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Spectro‑temporal acoustic 
elements of music interact 
in an integrated way to modulate 
emotional responses in pigs
Juliana Zapata Cardona 1*, Maria Camila Ceballos 2, Ariel Marcel Tarazona Morales 3, 
Edimer David Jaramillo 4 & Berardo de Jesús Rodríguez 1

Music is a complex stimulus, with various spectro‑temporal acoustic elements determining one of the 
most important attributes of music, the ability to elicit emotions. Effects of various musical acoustic 
elements on emotions in non‑human animals have not been studied with an integrated approach. 
However, this knowledge is important to design music to provide environmental enrichment for 
non‑human species. Thirty‑nine instrumental musical pieces were composed and used to determine 
effects of various acoustic parameters on emotional responses in farm pigs. Video recordings (n = 50) 
of pigs in the nursery phase (7–9 week old) were gathered and emotional responses induced by 
stimuli were evaluated with Qualitative Behavioral Assessment (QBA). Non‑parametric statistical 
models (Generalized Additive Models, Decision Trees, Random Forests, and XGBoost) were applied 
and compared to evaluate relationships between acoustic parameters and pigs’ observed emotional 
responses. We concluded that musical structure affected emotional responses of pigs. The valence of 
modulated emotions depended on integrated and simultaneous interactions of various spectral and 
temporal structural components of music that can be readily modified. This new knowledge supports 
design of musical stimuli to be used as environmental enrichment for non‑human animals.

Music has various spectral and temporal structural elements. In humans, interactions of these components 
determine the emotional content of  music1–3. Furthermore, these properties can be altered to reliably influence 
emotional  valence4. In any musical piece, various structural components are simultaneously present and their 
perception is a holistic  process5. Perhaps characteristics of music that are effective in inducing and communicat-
ing emotional responses in humans could also be applied to other  species6.

The strong association between music and emotions derives from neurocognitive  processes7,8. Musical aspects 
such as tone, rhythm, timbre, frequency, harmony, and melody have been associated with activity in various brain 
areas, some of which are related to emotions processing and arousal control systems, e.g., those responsible for 
release of norepinephrine and serotonin, substances involved in regulation of emotional  responses9–13. Mammals 
and birds have neuroanatomical structures enabling neurocognitive processing of musical  components14. Addi-
tionally, music is an emotional communication tool encoded within ancient neural circuits, many of which are 
homologous between humans and other  animals7. Such perceptions can explain why animals express emotional 
changes when exposed to musical  stimuli15.

Music structure evaluation can be performed quantitatively, based on acoustics and musical informatics. This 
widely used evaluation, also known as digital music  analysis16, enables extraction of numerical characteristics 
suitable for statistical  analysis17. In humans, evaluation of emotions based on acoustic characteristics has been 
widely  developed18,19. However, it is common to separately evaluate spectral or temporal structures; therefore, 
the interaction between these musical elements and their relationship with emotional effects remains largely 
unknown.

In nonhuman animals, there is a lack of studies evaluating effects of music structure. Some studies evaluated 
some musical aspects, e.g., type of musical instrument, musical rhythm and harmony, but considered musical 
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parameters separately, and only assessed effects on animals’ behavioral  responses20–22. To our knowledge, only one 
study has evaluated effects of one music parameter (harmonic characteristics) on animal’s  emotions15. Therefore, 
there is a paucity of studies evaluating effects of various acoustic characteristics on animals’ emotional responses. 
This approach may be especially relevant in non-human species with specific communication systems and 
auditory characteristics, including particular auditory ranges of frequency, timing, and other acoustic features 
necessary for proper music encoding and neurocognitive processing. An acoustic stimulus is effective if it is 
appropriate for the sensory and communication systems of the species under  study6. Consequently, species-
specific adjustments are essential to develop acoustic stimuli useful as environmental  enrichment6,23.

Regarding psychoacoustics, swine have an auditory sensitivity similar to  primates24,25. The auditory range of 
pigs (40.5 Hz to 40 kHz) is closer to humans (20 Hz to 20 kHz) than to other commonly used animal models, such 
as mice (1 Hz to 90 kHz) and rats (250 Hz to 64 kHz) whose auditory perception is in the ultrasonic  range26,27. 
These characteristics provide a great translational value for using swine for comparative studies with humans 
and make them a useful model to study music.

Previous research by our team demonstrated that music modulates emotion in pigs and evaluated effects of 
music as a relevant biological signal, distinguishing its effects from control conditions such as  silence15. The objec-
tive of this study was to perform temporal-spectral analyses of music characteristics, using a music informatics 
approach, to evaluate effects on emotional responses in farm pigs. We integrated animals’ emotional responses 
evaluation from a psychoacoustic approach that is useful for investigating potential effects of auditory stimula-
tion in animals and will contribute to designing and refining musical stimuli for environmental enrichment in 
non-human animals.

Methods
Ethical considerations. Experiments were conducted in accordance with ARRIVE guidelines (https:// 
arriv eguid elines. org), and all methods were performed following current regulations. The Ethics Committee 
on Animal Experimentation of the Universidad de Antioquia (CEEA—Act No. 16, April 10, 2018) approved all 
procedures.

Study location. This study was performed at Universidad of Antioquia pig farm (6°26′59.606 N 75°32′37.088 
W BH-Mb), region of Antioquia—Colombia, located at an altitude of 2350 m, with environmental temperatures 
ranging from 7 to 22 °C (average, 15 °C) and a relative humidity of 70%.

Litters. Experimental replications were done using ten commercial crossbreed litters (Camborough 29/
maternal-line × PIC 410/paternal-line), having 10 to 12 piglets each. Pigs were 7 to 9 week old, with a low weight 
variance (6.6 ± 0.42 kg) and were balanced for sex.

Facilities. Evaluations were done during the nursery phase. On average, weaning was done at 28 d; thereafter, 
pigs were placed in nursery facilities and housed in 3 × 2.5 m pens that had a floor slightly raised of plastic slats 
and metal bar-walls in between. Each pen was equipped with two nipple drinkers and a hopper feeder. Feed 
and water were continuously available for ad libitum intake. Lights were on from 7:00 to 16:00 and the ambient 
temperature was ~ 25 °C.

Musical pieces. For this research, 39 instrumental electronic music pieces (each 1 to 5 min long) were com-
posed and produced. For the composition process, all musical pieces followed specific directives:

1. Consider pigs’ auditory perceptive characteristics (pig hearing range, 40.5 Hz to 40 kHz).
2. Maintain intra-work homogeneity in spectral or temporal acoustic parameters (e.g., low pulse content or 

high frequency) throughout the duration of the musical piece.
3. Produce works with homogeneity in the amount of acoustic and perceptual information over the entire 

duration.

Virtual Studio Technology (VST) music production techniques were applied, using computers, computer 
music tools, virtual instruments, and MIDI controllers. Initially, recordings were made in MIDI format with 
the Ableton Live  10® suite from an Ableton Push 2 controller and a Fishman Triple play MIDI controller device 
attached to an electric guitar. Sibelius  Ultimate® software (AVID 2022) was used to write scores. Subsequently, 
the Kontakt 6 virtual instrument library with plugins for native instruments was used. No equalizers, compres-
sors, or spatial effects were included.

Each musical piece had differentiable acoustic attributes, assessed through quantitative computer analysis, 
using Sonic  Visualizer® software (2018, Chris Cannam and Queen Mary, University of London), yielding numeri-
cal data (see Table 1). This method followed approaches used in other  studies17. Data obtained were stored in a 
matrix for further analyses. Definitions were based on previous  literature28,29 and used the following parameters:

• Centroid: center of mass of the sound spectrum; related to sound brightness and timbre
• Amplitude: distance between the peak of the wave and its base, in decibels (dB); as the wave amplitude 

increases, dB increase, reflecting an intensification of volume
• Dissonance: sensory dissonance measures the perceptual roughness of the sound and is based on the rough-

ness of its spectral peaks. Given the spectral peaks, the algorithm estimates the total dissonance by summing 

https://arriveguidelines.org
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the normalized dissonance values for each pair of peaks. These values are calculated using dissonance curves 
that define the dissonance between two spectral peaks as a function of their frequency and amplitude ratios.

• High frequency content (HFC) of a sound spectrum
• Zero crossings rate (ZCR): this measures the number of times the value of the signal (audio wave) crosses 

the zero axis. This value was usually small for periodic sounds and large for noisy sounds.
• Pulse in beats per minute (BPM); the unit of measure for the tempo-rhythm or speed
• Spectral deviation: a measure of the standard frequency deviation around the spectral centroid, indicating 

how much frequencies in a spectrum can deviate from the center of gravity.
• Instrumentation: number of instruments simultaneously presented. The number of instruments was always 

constant over the entire duration of a piece.

Experimental design
A Bose SoundLink Air Digital loudspeaker was installed in the study location. Pigs spent at least 1 wk in the 
nursery facilities before musical exposition. Ten replicates were done. Each replicate (with a different litter of 
pigs) was performed only once, and pigs had never been stimulated with music, to avoid habituation bias. Each 
replicate was exposed to a musical stimulation arrangement (Fig. 1). This included four to six musical pieces 
randomly presented (5 stimuli per replicate, on average) with a 3-min interval without music as a break. Some 
pieces were presented up to twice (but not in the same litter), obtaining a total of 50 video observations of pigs 
reacting to a piece of music. The maximum duration of each replicate was 1 h and it was always conducted 
between 9:00 and 10:00 a.m. Music was played at 70 dB.

Evaluation of emotional responses. During the stimulation arrangement, pigs’ behaviors were captured 
with a high-definition camera (Panasonic HC-X900. Panasonic Corporation, Hamburg, Germany), installed in 
front of the pen, enabling all individuals to be clearly observed. Videos were used to evaluate pigs’ emotional 
responses to various musical pieces, using the Qualitative Behavior Assessment (QBA), a method successfully 
used for evaluating emotions in several species, including horses 30, pigs 15,31,  buffalos32,  sheep33,  dogs34, and ele-
phants 35. This method is mainly used to evaluate animals’ emotions by integrating their body language informa-
tion. It captures how individuals interact with their environment by recording “how the animal behaves” instead 
of “what the animal does.” 36. All QBA terms were initially assessed. However, scores were only obtained for 
17 terms (active, agitated, bored, calm, content, fearful, friendly, happy, indifferent, inquisitive, irritable, lively, 
playful, positively occupied, uneasy, relaxed, and sociable) during the observations. Consequently, the terms 
distressed, apathetic, and frustrated were eliminated from further analyses. Each term was quantified along a 
125 mm visual analog scale that indicated the intensity of each behavioral expression. Thereafter, distances (in 
mm) from the left margin (minimum) up to the observer’s mark for each adjective were measured. Emotional 
responses were assessed on the entire litter. Video analysis was blind to the observer, excerpts were evaluated in 
randomized order and without sound. Each video evaluation session lasted 2 h and was performed within an 
interval of 4 d. Data obtained were collected in a matrix for statistical analyses.

Table 1.  Summary statistics of acoustic parameters of the 39 musical pieces. HFC high frequency content 
(kHz), ZCR zero crossings rate, BPM beats per minute, SD standard deviation.

Acoustic parameter Mean Minimum Maximum SD

Amplitude 0.07 0.01 0.22 0.05

Centroid 1.548 746 5.090 820

Dissonance 0.2 0.09 0.43 0.05

HFC 123.849 2.216 387.374 112.432

ZCR 0.04 0.02 0.19 0.03

BPM 114 80 160 21

Spectral deviation 2.569 1.589 5.556 854

Instrumentation 4 1 8 2

Figure 1.  Musical stimulation arrangement. Musical pieces were randomly presented, considering interspersed 
rest periods.
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Intra and interobserver reliability. The rating was conducted by one trained observer, who performed a 
test–retest reliability evaluation using a sample of 10 video excerpts, randomly selected, of pigs’ litters (average of 
30 s each). The intraobserver reliability for each QBA term was evaluated with Pearson’s correlation coefficient, 
obtaining high values (r ≥ 0.90) for active, agitated, calm, content, fearful, friendly, inquisitive, happy, lively, 
playful and sociable; moderate (0.50 ≥ r < 0.80) for relaxed, indifferent, irritable, positively occupied and uneasy; 
and low (r < 0.50) for the term bored. The terms apathetic, distressed, frustrated were not identified in any of the 
evaluations, obtaining a score of "0;" therefore, their correlation coefficients were not analyzed. The same sample 
was used to perform an inter-observer reliability test between two trained observers, and Pearson’s correlation 
(r > 0.86) indicated excellent agreements on their scores.

Statistical analyses. The QBA data were initially evaluated through descriptive analyses and thereafter by 
applying principal component analysis (PCA). This technique identifies variables underlying association pat-
terns, allowing conformation of emotional indexes [principal components (PC)]. Subsequently, the relation-
ship of these indexes with acoustic parameters was evaluated. Spearman’s correlation coefficient was used for 
non-normally distributed data to describe the direction and magnitude of linear associations between acoustic 
parameters (predictor variables) and response variables (emotional indexes). Inferential methods were used to 
evaluate the statistical significance of these correlations. Given that the relationships exhibited between some 
acoustic parameters and the emotional indexes were evidently non-linear, a Generalized Additive Models 
(GAM)37 was used, since it allows inclusion of nonlinear relationships to the model, through replacement of the 
linear form 

∑

βjXj using the sum of smoothed basis functions 
∑

Sj
(

Xj

)

 . GAM models were compared through 
the Akaike information criterion (AIC), choosing the model with the lowest value. We also tested additional 
tree-based methods such as Decision Trees (DT)38, Random Forests (RF)39, and XGBoost (XGB)40 to explore 
the data set. These three approaches enabled estimating nonlinear relationships and inferring the importance 
of predictors on the response variable. The methodological framework adopted for the training, validation and 
comparison of the tree-based models was oriented under a predictive approach, where stages of preprocessing, 
hyperparameter tuning and predictive quality assessment of the models were conceived as a single operational 
flow, executed with repeated cross-validation strategies to evaluate the consistency of the models over various 
resamples or pseudosamples. Repeated k-fold cross-validation was used with K = 10 and 5 repeats with a training 
set proportion of 80% and 20% for the test set, with stratified sampling on the response variable. We compared 
the error metric implemented to monitor training, and the root mean squared error (RMSE) was used to select 
each model. This metric was used in the training set and the test set; as an additional performance measure, the 
correlation between predicted and actual values of the test set was obtained. Finally, we compared the selected 
GAM model with the selected RF, DT, XGB models for each index, using the RMSE metric and Spearman corre-
lation with each index, to select the model with best performance. All analyses were performed using R statistical 
software (Version 4.0.2; https:// www.R- proje ct. org) 41, implementing multiple libraries, including FactoMineR, 
tidyverse, tidymodels, DALEX, splines, mgcv, vip, among others. P ≤ 0.05 was chosen as the limit for statistical 
significance and tendencies were discussed for 0.05 < P < 0.10.

Results
Evaluation of emotional responses. Descriptive analysis of QBA terms indicated higher means for 
active and agitated, and lower for bored, indifferent, and irritable (Table 2). Ratings of 0 were obtained for terms 
distressed, apathetic, and frustrated, and consequently excluded from subsequent analyses.

The PCA generated three PCs with eigenvalues exceeding 1.5. Any QBA term with loading > 0.6 was con-
sidered a major contributor to each PC. PC1 explained 46.68% of the variance, and included terms content, 
friendly, playful, positively occupied, lively, sociable, and happy with positive loadings, and fearful and uneasy 
with negative loadings; this PC was characterized as positive high arousal index. PC2 (explaining 16.64% of the 
variance) had highest positive contributions for terms active, fearful, agitated, and uneasy, and was considered 
as negative high arousal index. PC3 (with 9.08% of the remaining variance) had terms relaxed and calm, and 
was defined as positive low arousal index (Table 3). Loading plots for PC1 and PC2, and for PC1 and PC3 are 
presented in Fig. 2A,B, respectively.

Musical pieces can be related to emotional responses according to their location in the plot. For example, 
quadrant II included pieces 6, 31, 35, 43, 44, 39, 37 and 41 (Fig. 3). This quadrant corresponds to positive high 
arousal emotional states, with QBA terms such as playful, happy, and content (Fig. 2A). In contrast, pieces located 
in quadrant I (i.e., 10, 13, 14, 15, 16, 17, 18, 19; Fig. 3) were related with negative emotional responses, including 
uneasy and fearful (Fig. 2A). Figure 3 display the spatial distribution of musical pieces (identified with codes) 
generated by PCA.

Relation of acoustic parameters with the emotional index. Analyses involved various statistical 
methods, seeking the best technique to evaluate relationships among acoustic parameters and emotional indexes.

Linear modeling. In preliminary analyses, simple correlations between acoustic parameters and emotional 
indexes were not significant (P > 0.05). Based on the lack of linear association between evaluated variables, we 
inferred that the increase in one parameter did not simply imply an increase in a specific emotion. Consequently, 
nonlinear analyses were subsequently used.

Nonlinear modeling. For each emotional index, the AIC criterion was applied to select the best GAM model, 
taking into account the minimum AIC value generated and testing all possible structures (including different 

https://www.R-project.org
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combinations of acoustic parameters). Based on that, acoustic parameters pulse and instrumentation were con-
sidered predictor variables for the positive high arousal index (P < 0.0001), explaining 46.9% of the deviance. 
Positive low arousal index, BPM and instrumentation were associated (P < 0.0001), explaining 40.4% of the devi-
ance. For negative emotional index, explaining 26.3% of deviance, parameters HFC, ZCR, spectral deviation, 
pulse, and instrumentation were predictor variables; however, only HFC and spectral deviation had a tendency 
of association (P < 0.1) to this index. A summary of GAM analyses, with acoustic parameters that were predictors 
(based on comparisons of the additive model system) for each emotional index, and significance of the associa-
tions, is in Table 4.

Table 2.  Summary statistics of pigs’ QBA terms (in cm; 50 video observations).

Emotional state Mean ± SD Min Max CV

Active 7.22 ± 3.55 0.5 12.5 49.17

Agitated 3.52 ± 4.35 0 12.5 123.58

Relaxed 3.04 ± 3 0 11 98.68

Fearful 3.0 ± 4.16 0 12.5 138.67

Calm 2.83 ± 3.09 0 12 109.19

Content 2.77 ± 3.13 0 9.5 113

Indifferent 0.48 ± 1.55 0 8 322.92

Friendly 2.28 ± 3.01 0 10.5 132.02

Bored 0.02 ± 0.13 0 0.9 650

Playful 2.5 ± 3.23 0 11.5 129.2

Positively occupied 2.64 ± 2.7 0 11.5 102.27

Lively 3.13 ± 3.28 0 12.5 104.79

Inquisitive 3.06 ± 3.32 0 10.5 108.5

Irritable 0.5 ± 1 0 4.8 200

Uneasy 2.92 ± 3.88 0 12.5 132.88

Sociable 2.32 ± 2.87 0 11 123.71

Happy 2.16 ± 2.86 0 12 132.41

Distressed 0 0 0 0

Apathetic 0 0 0 0

Frustrated 0 0 0 0

Table 3.  Principal component analysis of QBA. Terms with loadings > 0.6 are bolded and were used to define 
the indexes identified in the analysis.

Terms PC1 positive high arousal index PC2 negative high arousal index PC3 positive low arousal index

Active 0.48 0.71 0.24

Relaxed 0.49 −0.36 0.66

Fearful −0.67 0.62 0.23

Agitated −0.42 0.82 0.09

Calm 0.54 −0.36 0.63

Content 0.90 0.22 −0.02

Indifferent −0.11 −0.49 −0.45

Friendly 0.91 0.19 −0.06

Bored −0.03 −0.19 0.06

Playful 0.92 0.23 −0.13

Positively occupied 0.90 0.02 0.01

Lively 0.91 0.13 0.12

Inquisitive −0.02 −0.37 0.50

Irritable 0.43 0.12 −0.34

Uneasy −0.70 0.67 0.26

Sociable 0.91 0.19 −0.09

Happy 0.90 0.23 −0.17

Eigenvalues 7.94 2.83 1.54

Cumulative percentage of vari-
ance 46.68 63.33 72.41
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Figure 2.  Plots of loadings for the 17 QBA analyzed terms. (A) Terms plotted on the first principal components 
PC1 (positive high arousal index) and PC2 (negative high arousal index). (B) Terms plotted on PC1 and PC3 
(positive low arousal index).

Figure 3.  Coordinates of litter emotional states to each piece of music.

Table 4.  Association of acoustic parameters predictors for each emotional index, based on a generalized 
additive model (GAM). NP parameters considered no predictors for model selected, HFC high frequency 
content, ZCR zero crossings rate, BPM beats per minute.

Emotional
Index

Acoustic parameters

Centroid Amplitude Dissonance HFC ZCR Spectral deviation Pulse (BPM) Instrumentation

Positive high arousal 
index NP NP NP NP NP NP  < 0.001  < 0.001

Negative high index NP NP NP 0.075  > 0.1 0.077  > 0.1  > 0.1

Positive low emo-
tions index NP NP NP NP NP NP  < 0.05  < 0.001
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Contour GAM plots are in Fig. 4. Only statistically significant acoustic parameters for emotional indexes 
predictors were included, and the central pink area determines explicit ranges where specific acoustic parameters 
were related to each emotional response. Relationships between BPM and instrumentation, both predictors of 
positive high arousal index, are in Fig. 4A; pulse values between 110 and 130 BPM, with three or four instruments, 
highly influenced this index. Associations between HFC and spectral deviation, both predictors of negative 
high arousal index, are in Fig. 4B. A combination of any HFC values, with levels of spectral deviation < 3000, 
were associated with higher values for this index. Pulse and instrumentation acoustic parameters, predictors for 
positive low arousal index, are in Fig. 4C. Pulse values < 120 bpm, with four to six instruments simultaneously 
presented, had a positive association with this index.

As a complementary analysis, another methodological framework based on predictive modeling was pro-
posed, using cross-validation strategies that generates pseudo-samples to overcome the sample size limitation of 
the data set. In this way, a modeling method using decision trees, Random Forests and XGBoost were applied. 
For each method, the selection of the best model was carried out using RMSE (Root Mean Square Error). This 
metric was also used to compare performance of these models with GAM (Table 5).

In general, the GAM has a lower value for RMSE on the test set and, therefore, better performance in cap-
turing with more sensitively the behavioral pattern of the data, specifically in the positive high and low arousal 
indexes, consistent with a higher correlation with each (0.63 and 0.56 respectively). In contrast, for the negative 

Figure 4.  Contour plots for predictive acoustic parameters, derived from a GAM model. The central pink 
area determines explicit ranges where specific acoustic parameters were related to each emotional response 
(A). Positive high arousal index. Pulse values between 110 and 130 BPM, with 3 and 4 instruments, induced 
more positive responses. (B) Negative high arousal index. A combination of any HFC values, with levels of 
spectral deviation < 3000 were associated with higher values for this index. (C) Positive low arousal index. Pulse 
values < 120 bpm and 4 to 6 instruments were associated with emotional responses included in this index.

Table 5.  Performance of nonlinear modelling methods comparisons and correlation between actual and 
predicted values on test and training sets. RMSE root mean square error, GAM generalized additive model, RF 
random forests model, DT decision trees model, XGB eXtreme gradient boosting model.

Emotional Index Model RMSE train RMSE test Correlation

Positive high arousal index

GAM 2.10 2.33 0.63

RF 2.26 2.78 0.12

DT 2.87 3.80 0.08

XGB 2.59 2.66 0.24

Negative high index

GAM 1.25 1.44 0.50

RF 1.52 1.31 0.60

DT 1.68 1.57 0.11

XGB 1.66 1.65 0.07

Positive low emotions index

GAM 0.95 1.08 0.56

RF 0.97 1.23 0.32

DT 1.07 1.60 0.31

XGB 1.04 1.22 -0.10
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high arousal index, the RF model had a lower RMSE and a correlation of 0.60. However, for this index the mod-
els exhibited overfitting, except for the GAM model. Therefore, we decided to discuss the results of non-linear 
modeling for the GAM model only.

Discussion
To our knowledge, this is the first study evaluating relationships among several acoustic characteristics of music 
(using a quantitative approach) with emotional responses in non-human animals. Moreover, this is the first study 
considering simultaneous interactions among these parameters. Due to the lack of antecedents in the field and 
according to the nature of these data, several statistical approaches were used, including linear (correlation) and 
non-linear modeling (GAM, RF, XGB and decision trees methods). All proposed analyses aimed an explora-
tory working route for understanding music and emotions, inherently complex phenomena. We concluded that 
acoustic temporal and spectral elements of music interacted in an integrated way to modulate emotions in pigs.

Based on the QBA, musical pieces used herein generated a wide range of emotional responses, from happy 
and relaxed, to fearful and irritable responses in pigs, similar to our previous study on the effects of music on 
 pigs15. This effect was similar to that observed in humans, with music inducing great variation in emotional 
responses, from sadness to excitement, anger or fear, and  more42,43, consistent with music being regarded as one 
of the best-known forms of emotional  communication44,45. Applying the PCA to QBA data grouped emotional 
responses into positive high, positive low, and negative high arousal indexes, according to their valences. These 
emotional responses were modulated by the integrated influence of the acoustic parameters in the stimuli used. 
Therefore, musical composition and structure were decisive in emotional responses to music in pigs, and may 
constitute an approximation to the knowledge we have about structural effects of music in  humans15,46,47.

Linear associations between acoustic parameters and emotional index (the initial exploratory approach), 
did not explain the complex relationships among evaluated variables. Therefore, an inferential approach using 
GAM models and predictive modeling (RF, DT and XGB models) was explored. The GAM model is considered 
a method of medium complexity, which supports non-linear relationships using the lower AIC for appropriate 
model selection. Conversely, the RMSE metric was applied for the predictive methods to identify the best per-
formance for the data analyzed. GAM models provided the best performance, capturing the global pattern of 
the data behavior identifying the association of musical parameter evaluated. Conversely, other modelling did 
not perform as well as we expected (presenting higher RMSE and lower correlation with each index). This was 
a limitation in our study, due to the limited number of musical pieces evaluated; consequently, further studies 
should be conducted with a larger sample size to identify the influence of more musical attributes on emotional 
indexes. However, this limitation does not invalidate the results and importance of this study, because this is a 
first step to understanding the complexity of this phenomenon.

GAM demonstrated that emotional responses observed in pigs were not explained by a single acoustic vari-
able with direct association. This revealed the complex and simultaneous interactions among several acoustic 
parameters to induce a specific emotional response. Particularly, pulse and instrumentation were identified as 
predictor variables; musical pieces with a range of pulse between 110 and 130, with two to four instruments 
generated higher positive high arousal responses. Conversely, if pulse value was < 120 bpm, with four to size 
instruments, emotional responses were positive with low arousal.

It was reported that fast-pulse music was more effective in influencing pig behavior than slow-pulse  music21. 
In the present study although certain ranges of pulse influenced emotional responses, it was not the only acous-
tic variable, but also instrumentation. In humans, several theorists have established connections between the 
information content of a piece, often discussed in terms of predictability and listener interest. The higher the 
information density (in number of instruments, and harmonic complexity), the longer is the temporal experience 
and higher effort (in terms of processing activity) is required; it may condition listener’s  interest48. Conversely, a 
predictable piece (less information) can be easily embedded and fragmented in the mind and, therefore, requires 
less processing time and less effort from the listener, which can lead to greater  interest49,50. Therefore, the number 
of instruments is associated with the amount of musical information and can explain the low arousal positive 
emotional responses to pieces with many instruments (4–8), as more information can reduce interest and atten-
tion. When compositions were based on more simple patterns for humans, and probably for pigs, there were 
high arousal positive emotional responses. Consequently, emotional responses in animals will be influenced by 
more than one musical structural component; therefore, analyses of this type of stimulus must simultaneously 
include evaluation of several acoustic parameters.

We discovered that parameters like spectral deviation and HFC must also be important for the modulation 
of pigs’ emotional responses to music. These parameters are considered timbral  attributes51–53. Timbre, one of 
the most important aspects of musical  sounds54 is closely related to music  emotions55,56. Although timbre is a 
multidimensional feature and, in turn, has other elements such as attack time, decay time, among  others51, evalu-
ation of several timbral attributes allows a relevant approach to this important feature. We inferred the relevance 
of timbre in modulation of emotional responses in pigs, with some of its attributes associated with positive high 
and low arousal indexes. This was consistent with human research that related timbre to emotional dimensions 
valence and arousal, measures of how positive and energetic music  sounds57.

Our results specifically related to high-frequency content can be explained by the vocalization frame of the 
pigs. Communication has various spectro-temporal attributes encoding different information categories, and 
the frequency and its fluctuations provide semantic information. Piglets that were restrained and castrated 
produced higher high-frequency calls (also more dissonant), than control piglets that were restrained but not 
castrated, suggesting that high-frequency vocalizations reflected pain during  castration58. This same framework 
was extrapolated to music; therefore, pieces with high dissonance and HFC can be relevant in modulation of 
negative emotional responses. There is no precedent for evaluating the high-frequency content of music on 
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behavioral or emotional responses of animals. However, previous research on pigs demonstrated the impor-
tance of high frequency content in vocalizations. The study indicated that vocalizations of domestic pigs can 
be distinguished into high frequency calls (yelps, squeals) and low frequency calls (grunts), with two or three 
less distinct subcategories within each of the two main  types59. High-frequency calls are associated to a negative 
context and an indicator of negative affective  valence60. From our results, we inferred that high-frequency content 
in music, similarly to vocalizations, may evoke aversive experiences in pigs. However, more study is required 
on this hypothesis in animals, in particular on how frequency modulation interacts with and contributes to the 
induction of emotional responses in pigs.

In humans, the association between music and emotions derives from neurocognitive process, with music 
structure as determinant 7,8,61,62. Acoustic stimulation activates a multidimensional process in the brain. Once 
it is translated into neuronal activity, widely distributed brain areas participate in the neuronal encoding of 
 music63. Acoustic aspects and musical structure such as rhythm, tone, melody, and harmony are processed in the 
frontal, temporal, and parietal  regions8,11,64,65. The amygdala, ventral striatum, hippocampus, hypothalamus, and 
interaction with arousal control systems, based on norepinephrine and serotonin concentrations, have effects 
on emotional responses and the autonomic nervous system, inducing behavioral and organic  responses7,62,66,67. 
Our results, evidencing effects of musical structure on pig emotional responses, led us to hypothesize that, in 
this species, music is the object of a neurocognitive process similar to humans. However, additional evaluation 
techniques, e.g., neuroimaging, are needed to corroborate it. Nevertheless, delving into these aspects from animal 
models may be relevant to understanding the neurocognitive basis of music processing.

We demonstrated that analysis of acoustic parameters, in an integrated approach, was appropriate for pigs, 
as it is for humans. Research in humans demonstrated that certain acoustic features were associated with spe-
cific emotional valences. For example, sadness with slow tempos, narrow frequency ranges, and decreases in 
tone; anger with an increase in fundamental frequency and at a higher intensity (amplitude); and fear with an 
increase in fundamental frequency, HFC, and a faster articulation  rate43. These descriptions have been validated 
in various human  studies68,69 and our results demonstrated that this type of characterization can be proposed in 
non-human animals. This provides critical knowledge for creation of species-specific acoustic sensory stimuli 
and demonstrates the enormous potential for environmental enrichment for animals.

Our study highlighted the importance of the psychoacoustic study of music, which to our knowledge has not 
been explored in nonhuman animals. Future studies should separately address testing the specific effect of each 
of the spectral and temporal characteristics of the stimuli while keeping other acoustic parameters stable, as well 
as the interaction of basic musical structural aspects with various brain features (e.g., structure, chemistry, and 
physiological pathways) that may elucidate the mechanisms through which music can induce specific emotional 
responses in nonhuman species.

Conclusion
Emotional states in pigs are modulated by structural characteristics of music. Modulations of pulse and instru-
mentation were the main acoustic parameters associated with emotional responses in pigs, at least for the ranges 
of acoustic parameters used in this study. Our data and analyses are a starting point to design and refine acoustic 
sensory stimuli appropriate for environmental enrichment, with predictable and validated emotional effects.

Data availability
The datasets generated during the current study and code implemented for its analysis are available at https:// 
github. com/ Julia nazap ata/ Nature- Scien tific- Repor ts- Spect ro- tempo ral- analy sis.
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