential long-term impacts on human 
health and social development, which it has further aroused the attention of academia and policymakers. Real-
time air quality and pollution monitoring information has been made available by the China Ministry of Envi-
ronmental Protection since January 2013. It is now feasible to research the temporal and spatial aspects of air 
pollution across China owing to the development of monitoring infrastructure and continual extension of the 
monitoring  scope52. In this study, we used 8 years (2014–2021) of air pollution data for the provincial adminis-
trative divisions in China and high-dimensional spatiotemporal data comprising related factors and proposed 
a comprehensive integrated high-dimensional spatiotemporal air pollution data visual analysis system using 
various visual encoding methods and interactive analysis technologies to comprehensively explore the data 
from multiple perspectives.

The Chinese government has gradually implemented different emission control measures with a focus on 
the use of renewable energy and the reduction in industrial and vehicle exhaust  emissions53. Additionally, com-
parable emission reduction goals have been developed based on the unique characteristics of each  province54. 
The Chinese government is actively promoting the use of technology for emission reduction and clean energy 
at the same time. Studies have demonstrated that clean energy technologies can indeed greatly improve the air 
 quality55. This further verifies the reasons for the improvement in the air quality in China, and data analysis could 
provide guidance for air pollution control measures. In this study, we illustrated the relevance of our results for 
policymaking purposes.

Conclusions
From this research, the following findings could be drawn:

(1) The air pollutants in each region vary, and the causes also differ. Therefore, governance must be targeted 
and adapted to local conditions.

(2) Vegetation and terrain can affect the air quality. Vegetation can absorb pollutants and improve the air qual-
ity. However, excessively dense vegetation can also affect the diffusion of pollutants to a certain extent.

(3) There exists a strong self-correlation between air pollutants, and the accumulation of various pollutants can 
aggravate the decline in the air quality. Therefore, it is necessary to coordinate governance in formulating 
countermeasures and scientifically guiding the direction of policies.

(4) Wind can accelerate pollutant dispersal and diffusion, resulting in a decrease in the concentration. However, 
rainy weather can unfavorably impact the spread of pollutants to a certain extent.

(5) The air quality exhibits a certain seasonality, and the air quality is generally poor in winter, which is related 
to the consumption of fossil fuels for heating purposes. Therefore, clean energy is an inevitable future 
development trend.

The air quality is a topic of great concern. In years affected by smog, people wear masks during travel, which 
affects traffic, tourism, urban construction, etc., and causes a surge in the number of pathologies.

Data research and remedial measures after disasters are far from sufficient to compensate for the losses due to 
disasters. The high-dimensional spatiotemporal visual interactive analysis approach suggested in this study may 
offer a theoretical foundation for additional research of a similar nature, serve as a foundation for the develop-
ment of related policies targeting emission reduction and energy conservation, and offer practical preventive 
measures in urban planning. Moreover, at the beginning of the construction and design of various systems in 
local cities, disaster recovery functions should be accordingly planned to establish a solid line of defense for the 
protection of the lives and property of people.

Data availability
The data we utilized in this study are all from public data sources. The air quality observation dataset downloaded 
from the website https:// www. aqist udy. cn/ histo rydata/. The weather in China dataset downloaded from the 
website https:// quots oft. net/ air/, which is from the National Climatic Data Center (NCDC) (https:// www. ncei. 
noaa. gov/). Data on other relevant factors of China downloaded from the National Bureau of Statistics website 
(http:// www. stats. gov. cn/). The datasets we used in our work are all available on Github (https:// github. com/ liuji 
a1201 03/ air- quali ty- datas ets). The following is a detailed description of each dataset. The original datasets we 
collected are available on https:// github. com/ liuji a1201 03/ air- quali ty- datas ets/ tree/ main/ origi nal% 20dat asets. 
The preprocessed results from these datasets are subsequently used in our visualization studies. The dataset of 
spatiotemporal maps of air quality index which is shown in Fig. 1 is available on https:// github. com/ liuji a1201 
03/ air- quali ty- datas ets/ tree/ main/1. spati otemp oral_ maps. The dataset of ridgeline chart of the air quality index 
which is shown in Fig. 2 is available on https:// github. com/ liuji a1201 03/ air- quali ty- datas ets/ tree/ main/2. ridge 
line. The dataset of Pearson correlation coefficient matrix which is shown in Fig. 3 is available on https:// github. 
com/ liuji a1201 03/ air- quali ty- datas ets/ tree/ main/3. Pears on_ corre lation_ coeffi cient_ matrix. The dataset of high-
dimensional spatiotemporal air quality we organized which is served by jQWidgets as shown in Fig. 6 is avail-
able on https:// github. com/ liuji a1201 03/ air- quali ty- datas ets/ tree/ main/4. air_ quali ty_ datas et. The dataset of the 
meaning and units for each attribute in high-dimensional spatiotemporal air quality dataset which is shown at 
the bottom of Fig. 6 is available on https:// github. com/ liuji a1201 03/ air- quali ty- datas ets/ tree/ main/5. attri bute_ 
meani ng. In addition, Figs. 4 and 5 are part of Fig. 6. Besides, there are two tables display in Fig. 6. The first table 

https://www.aqistudy.cn/historydata/
https://quotsoft.net/air/
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is a kind of visualization way to show all the records of air quality datasets we organized, which is displayed for 
assistance. The second table titled “The meaning of units of each attribute” is shown for explaining abbreviations 
of each attribute. These two tables are all part of our visualization webpage.
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