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An event‑oriented database 
of meteorological droughts 
in Europe based on spatio‑temporal 
clustering
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Droughts evolve in space and time without following borders or pre‑determined temporal constraints. 
Here, we present a new database of drought events built with a three‑dimensional density‑based 
clustering algorithm. The chosen approach is able to identify and characterize the spatio‑temporal 
evolution of drought events, and it was tuned with a supervised approach against a set of past global 
droughts characterized independently by multiple drought experts. About 200 events were detected 
over Europein the period 1981‑2020 using SPI‑3 (3‑month cumulated Standardized Precipitation 
Index) maps derived from the ECMWF (European Centre for Medium‑range Weather Forecasts) 5th 
generation reanalysis (ERA5) precipitation. The largest European meteorological droughts during 
this period occurred in 1996, 2003, 2002 and 2018. A general agreement between the major events 
identified by the algorithm and drought impact records was found, as well as with previous datasets 
based on pre‑defined regions.

Drought is a systemic natural disaster, with important repercussions in almost all sectors of societies, ecosystems, 
and  economies1. Recent estimates of drought impacts over Europe are in the order of €9 billion per year, with 
climate change projections indicating an increasing  threat2. Our lack of knowledge on the mechanisms that 
control droughts’ onset, evolution, and recovering, hampers our capability to make  predictions3,4, thus limiting 
our ability to understand how major droughts will evolve in space and in time.

While drought is widely recognized as an event-oriented phenomenon, it is rarely treated as  such5. The joint 
spatial and temporal dynamics of drought have been investigated only in a few research  studies6,7, and in most 
cases not integrated into operational monitoring systems. However, the need to base drought policies on the 
best possible description of these events suggests that incorporating such aspects into early warning  systems8 
is of primary importance. The World Meteorological Organization (WMO) Resolution 9 (CG-17)9, constitutes 
a further push towards an event-based approach in cataloguing natural disasters, with the introduction of the 
concept of a universal unique identifier (UUID) for high impact extreme weather, water and climate events.

The key role of a transboundary database of drought events is also emphasized by the need to unambiguously 
attribute sparsely-collected reported losses to a specific drought  event10, an inherently challenging task in areas 
such as Europe where drought information is often available only in regional and/or national  reports11.

Previous studies generally focused on building drought event databases at  regional12 and  national13 scale, and 
even  continental14 and  global15 scale studies mostly relied on aggregated data over pre-determined areas (i.e. 
water basins, countries or regions). While this approach is valuable in allowing the comparison of past events 
occurring over the same area, it obviously misses the large spatial connectivity that characterise major events 
and that distinguishes drought from other natural hazards.

A few attempts at boundless analyses of droughts are available in the  literature6,16,17, but these studies mostly 
focused on major droughts, and their outcomes depend on a pre-determined cluster model parameterization 
often derived from past experience. Three common traits of these studies are the lack of an explicit contex-
tualization of the adopted parameterisation in the framework of the common classification of drought (i.e. 
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meteorological, agricultural, hydrological, etc.), any form of tuning against an independent reference dataset, 
and the use of a simple Boolean drought classification to discriminate areas under drought.

In this study, we aim at developing an event-oriented database of meteorological droughts that overcomes 
the above-mentioned limitations by: (i) adopting a flexible clustering algorithm that can adjust to different 
drought definitions, and (ii) tuning the clustering algorithm on a reference dataset specifically built for short- and 
medium-term meteorological droughts. The implemented approach is a generalized three-dimensional clustering 
 algorithm18, which introduces a set of parameters that allow to adapt the degree of spatio-temporal aggregation 
of drought cells. To overcome the lack of a widely available reference dataset (for the tuning of the algorithm), a 
expert-based assessment of reference events was chosen and a supervised tuning approach was performed. Global 
scale estimates of drought events are obtained, but a special focus is given to droughts over Europe, where the 
outcomes are analyzed against data on impacts as well as previous studies using pre-defied regions.

Results
Tuning of the clustering method. Starting from the expert-based characterization of the 38 global past 
events, a set of meteorological drought events between 1981 and 2020 are here identified from a time series of 
SPI-3 maps according to the generalized three-dimensional clustering algorithm. This approach searches for 
areas with a high-density concentration of cells under drought without any a-priori definition of the spatial or 
temporal domains. The size, number and shape of the clusters depend on a set of six parameters (L, p, e, k, A, R, 
see the “Methods” section) to be tuned following a trial and error supervised approach, starting from the values 
commonly adopted in the relevant scientific  literature6,16,17, and moving throughout a pre-determined set of 
parameterisations defined according to the model sensitivity  analysis18. In particular, according to a previously 
performed sensitivity  analysis18, the commonly used two-dimensional application of the contiguous drought 
area (CDA) represents a lower boundaries for most parameters (i.e. largest clusters). Thus, the starting set of 
parameters (set = 0) is based on the CDA, where all the contiguous drought cells (using a 8-neighborhood rule) 
are considered part of the same cluster (within the searching window of 3 × 3 cells), and drought conditions are 
defined by a simple threshold value (SPI-3 = − 1.5). Each set of tuning parameters was evaluated according to: 
an overestimation factor fover (ratio between the cells of the 3D cluster that falls inside the reference and the total 
size of the cluster); and an underestimation factor funder (fraction of cells under drought inside the reference that 
are not included in the given 3D cluster).

According to the results summarized in Table 1, the CDA (L = 3 and p = 0) with Boolean threshold (k = 1.5 
and e = 1000, i.e. all cells with SPI-3 under − 1.5 are classified as drought) approach (set = 0) performs the best 
in minimizing the underestimation of the expert-based events (funder = 90.1%). However, this parameterization 
also has a clear tendency to overestimate the size of the expert-based event (fover = 80.0%, much worse than any 
other sets of parameters). This is likely due to the fact that CDA considers a cluster even if just one additional 
cell in the surrounding is considered under drought, as well as due to the absence of distinction between cells 
with different drought severity (Boolean threshold).

Following the sensitivity analysis, we searched for an improvement in fover (and as a consequence a maximi-
zation of the average of fover and funder, favg) by introducing two modifications to set = 0: (i) the use of a logistic 
weighting function in lieu of the Boolean threshold (k = 1.7 and e = 8), (ii) by strengthening the constraint on 
the number of minimum neighbouring cells (p = 0.25, a minimum of 4 cells in the surrounding need to be 
under drought to define a core point) (set = 1). Other small tuning of either the p parameters or the weighting 
function did not return any meaningful changes in neither funder nor in fover (not reported). A further increase 
in both funder and fover is obtained by increasing the minimum cluster size (A) from 100 to 200 cells (set = 2), 
but a further increase in A (i.e. to 250 cells) caused an improvement in fover but at the expense of funder (set = 5). 
The introduction of an asymmetric search window – larger in either space (L = 5, set = 4) or time (R = 5, set = 
3) – does not seem to introduce any clear improvement in the performances. While other small modifications 
of the parameters were tested, no significant changes from the sets reported in Table 1 were obtained.

We assumed as optimal parameterization set the one that find the best compromise between minimizing the 
underestimation (splitting the drought events into multiple sub-events) and the overestimation (merging multiple 
distinct events into a single cluster) of the reference events (i.e. maximizing funder and fover). This can be simply 

Table 1.  Results of the tuning procedure for different sets of parameters of the clustering algorithm. Values in 
bold highlight the maximum for each metric. See “Methods” for a detailed description of each parameter and 
metric. L size of the searching window in space, p fraction of cells in the surrounding to detect a core cell, k 
mid-point of the logistic curve, e steepness of the logistic curve, A minimum size of the 2D clusters, R size of 
the searching window in time.

Set L p k e A R fover (%) funder (%) favg (%)

0 3 0 1.5 1000 100 3 80.0 ± 29.5 90.1 ± 19.1 85.1 ± 25.2

1 3 0.25 1.7 8 100 3 93.3 ± 16.1 85.9 ± 20.7 89.6 ± 18.8

2 3 0.25 1.7 8 200 3 96.9 ± 6.2 87.0 ± 18.4 91.9 ± 14.5

3 3 0.25 1.7 8 200 5 94.0 ± 18.3 82.6 ± 24.4 88.3 ± 22.1

4 5 0.30 1.7 8 200 3 90.3 ± 18.2 88.2 ± 20.5 89.2 ± 19.3

5 3 0.25 1.7 8 250 3 97.3 ± 6.0 83.6 ± 22.7 90.5 ± 17.9
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quantified by the average of the two metrics, favg, which clearly shows how the optimal solution is represented 
by the one identified as set = 2 (maximum favg).

Data in Fig. 1 compare the outcomes of the optimal parameterization against the reference expert-based 
dataset, both in terms of total size of the event (left panel) and duration (right panel). These results show the 
overall good agreement with the ensemble median of the reference.

The modelled events remain inside the range of dispersion of the reference in most of the cases, with a slight 
tendency to underestimate both size and duration in agreement with the metrics reported in Table 1 (funder = 
87.0%, fover = 96.9%). The few instances where the model overestimates the reference seem to be mostly driven 
by spatial overestimates (i.e. the cluster extends outside the reference area) and they occur mostly for the most 
recent reference events, whereas the underestimation seems to be more marked for smaller drought events 
(mostly concentrated at the beginning of the reference dataset, around the 80s) such as the event in Patagonia 
in 1989 (ID = 4). A detailed report of the type of error for each event is available in S1.

Database of drought events over Europe. Starting from the global outcomes of the optimal procedure, 
we focused our analysis over the pan-European domain, by extracting a subset of the identified events compris-
ing all the clusters with a centroid lying within Europe (from upper left corner -15 E, 72 N to lower right corner 
50 E, 35 N). Smaller events are removed from the successive analyses by filtering out clusters with a size lower 
than 500 cells and a duration of less than a month. According to these rules, a total of 198 events in the period 
1981-2020 are identified (Fig. 2).

The frequency distribution of the cluster size roughly follows a power-law relationship, with 18 major events 
(> 15,000 cells) covering more than 50% of the sum of all drought events, and half of the events covering almost 
90% of the total. The black bars in Fig. 2 (left panel) highlight these major droughts, showing a high frequency of 
major events in the 2010s (7 events). The strong (R2 = 0.81) power relation between size and duration of the events 
(Fig. 2, right panel) suggests that any consideration on the duration of the event can be also easily extrapolated 
from the size and vice versa; hence, the subsequent analyses will focus mostly on the latter one.

The map in Fig. 3 shows the centroid of the major droughts, highlighting a concentration towards Central 
and Eastern Europe. Large size droughts in south-west Europe are limited due to the presence of natural barriers, 
such as the Alps, the Pyrenees and seas, which break the spatial connections (even if the largest event related to 

Figure 1.  Comparison between the results of the selected parameterization (orange bars) and the reference 
dataset for events’ size (left panel) and duration (right panel). The black line is the reference ensemble median, 
while the grey dotted lines represent the 30-th and 70-th percentiles.

Figure 2.  Summary of the outputs of the clustering analysis. The left panel shows the temporal distribution 
of the events, with the black bars highlighting the major droughts (size > 15,000 cells). The right panel shows 
the relationship between the size and the duration of the events, with the dotted line representing a power 
relationship.
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persistent atmospheric patterns induces events that spread over the barriers). This of course results in smaller 
but more numerous droughts over these regions. It is worth highlighting how among the largest droughts, two of 
them, 1996 and 2002, have the centroid located in the north-east quarter of the domain, whereas the two centred 
over central Europe, 2003 and 2018, are among the most referenced recent  events19–22.

Discussion
The interpretation of both the optimal parameterisation and the corresponding results should be carried out by 
keeping in mind the specific goal of building a database of short- and medium-term meteorological droughts. 
Additionally, to contextualize our results properly, it is relevant to stress how most of the previously published 
studies were often lacking any proper tuning of the parameters against an independent reference, as they mostly 
relied on expert knowledge or automatic procedures for their parameterization.

The obtained optimal solution is generally more conservative compared to the commonly adopted CDA 
 approach6,16,17,23,24, due to the increased constraint in the searching for neighbouring cells (p = 0.25 corresponds 
to 4 neighbouring cells in contrast to the single one of CDA, p = 0) and the introduction of the weighting func-
tion that moderate the capability to form clusters to the less extreme negative SPIs. This result is also in line 
with the reference dataset adopted for the tuning, focused on short- and medium-term droughts compared to 
multi-year events used in other  studies17,25.

The method also favoured a relatively large minimum threshold (A = 200 cells, roughly corresponding to 
150,000  km2). Smaller values of A were mostly adopted in studies at continental  scale23,25 (between 25,000 and 
40,000  km2), and in some cases they were arbitrarily chosen based only on  experience17. Global scale applications 
gravitate towards even larger values of A6,16 (from 200,000 up to 500,000  km2), but also had a clear objective to 
pick out only major droughts. In this regard, the obtained solution represents a trade-off between the desire to 
avoid neglecting regional-scale events and the need to minimize the effects of tenuous spatial  connectivities16. 
The observed tendency to underestimate the size of the event (in both size and duration) for the smaller reference 
cases may be a side effect of this choice, since a smaller A value may be preferable to avoid the early-interruption 
of small droughts. In this regard, a variable A parameter as a function of the event size may be a potential fur-
ther development of the methodology, implying the need to implement an iterative procedure to optimize this 
parameter. The spatial resolution of the data may also play a role in this tendency to underestimate the size of the 
smaller events, since coarse spatial resolutions may limit the capability of the algorithm to capture the persistence 
of events that are small relatively to the cells size.

The optimal parameterisation obtained in this study also depends on the initial assumptions adopted to 
retrieve the reference dataset, and the choice to focus on short- and medium-term meteorological droughts. As 
already mentioned, some of the past event-oriented studies often retrieved multi-annual  droughts17,25, whereas 
our reference dataset is mostly comprised of seasonal to annual events that are commonly monitored using SPI-3 
or other similar drought indicators. While the generalized cluster methodology is designed to adapt to different 
definitions of drought, a specific tuning would be required, based on a dedicated training dataset of events, if a 
different drought definition or indicator is used.

Even if the tuning performed in this study explored a reasonable range of parameterizations, following a 
logical sequence of trial and error tests, a more robust parameterization of the methodology may need to follow 
a more objective optimization strategy. In this context, the role of artificial intelligence may be explored, even if 
the training of such approaches usually requires an extensive reference dataset.

Figure 3.  Location of the centroids of the major droughts in Europe according to the clustering algorithm. The 
circles are proportional to the size of the event (in number of cells).
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A major advance of this methodology is the possibility to facilitate a direct intercomparison among events 
recorded on different continents, since the algorithm has been tuned against a dataset of global events and the 
adopted parameterization is the same for all the retrieved events. This remove any subjectivity in expert-based 
analyses performed by different experts in different regions with various understanding of drought, as well as of 
a-priori constraints related to pre-determined reference regions.

To further elaborate on the outcomes of the clustering algorithm, this database of events built over Europe 
is compared with the data available on a European national- and regional-database of  events14, as well as with 
some study cases extracted from the European Drought Impact Inventory (EDII)11.

Of the 12 events listed among the biggest multi-region droughts in Europe in the period 1981–2012 accord-
ing to an approach based on pre-defined aggregation  regions14, 7 are included among the 18 major droughts 
assessed by our clustering algorithm. These events are the southern European droughts of 1985 and 1990, the 
central Europe droughts of 1992, 2003 and 2011, the 1996 central and north-eastern Europe event, and the early 
2001 drought in south-eastern Europe.

Two events, in 1983 and 1994, have a centroid located outside the eastern side of the subset domain, mostly 
comprised of a large fraction of Russia, whereas the events in the Baltic countries in 2007, the Iberian peninsula 
in 2005, and Aegean countries in 2007, were not included among the 18 major droughts by our algorithm, albeit 
they were identified by the algorithm. The latter two are also included among the cases study of EDII, hence they 
are discussed in more detail later on.

The 2018 event in central and northern Europe is commonly considered one of the most impactful in recent 
years, and it has been widely discussed in the scientific  literature21,22. It is interesting to notice that the period 
2018–2020 has been also referred to as a multi-annual drought  period17, and that two other major droughts are 
indeed located within this time frame according to our algorithm. Other studies analysed the period 2014–2018 
as a multi-year  drought26, with the two major droughts in 2014 and 2015 also discussed there.

Notably, there is relatively limited literature on the two major droughts of 1996 and 2002 (see Fig. 3), even if 
the 1996 drought was mentioned as the largest (after the one in 1976) observed in north-western  Europe27, and 
the 2002 event was reported among the major droughts of the  2000s28. Some entries are available in the EDII 
regarding these two events, mostly for central Europe in 1996 and Scandinavia in 2002, but the small number 
of reported impacts compared to the events in 2003 and 2018 (of similar size) may be due to the well-known 
limited coverage of EDII for northern and eastern  countries11.

Direct comparisons in terms of drought extent and severity between our event-oriented database and the 
region-based estimates are not possible, due to the obvious differences in modelling assumptions and underlying 
datasets. Nevertheless, analysis of the SPI for fixed time periods (calendar years) and space (Europe) also results 
in the identification of the years 1996, 2018, 2003, 2002 and 2011 as the ones with the highest drought area in 
Europe (see S2), further validating the estimates in this study.

Many of the droughts previously discussed are also documented as part of the EDII, with some of the events 
discussed in terms of spatial distribution of the  impacts11. Even though the approach of using the number of 
entries found in the database for each drought is not fully representative of the impacts of the event, these maps 
can still be used to qualitatively assess the representativeness of our outcomes. In Fig. 4 we report the heat-maps 
for a set of selected droughts, including both Europe-wide and regional events. Those heat-maps represent the 
drought duration of the event for each cell, by superimposing the cluster estimates for all the time steps covered 
by the event.

The drought of 2003 is correctly identified in terms of the wide spread of the event, and the location of the 
core of the event in Germany is also well identified. For the event in 2011, the clustering approach correctly 
identifies the core on France and south UK, where most of the impact reports were recorded, even if areas in 
Germany and eastern Europe are also included. The 1992 drought event correctly covers mostly north-eastern 
Europe, with numerous impacts reported in Poland and Sweden. The regional events over the Iberia Peninsula 
in 2005 and south-eastern Europe in 2007 are also reasonably well assessed in terms of the spatial location of the 
clusters. Even if not included in the EDII study, the event of 2018 is here reported as it is discussed in depth in 
the scientific literature. Also in this case, the extent of the event and the major focus over central and northern 
Europe is well identified.

While the matching between drought clusters and reported impact for these selected cases is satisfactory, it 
still important to stress that the largest events do not necessarily equal the most impactful, since many factors 
such as regional exposure and vulnerability also play a key role1. Following that, a 1:1 match between meteoro-
logical events and reported impacts is not to be expected.

Overall, the proposed approach seems to capture most of the major droughts recorded in the last forty years, 
removing the barriers of pre-defined aggregation regions or time windows. The structure of the clustering algo-
rithm is well suited for a progressive application, as part of a monitoring system to track on-going events. In 
this regard, one major advantage of this event-oriented approach is the possibility to facilitate the use in disaster 
monitoring systems, such as the Global Disaster Alert and Coordination System (GDACS, www. gdacs. org), 
which are by nature event-oriented. In addition, the integration of a unique identification system, such as the 
one promoted by  WMO9, is greatly facilitated by an event-oriented approach.

A clear outcome of the study is the dependence of the database of events from the parameterisation of the 
clustering approach, and how an ad-hoc tuning of the system to the given set of objectives (i.e. meteorological 
droughts, or multi-annual events) is crucial. In this regard, the role of artificial intelligence can be investigated 
to deploy objective strategies for the model tuning.

http://www.gdacs.org
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Methods
The Standardized Precipitation  Index29 at 3 months accumulation (SPI-3) is here adopted, since it is a common 
choice to characterize short- and medium-term meteorological drought  conditions30. Precipitation data from 
the ECMWF (European Centre for Medium-range Weather Forecasts) 5th generation reanalysis (ERA5)31 were 
used to compute the global SPI-3 maps at 0.25 degree spatial resolution for the period 1981-2020, for roughly 
10-day intervals (i.e. dekads: 3 SPI values per month)32.

SPI estimates require the fitting of a probability distribution on a series of multi-annual precipitation data, 
covering the 30-year period 1981-2010 as suggested in the WMO  guidelines33. The gamma distribution is fitted 
by means of the Generalized Additive Model in the Location, Scale and Shape (GAMLSS) modelling  framework34. 
Cells and periods with more than 10 precipitation values lower than 0.01 mm in the baseline are masked out, as 
SPI is not suitable for such dry areas (i.e. deserts).

Drought clustering is based on a generalization of the contiguous drought areas approach (CDA)23, follow-
ing a weighted three-dimensional density-based spatial clustering of applications with noise (DBSCAN)35. In 
this approach, a three-dimensional data cube (longitude, latitude and time) is analysed by searching in a three-
dimensional neighbour space a minimum data density to define a cluster. A weighing factor is associated to each 
data cell in order to control the capability of each cell to form a cluster, and a minimum cluster size is introduce to 
remove noise. This methodology is implemented through a set of six parameters, which increases the capability 
of the methodology to adapt to different drought  definitions18:

• L: the size of the search window in space used to detect neighbouring drought cells (i.e. L = 3 corresponds 
to a 3 × 3 search window in space);

Figure 4.  Heat-maps of some relevant droughts documented in the scientific literature and the EDII impact 
database. The maps represent the duration of the drought for each cell, obtained by summing along the temporal 
axis the clusters in all the time steps covered by the specific event. Note that even if the colour scale is the same 
for all the maps, the maximum value (m, in dekads) varies.
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• R: the size of the search window in time, which may differ from the one in space to account for possible 
spatio-temporal asymmetry (i.e. R = 5 corresponds to a larger search window in time than in space if used 
along L = 3).

• p: the fraction of the cells within the search window that must be under drought to define a core cell (i.e. p 
= 0 corresponds to a single cell in the surrounding to define a cluster, as the minimum possible number of 
cells);

• k: centre value of the weighting logistic function (corresponding to a weight of 0.5);
• e: steepness of the growing curve of the logistic weighting function;
• A: minimum size of a two-dimensional spatial cluster to filter noise.

While the inclusion of a cell among the ones affected by drought is mostly dictated by the adopted drought 
indicator, the clustering algorithm divide/combine those cells into different events based on the adopted param-
eterization. In this context, the classical CDA approach is a special case of the adopted generalized approach, 
which can be obtained by searching for the closest contiguous cells (L = 3 and p = 0) and by adopting a simple 
Boolean approach to discriminate between drought and non-drought conditions (k = − 1 and e = 1000).

A range of different degrees of clustering can be obtained using different model  settings18, hence the param-
eters of the clustering approach need to be tuned on target drought events. In this study, 38 documented past 
meteorological droughts are selected and characterized in terms of both temporal duration and spatial extent 
using an expert-based approach. The events are selected with the aim to cover different regions of the world, and 
to represent a large variety in terms of spatial extent and duration.

Starting from the same background information, and using only SPI-3 data as support, independent estimates 
by experts (from the team of the Copernicus European and Global Drought Observatories) are made for the 
main characteristics of each drought:

• Start date (year and month) marking the beginning of the event;
• End date (year and month) marking the conclusion of the event;
• Area interested by the drought (box extension encompassing the full area under drought between the start 

and the end dates).

These estimates are combined to obtain an ensemble of assessments, which is used to derive a reference 
dataset, based on the median of the ensemble (S3), as well as an estimate of the dispersion based on the 30-th 
and the 70-th percentiles (see S4,S5).

Overall, the expert assessments show large variability, with an average overlap between the 30-th and the 
70-th percentile of about 50% and 60% in space and time, respectively, and a generally better agreement in the 
temporal domain compared to the spatial one (S6).

The exercise of building this reference dataset confirms the difficulty to assess univocally the full spatio-
temporal evolution of a drought event, and it highlights how even experts can return rather different estimates 
starting from the same set of information. This uncertainty is accounted in the criteria adopted for the tuning of 
the algorithm, which is performed by using not only the ensemble median, but also the two percentiles.

As for the clustering algorithm, the outcomes for a given parameterisation can either overestimate the aggre-
gation of drought cells – in space (larger clusters), or in time (longer events) – or underestimate the drought 
event (i.e. split an event into multiple sub-events). Given a reference condition (duration and spatial extent), 
the overestimation can be quantified by the ratio between the cells of the 3D cluster that fall inside the reference 
and the total size of the cluster (fover, equal to 1 when all the cells are inside the reference area). Analogously, 
the underestimation can be synthetically described by the fraction of cells under drought inside the reference 
that are not included in the given 3D cluster (funder, equal to 1 when all the drought cells in the reference are 
associated to the same event). More details on the performance of a parameterisation can be obtained by further 
disentangling these fractions, i.e. by discriminating spatial overestimates (cells in the right period but outside the 
expected extent) from temporal ones (cells in the right regions but before/after the expected period). However, 
these additional details, while useful to understand better the behaviour of one parameterization, do not play a 
major role in the overall assessment of the adherence of the model to the reference.

Both fover and funder can be computed with respect to the ensemble median, or against either the 30-th or the 
70-th percentiles. In order to account for the uncertainty in the reference dataset, the two metrics are computed 
against all three percentiles, and the maximum value is selected for each event. Different sets of parameters are 
evaluated, and the optimal parameterization is chosen as the one that maximize the average of the two quanti-
ties (favg), as a compromise between limiting the overestimation of the events (due to excessive linking among 
clusters) and reducing the over-fragmentation of the clusters.

Data availability
The SPI dataset used in this analysis can be retrieved from the GDO web portal (https:// edo. jrc. ec. europa. eu/ 
gdo/ downl oad). The codes used for the cluster analysis can be provided upon request through the GDO system.
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