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Info‑gap theory to determine 
cost‑effective eradication 
of invasive species
Yang Liu 1,2*, Melissa L. Thomas 1, Grey T. Coupland 1, Penghao Wang 1,3, Dan Zheng 2 & 
Simon J. McKirdy 1

Invasive species eradication campaigns often fail due to stochastic arrival events, unpredictable 
detectability and incorrect resource allocation. Severe uncertainty in model parameter estimates 
may skew the eradication policy results. Using info‑gap decision theory, this research aims to 
provide managers with a method to quantify their confidence in realizing successful eradication 
of particular invasive species within their specified eradication budgets (i.e. allowed eradication 
cost) in face of information‑gaps. The potential introduction of the Asian house gecko Hemidactylus 
frenatus to Barrow Island, Australia is used as a case study to illustrate the model. Results of this 
research demonstrate that, more robustness to uncertainty in the model parameters can be earnt 
by (1) increasing the allowed eradication cost (2) investment in pre‑border quarantine and border 
inspection (i.e. prevention) or (3) investment in post‑border detection surveillance. The combination 
of a post‑border spatial dispersal model and info‑gap decision theory demonstrates a novel and 
spatially efficient method for managers to evaluate the robustness of eradication policies for incursion 
of invasive species with unexpected behaviour. These methods can be used to provide insight into 
the success of management goals, in particular the eradication of invasive species on islands or in 
broader mainland areas. These insights will assist in avoiding eradication failure and wasteful budget 
allocation and labour investment.

Ecological systems are under serious threat from invasive alien species’ (IAS) (also known as invasive species) 
through increasing international trade and reductions in trade  barriers1. For oceanic islands, where there are no 
predators and endemics have not evolved anti-predator defence mechanisms, invasive species can cause signifi-
cant  harm2. Eradication of invasive species is the most suitable course of action, as only through the complete 
removal of the invasive species are island ecosystems able to fully  recover3. Unfortunately, the amount of resources 
allocated to an eradication activity can influence whether the eradication program is  successful4. Knowledge of 
the budget therefore could assist in planning  eradications5.

In the Era of Globalization, aviation and shipping ports are regarded as major entry points for global trade and 
passenger  transport6. Taxonomic and geographic distribution of introduced invasive species is highly dependent 
on trade and passenger  routes7. Ignoring the interaction of spatially connected processes (e.g. pathways, regions 
and control policies), conservation results may significantly and stochastically deviate from the optimal control 
 strategies8. Increasing research has focused on spatial IAS management policies (e.g.8–10), and have found that 
spatial heterogeneity and network linkage are necessary to trigger efficient spatial  policies11.

Key determinants of eradication cost are size and distribution of the targeted population. Early detection 
could enable the invasive species to be detected and eradicated early when it is still a small population, but 
requires intensive post-border surveillance (surveillance, hereafter)12. Post-border surveillance refers to surveil-
lance that is completed following final quarantine clearance on the island. Uncertainty in initial population size 
(and distribution) could potentially cause delays in management actions. In most studies of detection strategies, 
the size of the population to be eradicated is assumed as  known13, with only a few researchers recognising that 
there is uncertainty relating to this variable (e.g.14). Mehta et al.14 incorporate the uncertainty in initial popula-
tion size using sensitivity analysis with the assumption that probability distribution is known. However, initial 
population size is characterised by large knowledge-deficiencies that cannot be measured probabilistically. It is 
important for deep uncertainties in population size and distribution to be incorporated into decision making 
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in order to quantify outcome performance and evaluate the robustness of the designed eradication program. 
For situations facing deep uncertainty, info-gap decision theory (IGDT) has proven to be  useful15,16. This is the 
first application of IGDT to generate cost-effective, but also robust eradication policy to manage insular invasive 
species with limited budgets.

Info-gap decision  theory17 is designed for Knightian  uncertainty18, i.e. situations where probability distribu-
tions for future cases are not accessible, inappropriate or unreliable or with uncertain  outcomes19. Thus, IGDT 
is also known as a non-probabilistic theory. Traditionally, probability mathematically represents either degree 
of belief (e.g. probability distribution of Bayesian statistics) or likelihood (frequency) of events, based on which 
outcomes rank in various principles, e.g. maximum expected utility, minimum mean-square  error20. While 
under Knightian uncertainty eluding distribution specification, Wald’s maximin is a common method to deal 
with uncertainty by minimizing worst outcome. Alternatively, IGDT offers a method to quantify the confidence 
in realising specified aspirations and enable the balance between  them21.

Asian house gecko Hemidactylus frenatus Duméril & Bibron, 1836 (AHG) is native to South and South-
East Asia. It has spread widely since the  1950s22,23 and is now considered one of the most widespread reptiles 
 worldwide24. As this species is primarily spread via human mediated transport, H. frenatus typically spreads 
along a complex ‘spot-fire’ pattern, instead of a single invasion  front25. In some areas, this species is known to 
displace native gecko  species26, and has the potential to disrupt electrical equipment when the equipment is used 
as a source of thermoregulation by the  gecko27.

Barrow Island (BWI) is located off the northwest coast of the Australian mainland (Fig. 1). It was declared a 
‘Class A’ nature reserve in 1910 and is home to a rich diversity of species with high conservation value. Industrial 
development on the island has increased the risk of IAS  incursion28. AHGs were first detected on BWI in 2015, 
with seven individuals found and successfully  eradicated12. Eradicating AHG during the early stage of incur-
sion is important, considering the low probability of eradication success and limitations of  detection29. Also, 
the impacts this species has on the ecosystem and/or industry operations remains unclear. Eradication of AHG 
after it is established (i.e. ‘persisting long enough in the new region to be able to reproduce’30) could be costly 
and with no guarantee of  success31.

Given the often-considerable financial investment in IAS eradication programs, it is important that programs 
are undertaken with confidence in their capacity to avoid possible long-lasting investment in permanent control 
or containment activities after eradication failure. The aim of this research is to apply IGDT to quantify confi-
dence in successful eradication within specified eradication budgets (i.e. allowed eradication cost, hereafter) and 
provide a balance between confidence and allowed eradication cost. This research also provides insights into 
pre-border quarantine and border inspection (prevention, hereafter) and post-border surveillance to help raise 
confidence in eradication programs. Border inspection refers to the inspection of cargo and vessels etc. for any 
biosecurity risk materials at the border. The potential incursion of the invasive AHG on BWI, Western Australia 
is used to illustrate the model in this research. The AHG is one of the highest risk species for incursion onto 
BWI based on the number of interceptions of this species during pre-border quarantine and border inspection.

Materials and methods
Recently, Long et al.10 outlined a post-border spatial dispersal model (Fig. 2) to optimize surveillance spatial 
allocation to minimize expected total management cost of four invasive species, whose spread on BWI could be 
promoted through human-mediated transportation. Their model is extended in this research by considering the 
Knightian uncertainty in the model parameter estimates and evaluating the robustness of various management 
policies to the Knightian uncertainty.

Info‑gap theory framework. Info-gap decision theory requires three components: (1) a system model 
used to represent the system consisting elements considered as the most significant; (2) a performance require-
ment which is actually a certain critical threshold made by decision makers; and (3) an uncertainty model to 
describe what is unknown about the system model  parameters17.

The post-border spatial dispersal model (Fig. 2) has been used as the system model in this research. The 
eradication cost C(EXPL) of one individual IAS entering location L is derived as Eq. (1), which is the weighted 
sum of the cost of survival and non-survival; the cost of non-survival is zero and that of survival and establish-
ment C(EL) consists of the weighted sum of the cost of detection and the cost of non-detection at location L 
(Eq. (2)). This research did not discount the eradication cost, assuming the eradication will be completed over 
a limited time on islands of suitable size.

where, PEL is the probability of survival and establishment of an IAS at location L and PEL =
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the IAS becomes widespread at location L ; pSL is a common coefficient of possibly spatial dispersal and specific 
to location L ; wm

L  is a spatial connection weight assigned to the destination location m from location L ; C(Em) is 
the cost of an IAS establishing at location m.

The detection probability PDL (SL) with surveillance cost SL used at each location is defined as Eq. (3) assuming 
that the distribution of both search effort and position of IAS is random according to search  theory32. That is,

where, i is the type of Surveillance System Component (SSC) used for surveillance detection; KL is the population 
threshold for detection at location L ; FiL,Z is the footprint (i.e. detection area covered by one unit of SSC deploy-
ment) of one unit of SSC i in zone Z of location L ; σ i

L,Z is the detectability of SSC i in zone Z of location L , given 
that the invasive species is present in the SSC footprint; Ci

L,Z is the cost per unit SSC i in zone Z of location L ; 
SiL,Z is the surveillance cost of SSC i in zone Z of location L.

The eradication cost at all potential invasion locations is then summarized as Eq. (4).

where, En is the annual number of entries of IAS individuals of a particular species after border inspection to any 
of the locations (i.e. entry individuals hereafter); γL is the probability of an IAS entry to location L and 
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Figure 1.  Quarantine invasion risk map of the Asian house gecko (AHG) on Barrow  Island12. Inset map at 
the top right is the map of Australia with the location of Barrow Island shown as a red marker (https:// www. 
google. com/ maps). Zone 0 is the buffer area at Material Offloading Facility (MOF) (i.e. X-Blocs area). Zone 1 is 
the area with the highest occupancy probability, where the majority of the surveillance budget should be spent. 
Zone 2 is the secondary introduction area (100 m buffer area around Zone 1) and is considered the lower risk 
boundary for a species dispersing out of Zone 1. Zone 3 is the remaining island area where the AHG is less likely 
to establish prior to detection thus with no SSCs allocated.

https://www.google.com/maps
https://www.google.com/maps
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The system model results applied to calculate the eradication cost r is then evaluated against a certain thresh-
old value rα , requiring the eradication cost no more than rα(r ≤ rα) . rα can be interpreted as a maximum budget, 
i.e. allowed eradication cost, that managers would like to allocate to an eradication activity at which the eradica-
tion activity is considered to always succeed over the horizon of uncertainty α.

In this research, 43 uncertain parameters are considered, including En (entry individuals of AHG), γL (entry 
probability), PDL  (detection probability), pSL (spatial dispersal probability), PSucL  (probability of eradication suc-
cess) at location L(L = 1, . . . , 6) , and survival probability PEL,Z in zone Z = 0, 1, 2 at location L(L = 1, . . . , 6) (see 
Fig. 1 and Supplementary Table S1 for zones and locations). 43-vectors x = (x1, . . . , x43) are used to represent 
these uncertainty parameters and referred to En, γL, PDL , p

S
L, P

Suc
L , PEL,Z for simplicity. The nominal value (best 

estimates) of the parameters represented by vector x̃ , rely on the best available information that can be collected 
at present (see Supplementary Table S2 for SSC types and Supplementary Tables S3–S7 for nominal values and 
nominal input values of detection probability). The only available information about these parameter estimates 
is that they are all non-negative and all other parameters except En have an upper boundary of one. In such a 
data-poor environment, it is difficult to determine the deviation of the best estimated value from their true value. 
Fractional-error uncertainty model U(α) describes a set of possible events within the horizon of uncertainty 
without considering the probability or frequency of  outcomes33:

assuming that the deviation is an unknown fraction α or less, i.e.

In this research, a set of nested uncertainty ranging from zero to one is applied given that the value of α is 
known.

Robustness model. Following Ben-Haim17, robustness α̂(rα) = max{α : ( max r
xn∈U(α)

) ≤ rα} is defined as the 
largest info-gap at which eradication cost is ensured to be no more than rα . Let m(α) represents max r in the 
robustness function, as m(α) is the inverse function of α̂(rα)12, m(α) can be derived to plot the robustness curves. 
Function ‘fmincon’ in MATLAB  R2018b34 was used to calculate the corresponding maximization with each 
value of α.

(5)

U(α) = {x : |
xn − x̃n

x̃n
| ≤ α, xn ≥ 0, n = 1 : 43; γL ≤ 1,PD

L ≤ 1, pSL ≤ 1,PSuc
L ≤ 1,PE

L,Z ≤ 1, L = 1 : 6,Z = 0 : 2},α ≥ 0

(6)x̃n − x̃nα ≤ xn ≤ x̃n + x̃nα

Figure 2.  Post-border spatial dispersal  modelling10. After an individual invasive species enters location L , the 
probability of its survival and establishment at location L is pEL . The cost of non-survival is zero. The probability 
of it being detected after establishment with surveillance cost SL spent at location L is pDL (SL) . Once detected, 
it will be eradicated with eradication cost ZE

L  ; if not, it will become widespread at location L , or even move to 
other potential locations m = 1, 2, . . . , n\L with probability pSLw

m
L  ( pSL is a common coefficient that is specific 

to location L , wm
L  is a spatial connection weight between location L and m ) and another loop process starts. It is 

assumed that when the invasive species becomes widespread at location L , the invasive species could be detected 
with 100% probability. The following eradication conducted with budget ZW

L  (much higher than ZE
L  ), may fail 

with probability 1− pSucL  . It should be noticed that 
∑N

m=1 w
m
L = 1,m ∈ {1, 2, . . . , n}\L.
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The situations for conducting robustness analysis are organized as follows: K̃L at locations L = 1, . . . , 6 are 
assumed to be the same and set at 20, 8, 3 and Ẽn is set at 100, 50, 5, 1, to evaluate the robustness at various 
estimated population thresholds for detection and estimated entry individuals of AHG respectively. To evaluate 
the effects of surveillance budget on predicted eradication cost and corresponding robustness, the estimated 
surveillance cost is altered by (1) Optimal Spatial–optimal surveillance expenditure with spatial spread model 
applies when K̃L = 8 (estimates from subject matter experts) and Ẽn = 5 10 (average number of individual AHG 
detected annually at the BWI border); (2) Doubling Optimal Spatial—doubling (200%) the number of SSCs 
deployed in (1) in each zone at each location; (3) Critical Spatial—minimising the number of SSCs in (1) in 
each zone at each location to achieve Gorgon Gas Development’s ministerial commitment (i.e. the surveillance 
program could detect an individual introduced species if it was present on the island due to activities of Gorgon 
Project (one of the world’s largest natural gas projects, operated by Chevron Australia), with a statistical power of 
detection of 0.8 or  greater35); (4) Critical Local—using SSCs of surveillance program applied by Chevron based 
on local spread  model12 to meet the ministerial requirement. This is to ensure the comparability of results of (3) 
and (4); and (5) No SSCs Spatial—allocating no SSCs using spatial spread model. The last scenario investigates 
the necessity of surveillance. The quantity of corresponding SSCs to be used in each situation is listed in Table 1.

Results
Robustness (y-axis, Figs. 3 and 4) shows the greatest parameter estimates error, up to which the estimated 
eradication cost is always lower than the allowed eradication cost required by the managers (x-axis, Figs. 3 and 
4). For example, robustness of 0.10 (black line in Fig. 3) indicates that uncertainty parameter estimates error, 
up to ± 10%, will never jeopardize the corresponding allowed eradication cost, which is AU$410 million. The 
converging points of each robustness curve with horizontal axis (Figs. 3 and 4) present the predicted eradica-
tion cost with estimated parameter values and show no robustness to uncertainty (i.e. zeroing property). For 
example, the black line (Fig. 3) indicates an estimated eradication cost of AU$41 million, the robustness of which 
is zero. This predicted eradication cost is regarded as unreliable due to the severe uncertainty associated with 
the input parameters.

Immunity to underlying uncertainty (i.e. robustness) could be gained through increasing allowed eradica-
tion costs (Figs. 3 and 4), with a plateau at 0.6. That is, robustness of more than 0.6 could not be gained even if 
managers further increase allowed eradication cost. Managers may decide the allowed eradication cost to be 
allocated based on their preferred robustness to the underlying parameter uncertainties. Alternatively, managers 
could evaluate the robustness of their allowed eradication cost. This is called the trade-off property of IGDT.

In addition to gaining robustness through increasing allowed eradication costs, how much robustness could 
be gained is also reliant on the estimated entry individuals of AHG onto BWI (i.e. Ẽn ). As Fig. 3 indicates, when 
the estimated population threshold K̃L is constant, confidence in realizing successful eradication (i.e. robustness) 
increases when the estimated entry individuals Ẽn decreases. For example, an error of ± 51% ( ̃En = 1, K̃L = 8 ), 
can be tolerated in estimated uncertainty parameters with the actual eradication cost guaranteed to be no greater 
than AU$500 million. This is larger than that of ± 12% when Ẽn = 50, K̃L = 8 . When Ẽn is constant, the esti-
mated population threshold K̃L for surveillance detection has no influence on the robustness of eradication 
policy (Fig. 3).

A decrease in the number of SSCs deployed, results in a corresponding decrease in the robustness of specific 
allowed eradication cost (Fig. 4). Doubling the number of SSCs (blue line in Fig. 4) is the robust dominant strat-
egy that should be preferred by managers. When no SSC is deployed (blue line in Fig. 4) there is a substantial 
increase in the allowed eradication cost required for eradication activities to gain the same level of robustness. 
This is because when fewer SSCs are deployed, AHG are detected only once they are well established and at 
high numbers, at which point they become difficult to eradicate. The spatial spread model appears to be more 
robust than the local spread models to critically achieve Gorgon’s ministerial commitment (Fig. 4). This is not 

Table 1.  Quantity of corresponding Surveillance System Components (SSCs, see definitions of SSCs in 
Supplementary Table S2) to be used in each situation when estimated population threshold for detection is 
eight ( K̃L = 8 ) and annual number of entries of Asian house gecko individuals after border inspection to 
any of the locations on Barrow Island is five ( ̃En = 5). ‘Spatial’ indicates the situation with spatial spread 
model applies and ‘Local’ indicates the situation with local spread model applies. ‘Critical’ indicates that 
the surveillance programme is designed to critically achieve Gorgon’s ministerial commitment. a EARS: 
Environmental Acoustic Recognition Sensors. These are devices that autonomously listen for the call of an 
Asian House Gecko and relay any detections to the end user through a user interface.

Situations
Unstructured 
surveys

Structured 
surveys

Gecko scat 
collections

EARSa (non-
networked) Passive workers

EARS 
(networked)

(1) Optimal 
spatial 12 12 12 12 6 17,762

(2) Doubling 
optimal spatial 24 24 24 24 12 35,524

(3) Critical spatial 23 12 12 138 6 13,075

(4) Critical local 62 12 53 165 1000 324

(5) No SSCs 
spatial 0 0 0 0 0 0
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surprising considering that invasion probabilities between locations connected by transportation can be influ-
enced by each another.

Discussion
Eradication is the preferred option when re-invasion is unlikely and the initial population size is  small36. Although 
complete prevention of re-invasion is not achievable, a reduction of invasion probability can be realised through 
allocating appropriate resources to  prevention37. This study demonstrates that reducing border pressure (i.e. the 
annual number of entries of IAS individuals of a particular species after border inspection to any of the loca-
tions), thereby decreasing Ẽn , could increase the robustness of specific allowed eradication cost. However, this 
relationship is not proportional (Fig. 3). Prevention is therefore necessary but cannot be completely guaranteed. 
For managers who are risk averse, resources tend to be put towards post-border strategies (e.g. surveillance) 
to solve existing issues, instead of prevention where there is uncertainty relating to invasion  probability38. This 
research demonstrates that such risk-averse attitudes are detrimental when entry frequency of invasive species 
is high (i.e. high border pressure).

Insufficient trap deployment is one reason for possible eradication  failure39, particularly relating to the cap-
ture of the last  individuals40. Eradication of small India mongoose from Amami-Oshima, Japan, failed due to 
the difficulty of capturing individuals at low  density41. Invasive gecko species have a high establishment success 
associated with high propagule  pressure29. In the Caribbean region, preventing the introduction of invasive 
geckos is considered a priority, given that this species may go undetected at low densities and therefore have 
a higher chance of establishment and lower possibility of  eradication29. Rapid response to prevent population 
growth and spread, accurate delimitation of infested area, and resource allocated to eradication are determinants 
of eradication  success42. This research shows that increasing allowed eradication cost, thus enables more traps to 
be deployed and advances the probability of eradication success, gains managers more immunity (robustness) 
to underlying errors in the parameter estimates.

Greater surveillance effort can decrease predicted eradication costs by ensuring populations are detected 
when they are low in numbers and before they have  spread43. Results of this research indicate that an increase 

Figure 3.  Robustness curves using the spatial dispersal model. K̃L is the estimated population threshold for 
detection, assumed to be the same at each location L = 1, . . . , 6 and Ẽn is the estimated annual number of 
entries of Asian house gecko after border inspection to any of the locations on Barrow Island. The corresponding 
optimal surveillance cost in each situation are listed as ‘SurvExpe’ in the legend. The lines with the same value of 
Ẽn are aligned with each other.
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in the quantity of SSCs deployed predicts a lower eradication cost and enables more robustness (Fig. 4). When 
no SSCs are deployed post-border, estimated eradication cost is significantly higher and there is less robustness 
associated with specific allowed eradication cost. For small populations, more resources need to be spent on 
surveillance to improve the probability of detecting IAS  early14. This can be seen in Fig. 3 where the optimal 
surveillance costs associated with K̃L = 3, 8, 20 (Ẽn = 5) are AU$100,578, AU$43,805 and AU$20,886 separately.

Results of this research lend support to spatial management policies to be more efficient. Incorporating 
the chance of incursion from surrounding locations connected by human-mediated transports (spatial spread 
model) in an insular area, results in more optimal surveillance expenditure, an increase in robustness, but a 
decrease in predicted eradication costs (Fig. 4). Spatial IAS management policies are thus desired, especially 
across heterogeneous landscapes.

Robust-optimal solutions may differ when various components of the model are structured in the uncertainty 
 model44. As shown in Supplementary Section S1, modelling uncertainty in additional fundamental parameters 
in the nominal model of detection probability (Eq. (3)) is illustrated as an example. For Supplementary Fig. S1, 
info-gap analysis generates some different results from Fig. 3. That is, increasing the estimated population thresh-
old for surveillance detection gains managers more robustness when the estimated entry individuals ( ̃En ) is 
constant (Supplementary Fig. S1). Investment in prevention to decrease the estimated entry individuals ( Ẽn ) 
enables more robustness to be gained (Supplementary Fig. S1). Future research will consider how much should 
be spent on prevention, with uncertainty in cost-effectiveness of prevention included. Robustness plateaus at 0.7 
(Supplementary Fig. S1), in comparison with that of 0.6 in Fig. 3, indicating more errors in parameter estimates 
could be tolerated without jeopardizing the performance requirement. Supplementary Fig. S2 exhibits the same 
outcome as Fig. 4, and demonstrates that more robustness could be earnt through: (1) using greater estimated 
surveillance effort with more SSCs applied; (2) increasing allowed eradication cost; (3) using spatial spread model 
to make spatial management policies.

The model in this research, as a fundamental model, can be extended to take both temporal and spatial fac-
tors into consideration to better tackle uncertainty. For example, detection probability is assumed to be constant 
without considering temporal (e.g. diurnal or seasonal) factors in this research. The surveillance system designed 
in this research performs over one year considering that the detectability of AHG may vary during a year due to 
seasonal changes. While in other research, detectability is considered to change with population  size43, site visit 
 length45 and the date of  detection13. Further research into the biology of gecko species (e.g. reproductive cycle, 
Allee threshold and life expectancy) could change the decisions managers make following a detection. Methods 
in this research can also be applied in other areas aiming for robust eradication of IAS in ecology, including 
islands, farm and forest management, even for aquatic invasions resulting from transportation of IAS via vessels.

Impacts (ecological, economic and societal impacts) caused by IAS and environmental damage during eradi-
cation should also be considered in invasion management  policies46. Quantification would require extensive 
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Figure 4.  Robustness curves for situations shown in the legend. In each situation, the population threshold 
for detection of Asian house gecko at each location is estimated at 8 (i.e. K̃L = 8 for L = 1, . . . , 6 ) and the 
annual number of entries of AHG individuals after border inspection to any of the locations on Barrow Island 
is estimated at 5 ( ̃En = 5 ). All lines, except for the red line (based on local spread model), are based on spatial 
spread model. The optimal allocation of Surveillance System Components (SSCs) in each zone at each location 
is denoted as ‘Optimal Spatial’. The application of double (200%) and no SSCs in each zone at each location is 
denoted as ‘Doubling Optimal Spatial’ and ‘No SSCs Spatial’ separately. The ‘Critical Spatial’ and ‘Critical Local’ 
are applied to meet Chevron’s ministerial requirements. The ‘SurvExpe’ indicates the corresponding estimated 
surveillance cost in each situation.
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quantitative data of the potential impacts of the IAS, which is currently unknown in managing the AHG in 
certain introduced environments. Overall, investing in prevention will reduce border pressure, while investing 
in surveillance will enable early detection and increase the chance of a successful eradication. All these methods 
are beneficial for earning more robustness. Results of this research reinforce previous research that has shown 
that prevention, surveillance and eradication programmes should never be considered in isolation, particularly 
when allocating limited budgets (e.g.47,48). Ignoring deep uncertainty may skew the optimal policy results. There 
is a need for further research into the robust resource allocation across the continuum of activities to ensure 
cost-effective, but also robust biosecurity management.

Data availability
Data available via the Dryad Digital Repository https:// doi. org/ 10. 5061/ dryad. b8gth t7h0.
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