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Machine learning model 
for predicting ciprofloxacin 
resistance and presence of ESBL 
in patients with UTI in the ED
Hyun‑Gyu Lee 1, Youngho Seo 2, Ji Hye Kim 2, Seung Baik Han 2, Jae Hyoung Im 3, 
Chai Young Jung 4 & Areum Durey 2*

Increasing antimicrobial resistance in uropathogens is a clinical challenge to emergency physicians 
as antibiotics should be selected before an infecting pathogen or its antibiotic resistance profile is 
confirmed. We created a predictive model for antibiotic resistance of uropathogens, using machine 
learning (ML) algorithms. This single-center retrospective study evaluated patients diagnosed with 
urinary tract infection (UTI) in the emergency department (ED) between January 2020 and June 
2021. Thirty-nine variables were used to train the model to predict resistance to ciprofloxacin and 
the presence of urinary pathogens’ extended-spectrum beta-lactamases. The model was built with 
Gradient-Boosted Decision Tree (GBDT) with performance evaluation. Also, we visualized feature 
importance using SHapely Additive exPlanations. After two-step customization of threshold 
adjustment and feature selection, the final model was compared with that of the original prescribers 
in the emergency department (ED) according to the ineffectiveness of the antibiotic selected. The 
probability of using ineffective antibiotics in the ED was significantly lowered by 20% in our GBDT 
model through customization of the decision threshold. Moreover, we could narrow the number of 
predictors down to twenty and five variables with high importance while maintaining similar model 
performance. An ML model is potentially useful for predicting antibiotic resistance improving the 
effectiveness of empirical antimicrobial treatment in patients with UTI in the ED. The model could be a 
point-of-care decision support tool to guide clinicians toward individualized antibiotic prescriptions.

Urinary tract infection (UTI) is an extremely common condition encountered in the emergency department 
(ED). Escherichia coli accounts for 75–95% of bacterial isolates in community-onset UTI, followed by Klebsiella 
pneumonia and Proteus mirabilis1. The increasing resistance of these uropathogens to commonly used antimicro-
bials for UTI has been a concerning global issue. For instance, the resistance rate of E. coli to fluoroquinolones, 
especially ciprofloxacin, ranges from 55.5% to 85.5% in developing countries and from 5.1 to 32% in developed 
countries2. The incidence of extended-spectrum beta-lactamases (ESBL) -producing E. coli and K. pneumonia 
infections has also increased in the United States, limiting treatment options of antibiotics as ESBL is capable of 
degrading most penicillins, cephalosporins, and aztreonams3,4.

Increasing resistance of uropathogens is a clinical challenge to emergency physicians because antibiotics in 
the ED are selected before an infecting pathogen or its antibiotic resistance profile is confirmed. The challenge in 
this empiric therapy is the use of effective antibiotics for which the pathogen is susceptible to. Given that ineffec-
tive initial antimicrobial therapy leads to prolonged hospitalisation and increased medical costs and mortality5,6, 
starting effective antibiotics in the ED which, the pathogen is susceptible is of vital importance.

Electronic decision support systems in conjunction with machine learning (ML) algorithms could reduce 
this burden of emergency physicians during empiric treatment and have thus been gaining attention. Despite 
the high quality of many of these studies, there were overlapping limitations such as a lack of patients’ clinical 
variables like comorbidities, vital signs or laboratory data, generalization of heterogeneous data from multiple 
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infection sites or from multiple bacterial species, use of a methodology of logistic regression models, or unper-
formed importance analysis or feature selection7–13. Also, they have not yet been actively used in clinical practice 
owing to a lack of integration into clinical work14.

Thus, this study aimed to develop a practical prediction model for antibiotic resistance in UTI patients, using 
ML algorithms. Towards this goal, we analysed the decision-making process from the physician’s perspective and 
created a predictive model using Gradient-Boosted Decision Tree (GBDT) that could be easily integrated into 
clinical practice to, ultimately, improve the effectiveness of empiric antibiotic therapy in the ED.

Materials and methods
Ethics.  This study was approved by the Institutional Review Board of Inha University Hospital, Incheon, 
Korea (IRB no. 2021-08-016-005) and was conducted according to the Declaration of Helsinki. The need for 
informed consent was waived by the Institutional Review Board of Inha University Hospital owing to the retro-
spective nature of the study.

Study design and population.  This was a single-center retrospective study with patients diagnosed with 
UTI in the ED between January 2020 and June 2021. This study was conducted in a tertiary university hospital 
in Korea with an average of 60,000 patients according to an annual census of ED visits. The electronic medical 
records (EMRs) of all adult patients (age ≥ 18 years) who were diagnosed with UTI and had positive urine culture 
(≥ 105 CFU/mL) over the 18 months were reviewed. Patients with UTI with multiple pathogens were excluded 
because the growth of two or more urinary pathogens is generally considered as contamination15, and only data 
from the index admission were included in the analysis for patients with multiple admissions during the study 
period.

Data collection and definition.  Total of 39 variables were used to train the predictive model with a focus 
on resistance to ciprofloxacin and the presence of ESBL of urinary pathogens (Table 1). Majority of them have 
been suggested in previous studies to be related to either resistance to ciprofloxacin or the presence of ESBL of 

Table 1.   Thirty-nine variables used to train the predictive model.

Variables

Age Vital signs on presentation

Gender  Systolic blood pressure

Bed-ridden  Diastolic blood pressure

Mental change  Pulse rate

Nursing home residence  Respiratory rate

 Body temperature

Medical device  Peripheral oxygen saturation

 Urinary catheter/Cystostomy

Complete blood cell counts

Infection type  Leukocyte count

 Hospital-acquired  Hemoglobin

 Platelet

Comorbid conditions

 Diabetes mellitus

 Hypertension Other laboratory findings

 Cardiovascular disease  C reactive protein

 Chronic renal failure  Glucose

 Cerebrovascular disease  Blood urea nitrogen

 Malignancy  Creatinine

Past history Arterial blood gas analysis

 Hospitalization within 3 months  pH

 Antibiotics use within 3 months,  PCO2

 UTI within a year  PO2

 HCO3
−

Assessment models  Arterial oxygen saturation

 qSOFA  Lactic acid

Hypothermia

Leukopenia

Medication

 Antacid, H2 blocker or proton pump inhibitor
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urinary pathogens, and some variables which could influence on the resistance pattern were included reflecting 
authors’ opinions.

The dataset included the bacterial species isolated from the patients’ urine and their antimicrobial susceptibil-
ity (microbiology data), and clinical data (e.g., age, sex, comorbidities, vital signs, laboratory data, etc.). Infections 
were considered to be hospital-acquired if the patients were transferred to the ED from another hospital after 48-h 
hospitalisation or if the patient was discharged from the hospital within 3 days of the UTI diagnosis. We defined 
an episode of previous UTI within the year before the index date and used a 30-day time window to distinguish 
the index UTI episode from previous episodes. Hence, we considered it a relapse with the same uropathogen 
due to incomplete treatment rather than rapid re-infection and excluded it when the patient presented with UTI 
within the 30-day time window16.

All prescriptions within 3 months before the index UTI were identified by reviewing medical records from 
prior/current hospitalisations and hospital visits including medication from other hospitals for current use 
of gastric mucosa-protecting agents (histamine-2 receptor blocker, proton pump inhibitor, and antacids) and 
for history of antibiotic use. The quick Sequential Organ Failure Assessment score was calculated using the 
following criteria: systolic blood pressure ≤ 100 mmHg, respiratory rate ≥ 22/min, and altered mental status17. 
Each criterion corresponded to 1 point, with the total score ranging from 0 to 3. Hypothermia was defined as 
body temperature < 36 °C and leukopenia as a white blood cell count < 4000/mm3 upon ED arrival. The result 
‘intermediate’ on the antimicrobial susceptibility test was considered as ‘resistant’ in contrast with ‘susceptible’.

Bacterial identification and antimicrobial susceptibility.  Fresh urine samples were placed on the eosin meth-
ylene blue agar, and the isolated microorganisms were categorized by Gram staining. Bacteria were identified 
using the VITEK2 system (bioMérieux, Marcy l’Etoile, France). Antibiotic susceptibilities were tested using the 
disk diffusion method in accordance with the criteria from the Clinical and Laboratory Standards Institute.

Testing for ESBL phenotype.  ESBL confirmatory test involved testing cefotaxime (30  μg) and ceftazidime 
(30  μg) alone and in combination with clavulanate (10  μg) on Mueller–Hinton agar. If the zone diameter 
increased ≥ 5 mm in the presence of clavulanate, the isolate was considered ESBL-producing. Escherichia coli 
ATCC 25,922 and Klebsiella pneumonia ATCC700603 (700,603.18) were used as quality controls.

Effectiveness of antimicrobial agents.  The effectiveness of initial empirical antimicrobial therapy with cipro-
floxacin or third- or fourth-generation cephalosporins (cefotaxime and cefepime) in the ED was evaluated based 
on the results of in vitro antimicrobial susceptibility testing. For example, empirical treatments with third- or 
fourth-generation cephalosporins were considered as ‘ineffective’ when pathogens from urine culture were posi-
tive for ESBL phenotype (ESBL-producing pathogens).

Interim result.  A total of 550 UTI patients with an average age of 72.1 years were enrolled. Majority of the 
patients were female (n = 409, 74%). There were 208 (37%) patients who were bedridden and 71 (12%) patients 
who had an indwelling urinary catheter upon ED arrival. Underlying diabetes and neurologic diseases including 
stroke were identified in 231 (42%) and 238 (43%) patients, respectively. A history of previous UTI within one 
year was found in 130 (23%) patients, and 105 (19%) patients had hospital-acquired infections. For laboratory 
results, the average levels of C-reactive protein and creatinine were 12.12 mg/dL and 1.34 mg/dL, respectively.

The most common bacteria grown in urine cultures was E. coli (91%), followed by Klebsiella (8%). Overall, 
46% of uropathogens showed resistance to ciprofloxacin, and the ESBL positivity rate was 46%, and IE rate in 
ET was 24% (134/550) (Fig. 1). The most common empirical antibiotics prescribed by emergency physicians was 
cefotaxime (55%), followed by piperacillin-tazobactam (28%) and ciprofloxacin (11%). The data distribution 
with mean values of variables and data missing rates was summarized in Table 2 showing well balance data and 
insignificant missing rates.

Machine learning process.  Data structure and model building.  Machine learning process in our study 
was overviewed in Fig. 2. Considering that antibiotic resistance changes over time, data was split into 2020 and 
2021, and data from the year of 2020 were used for training and validation while data from the year of 2021 
was used for testing in order to reflect the most up-to-date trend of antibiotics resistance. Given that GBDT can 
both categorical and continuous variables without pre-processing, we used raw data to train the model without 
processes of imputation or scaling methods.

GBDT hyperparameter was selected using fivefold cross-validation with random search. We tried twenty 
random searches for maximum depth between 1 and 5, number of estimators between 100 and 500, and learning 
rate between 0.001 and 0.1. All experiments were performed on a PC with GeForce RTX 3090 Ti, Python 3.7.

Performance evaluation and visualization of feature importance.  In the study, the model performance was 
evaluated using the area under the receiver operating characteristic curve (AUC), precision, sensitivity, and 
specificity.

Precision =

True positive samples

Samples predicted to be positive
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Also, we visualized feature importance with 39 variables each for resistance to ciprofloxacin and presence of 
ESBL using SHapely Additive exPlanations (SHAP)18.

Comparison to empirical treatment.  The GBDT model performance was compared with that of the original 
prescribers (emergency physicians) in the ED according to the effectiveness of the antibiotic selected. Because 
this study did not evaluate effectiveness of ET in patients who received antibiotics other than ciprofloxacin or 
third- or fourth-generation cephalosporins, model performance was validated by measuring the ineffectiveness, 
not the effectiveness. Ineffectiveness ( IE ) was calculated as follows:

where CIP, CTX, and CEF indicate ciprofloxacin, cefotaxime, and cefepime, respectively.
|{ET = CIP} ∩ {UCIP = R}| was defined as the number of patients who were empirically treated with cip-

rofloxacin in the ED but the pathogens from urine cultures turned out to be resistant (R) to ciprofloxacin. 
Meanwhile, |{GBDTCIP = S} ∩ {UCIP = R}| was defined as the number of patients in whom the GBDT pre-
dicted their pathogens to be susceptible (S) to ciprofloxacin but were resistant on susceptibility testing. Given 
that this decision support tool by the GBDT would lead emergency physicians to select ciprofloxacin when 
GBDTCIP = S , we treated ET = CIP and GBDTCIP = S equally when comparing the performance of the GBDT 
with ET. {UESBL = N} and {UESBL = P} indicated that the urine culture results were positive (P) or negative (N) 
for ESBL expression, respectively.

Results
GBDT model performance.  Overall performance of our GBDT model using AUC was shown in Fig. 3. 
No overfitting occurred in the model trained with 39 variables as AUCs for training and test sets were similar 
in predicting both CIP resistance and ESBL presence. The classification performance of GBDT using the AUC, 
precision, sensitivity, and specificity was summarized in Fig. 4. To estimate sampling error in the fixed test set, 
we measured 95% confidence intervals by bootstrap analysis using 100 times replacement sampling.

Visualization of feature importance.  Feature importance visualized using SHAP was shown in Fig. 5. 
Higher placed variables on the graph had higher SHAP feature values reflecting stronger influence on the model 

Sensitivity =

Samples predicted to be positive

Actual positive samples

Specificity =

Samples predicted to be negative

Actual negative samples

IEET =
|{ET = CIP} ∩ {UCIP = R}| + |{ET = CTX} ∪ {ET = CEF} ∩ {UESBL = P}|

|{UCIP = R} ∪ {UESBL = P}|

IEGBDT =
|{GBDTCIP = S} ∩ {UCIP = R}| + |{GBDTESBL = N} ∩ {UESBL = P}|

|{UCIP = R} ∪ {UESBL = P}|

Uropathogens from UTI patients in the ED 

January 2020 – June 2021 

n = 550 

Ciprofloxacin-susceptible 

n = 294 

Ciprofloxacin-resistant 

n = 256 

ESBL negative 

n = 228 

ESBL positive 

n = 66 

ESBL negative 

n = 67

ESBL positive 

n = 189 

CIP 

n = 34 

CIP 

n = 9

CIP 

n = 9 

CIP 

n = 10 

CTX/CEF 

n = 150 

CTX/CEF 

n = 35 

CTX/CEF 

n = 44

CTX/CEF 

n = 80 

Antibiotics 

Susceptibility 

Empirical 

Treatment 

Evaluation 

Metrics
Ineffective 

Figure 1.   Antibiotics susceptibility of the uropathogens and empirical antibiotics used in the emergency 
department (ED).
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performance. The top-placed variables with higher importance in predicting resistance to CIP of uropathogens 
were presence of hospital-acquired infection, history of UTI within a year, bedridden status, lower initial dias-
tolic blood pressure, and lower platelet counts. As for predicting positivity for ESBL phenotype, past history of 
hospitalization or antibiotic use within the last 3 months, bedridden status, and having cerebrovascular disease 
were shown to have higher SHAP feature values.

Customizations of the model.  Our final model was made through 2-step customization process. First, 
we customized the initial GBDT model through adjusting the decision threshold on the purpose of reducing 
IE. As shown in Fig. 4, the specificity of the initial model was higher than the sensitivity in predicting both CIP 
resistance and ESBL presence. Considering the importance of reducing the use of ineffective antimicrobials in 
the ED, we set the decision threshold for target to a lower value than 0.5, which is used generally in prediction 
models.

Secondly, thirty-nine variables used in the original model were reduced in numbers through feature selection. 
Figure 6 showed changes in AUC according to the number of variables used. Variables were selected in order 
of SHAP feature values from highest to lowest as shown in Fig. 5. Because the predictors with high importance 
are different in predicting of CIP resistance and ESBP presence, we conducted feature selection separately, and 
measured each performance change according to the decrease of the number of variables. As for the prediction 

Table 2.   Selected variables during customization each for predicting ciprofloxacin (CIP) resistance and 
ESBL positivity with data distribution. SD, standard deviation; 1y-UTI, UTI within a year; DBP, diastolic 
blood pressure; BT, body temperature; SpO2, peripheral oxygen saturation; SaO2, arterial oxygen saturation; 
3 m-admission, hospitalization within 3 months; SBP, systolic blood pressure; 3 m-antibiotics, antibiotics use 
within 3 months; WBC, leukocyte count; PR, pulse rate.

Selected variables

Training sets (2020) Testing sets (2021)

CIP-susceptible (n = 228) CIP-resistant (n = 195) CIP-susceptible (n = 66) CIP-resistant (n = 61)

Mean (SD) Missing rate (%) Mean (SD) Missing rate (%) Mean (SD) Missing rate (%) Mean (SD) Missing rate (%)

Hospital-acquired 
(%) 7.5 0 31.8 0 3.0 0 39.3 0

Bedridden (%) 23.2 0 53.8 0 16.7 0 63.9 0

1y-UTI 14.5 1.8 37.9 0.4 6.1 0.4 31.1 0.4

DBP 74.8(18.1) 0 70.3(17.1) 0 74.4(17.9) 0 73.3(18.5) 0

Platelet 202.2(99.4) 0 222.7(100.2) 0 197.5(107.9) 0 208.9(99.3) 0

BT 38.2(1.2) 0 37.7(1.2) 0 43.2(43.1) 0 37.4(1.1) 0

pCO2 32.9(7.3) 18.0 33.2(6.8) 6.6 34.5(6.9) 6.1 35.5(6.8) 1.3

Creatinine 1.3(1.6) 0 1.5(1.2) 0 1.2(0.8) 0 1.2(0.8) 0

SpO2 95.6(5.8) 4.8 95.0(4.1) 1.8 97.0(3.0) 1.3 96.3(2.6) 0.9

SaO2 95.0(4.1) 6.6 93.6(6.9) 1.8 110.2(113.1) 3.1 94.7(3.6) 1.3

3 m-admission 
(%) 24.1 1.3 51.3 0.4 13.6 0.4 60.7 0.4

Cerebrovascular 
(%) 31.1 0 54.9 0 40.9 0 54.1 0

HCO3 22.8(4.7) 18.0 23.6(7.8) 6.6 23.9(4.2) 6.1 25.6(10.8) 1.3

SBP 129.9(29.9) 0 123.8(30.0) 0 130.3(28.9) 0 128.0(35.2) 0

3 m-antibiotics 
(%) 15.4 1.8 32.8 0.4 7.6 0.4 37.7 0.4

WBC 11,751.0 (5875.1) 0 12,640.6 (7263.6) 0 11,760.9 (6988.1) 0 11,204.1 (5453.1) 0

Mental change 
(%) 18.9 0 23.1 0 7.6 0 34.4 0

PR 100.3(21.3) 0 96.3(22.0) 0 99.3(23.2) 0 92.7(22.9) 0

pH 47.4(546.6) 18.0 48.7(553.7) 6.6 7.4(0.1) 6.1 7.4(0.1) 1.3

Glucose 171.6(98.9) 0 160.9(85.1) 0 145.1(64.3) 0 175.4(125.5) 0

Selected variables

Training sets (2020) Testing sets (2021)

ESBL negative (n = 225) ESBL positive (n = 198) ESBL negative (n = 70) ESBL positive (n = 57)

Mean (SD) Missing rate (%) Mean (SD) Missing rate (%) Mean (SD) Missing rate (%) Mean (SD) Missing rate (%)

3 m-admission 
(%) 19.6 0.4 56.1 1.5 15.7 2.9 61.4 0

3 m-antibiotic (%) 9.8 0.9 38.9 1.5 8.6 2.9 38.6 0

Bedridden (%) 22.7 0 54.0 0 18.6 0 64.9 0

Cerebrovascular 
(%) 29.3 0 56.6 0 35.7 0 61.4 0

BUN 28.8(64.6) 0 29.7(21.6) 0 25.3(20.3) 0 25.3(14.2) 0
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Figure 2.   Abstract diagram of this study. GBDT: gradient-boosted decision tree, SHAP: Shapley additive 
explanations.

Figure 3.   Overall performance of the Gradient-Boosted Decision Tree (GBDT) model. The area under 
the receiver operating characteristic curve (AUC) of training and testing sets in predicting resistance to 
ciprofloxacin (CIP) and the production of extended-spectrum β-lactamase (ESBL) of the uropathogen was 
shown. TPR is True Positive Rate, and FPR is False Positive Rate.
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of CIP resistance, AUC was not significantly decreased until the number of variables was reduced to twenty 
compare to that of the original model with 39 variables, and there was no significant change in AUC difference 
between the training and test sets. Whereas, the customized model for predicting ESBL positivity showed bet-
ter generalizability during variables reduction, and the performance was improved by about 1% when only five 
variables were used compared to the AUC of the original model. Consequently, we could narrow the number 
of significant predictors down to twenty and five, respectively, for predicting resistance to ciprofloxacin and the 
presence of ESBL while maintaining similar predictive performance. Selected variables with data distribution 
were summarized in Table 2.

Performance of the models compared to empirical treatment.  We compared the performance of 
the final customized model with that of ET focusing on IE. The initial GBDT model used all predictors and 
its decision threshold was initially set to 0.500 then 0.300 during the first step of customization. Whereas, the 
final GBDT model used the reduced number of predictors and its decision threshold was finally set to 0.335. 

Figure 4.   The classification performance of the Gradient-Boosted Decision Tree (GBDT). The decision 
threshold was set to 0.5 and 95% confidence intervals (error bars) were obtained by bootstrap analysis.
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Figure 5.   Feature importance for ciprofloxacin resistance (top) and positivity of extended-spectrum beta-
lactamases (bottom) using Shapely Additive exPlanations (SHAP). The top 20 variables were visualized among 
39 variables. 1y-UTI, UTI within a year; DBP, diastolic blood pressure; BT, body temperature; SpO2, peripheral 
oxygen saturation; SaO2, arterial oxygen saturation; 3m-admission, hospitalization within 3 months; SBP, 
systolic blood pressure; 3m-antibiotics, antibiotics use within 3 months; WBC, leukocyte count; PR, pulse rate.
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Compared to the initial GBDT model, the final GBDT model showed increased AUC, precision and specificity 
(Table 3). Figure 7 showed that final GBDT model lowered the probability of using ineffective antibiotics by 20% 
compared to the initial prediction model and ET, which was statistically significant (P < 0.05). This suggests that 
receiving GBDT support for empirical treatment in the ED could reduce the likelihood of ciprofloxacin usage in 
patients with ciprofloxacin-resistant uropathogens and using cefotaxime/cefepime in ESBL-positive ones.

Discussion
ML is a growing field in medicine, including in infectious disease (ID). By July 2019, there have been 60 ML-
clinical decision support system (ML-CDSS) that have been developed to assist ID clinicians19. Among them, 
four (7%) addressed the prediction of antibiotic resistance, and two of them analysed demographic data and 
medical history for personalized prediction of antibiotics susceptibility or resistance. Herein we also showed 
that ML in combination with clinical data could improve the effectiveness of empirical antibiotic therapy in the 
ED. Because of the unavailability of culture results at the time of prescription, empiric antimicrobial therapy 
could benefit the most from ML-CDSS as our study showed. Specifically, the support of our GBDT model could 
help emergency physicians prescribe ciprofloxacin in UTI patients with ciprofloxacin-resistant bacteria as well 
reduce the likelihood of using cefotaxime/cefepime in ESBL-positive uropathogens.

There are a few strengths which set our study apart from previous studies. First, our study was based on a 
clear understanding of medical perspectives through the decision-making. For instance, ID clinicians begin 
to assess a febrile patient with the primary objective of finding the focus of fever. The possible pathogens and 
antibiotics with the proper coverage are only considered after the clinical diagnosis is made. As such, focusing 
only on individual antibiotics or pathogens using ML algorithms without a provisional diagnosis would be of 
no use to support clinical decisions. Therefore, we clearly defined the clinical scenario as UTI in the ED in order 

Figure 6.   Performance according to the number of predictors. Average AUCs with 95% confidence intervals 
(colored region) for predicting CIP resistance (blue) and ESBL positivity (orange) each for training (solid lines) 
and testing (dotted lines) sets were shown.

Table 3.   The classification performance of the prediction models compared with the empirical treatment (ET). 
The initial GBDT model used all predictors and its decision threshold was set to 0.300. The final GBDT model 
used the reduced number of predictors and its decision threshold was set to 0.335. 95% confidence intervals 
(values in parentheses) were obtained by bootstrap analysis. Values in bold are the highest value across the 
different methods for the same target.

Prediction target Method AUC​ Precision Sensitivity Specificity

CIP resistance

ET 0.502 (0.013) 0.480 (0.009) 0.900 (0.008) 0.103 (0.007)

GBDTinitial 0.827 (0.007) 0.550 (0.009) 0.968 (0.005) 0.273 (0.011)

GBDTfinal 0.829 (0.007) 0.555 (0.010) 0.934 (0.006) 0.312 (0.011)

ESBL positivity

ET 0.510 (0.011) 0.530 (0.011) 0.594 (0.013) 0.566 (0.012)

GBDTinitial 0.813 (0.008) 0.461 (0.009) 0.961 (0.006) 0.074 (0.006)

GBDTfinal 0.817 (0.008) 0.587 (0.011) 0.945 (0.007) 0.452 (0.012)
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for the model to be successfully integrated into clinical practice. We believe this practicality which enables the 
real users (emergency physicians) to apply the predictive model immediately to the clinical field would be the 
main contribution of our research.

Under the premise of clinical diagnosis, ML-CDSS is constrained by comprehensiveness and quality of the 
clinical data used for their development. In this context, we analysed all available data from different sources, 
such as structural clinical data, vital signs, and laboratory data and our variables with high feature importance 
were found to be consistent previously identified risk factors20. We also included relevant unstructured data 
such as free clinical texts, nursing notes, and medical imaging to ensure the integration of detailed medical his-
tory as previous studies that analysed the performance of ML-CDSS found that the sensitivity and specificity 
of ML-CDSS were systematically better when they used a larger set of variables, especially when unstructured 
data are added21–23. However, data should be easily entered into the CDSS in the future system by automatic 
extraction from the EMR, and progress in natural language processing may help24. Moreover, we distinguished 
cases of bacterial colonisation or contamination in urine cultures from true pathogens and excluded them from 
the study to improve the quality of the data. These efforts to maximize the comprehensiveness and quality of our 
data contributed to the development of a satisfactory model in our study.

An additional important strength of our work is that algorithm training and evaluation were performed on 
different data sets. Then, we customized the decision threshold on the purpose of minimizing the IE. Finally, 
given that the labour-intensive and time-consuming process of data identification, we optimized the number 
of significant predictors and showed the possibility of designing an efficient model only with selected high-
importance predictors while maintaining the model performance. For reference, the average elapsed times for 
the (1) training process including random search-based hyperparameter selection, (2) prediction on the testing 
set, and (3) SHAP values measurements were 5420.2, 1.6, and 17.2 ms, respectively through parallel processing 
using graphic processing unit.

However, this study also has a number of limitations. Firstly, our model was built on data from a single health-
care institution within a confined geographic region; thus, further validation at other institutions is needed. As 
resistance patterns can change over time, our model may also become less relevant as time passes and should 
thus also be periodically retrained9,25. Secondly, we assessed the performance of the model against real-life pre-
scribers, which were emergency physicians. Ultimately, performance would need to be assessed prospectively 
for validation purpose with well-defined endpoints such as hospital days, mortality and medical costs to achieve 
better patient outcomes.

Lastly, each clinical setting might require different emphasis on using the model. For instance, a reduction 
in the inappropriate use of broad-spectrum antibiotics could be a priority in a community with a high rate of 
antibiotic overuse because improving antibiotic stewardship may lead to reduced costs, complications, and 
improved clinical outcomes22. However, we did not adjust the decision threshold of the GBDT model in our result 
regarding appropriateness of antibiotic use. The best approach should make it possible to substantially increase 
the proportion of patients who receive effective empiric antibiotics while minimizing the risk of developing 
resistance in each circumstance.

In conclusion, ML has the potential to help clinicians predict antibiotic resistance, improving the effectiveness 
of empirical antimicrobial treatment for UTI in the ED. When implemented in the hospital, our model could 
be a point-of-care decision support system to guide clinicians towards individualised antibiotic prescription.

Figure 7.   The performance of the prediction models compared with the empirical treatment (ET) regarding 
ineffectiveness. The initial GBDT model used all predictors and its decision threshold was set to 0.300 here. 
The final GBDT model used the reduced number of predictors and its decision threshold was set to 0.335. 95% 
confidence intervals (error bars) were obtained by bootstrap analysis.
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