
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3011  | https://doi.org/10.1038/s41598-023-29469-0

www.nature.com/scientificreports

Heat and mass transfer 
of micropolar liquid flow due 
to porous stretching/shrinking 
surface with ternary nanoparticles
G. P. Vanitha 1,2, U. S. Mahabaleshwar 2, M. Hatami 3* & Xiaohu Yang 4

The present investigation is carried out to predict the flow characteristics of a micropolar liquid that is 
infused with ternary nanoparticles across a stretching/shrinking surface under the impact of chemical 
reactions and radiation. Here, three dissimilarly shaped nanoparticles (copper oxide, graphene and 
copper nanotubes) are suspended in  H2O to analyse the characteristics of flow, heat and mass transfer. 
The flow is analysed using the inverse Darcy model, while the thermal analysis is based on the thermal 
radiation. Furthermore, the mass transfer is examined in light of the impact of first order chemically 
reactive species. The considered flow problem is modelled resulting with the governing equations. 
These governing equations are highly non linear partial differential equations. Adopting suitable 
similarity transformations partial differential equations are reduced to ordinary differential equations. 
The thermal and mass transfer analysis comprises two cases: PST/PSC and PHF/PMF. The analytical 
solution for energy and mass characteristics is extracted in terms of an incomplete gamma function. 
The characteristics of a micropolar liquid are analysed for various parameters and presented through 
graphs. The impact of skin friction is also considered in this analysis. The stretching and rate of mass 
transfer have a large influence on the microstructure of a product manufactured in the industries. 
The analytical results produced in the current study seem to be helpful in the polymer industry for 
manufacturing stretched plastic sheets.
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ρ  Density (kg  m−3)
σ∗  Stefan-Boltzmann constant (W  m-2  K-4)
�  Temperature function 

(
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Tw−T∞
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 (−)

φ  Volume fraction of particle (0 < φ < 1) (−)
ξ  Parameter (−)

�  Concentration function 
(

= C−C∞
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)

 (−)

�  Stream function (−)

Subscripts
w  At the boundary (−)
∞  Far from the sheet (−)
f   Notation for base fluid (−)
tnf   Ternary nanofluid notation (−)

Abbreviations
2-D  Two-dimensional (−)
ODEs  Ordinary differential equations (−)
PDEs  Partial differential equations (−)
PMF  Prescribed mass flux (−)
PSC  Prescribed surface concentration (−)
PST  Prescribed surface temperature (−)
PHF  Prescribed heat flux (−)
THNF  Ternary hybrid nanofluid (−)
MHD  Magnetohydrodynamics (−)
UB  Upper branch (−)
LB  Lower branch (−)
ADM  Adomian decomposition method (−)

The theoretical study of micropolar fluids is a viscous fluid that suspends inflexible tiny particles that are highly 
irregular, rotate and spin slightly about their own axes. Fluids like blood, paint, lubricant fluids, anisotropic 
fluids, polymers, animal blood, complex biological structures are a few examples of microfluid that have sig-
nificant applications in industries.  Eringen1 is the pioneer who proposed the microfluidic theory. In this theory, 
a new constitutive equation and a new micro-rotation material independent of the vector field are added to 
the Navier–Stokes equation.  Eringen2 expanded on his earlier research by providing a generalised theory of 
thermal micropolar fluid. Guram and  Smith3 studied micropolar fluid stagnation flows with strong and weak 
synergy. Sankara et al.4 investigated the micropolar fluid flow across a stretching sheet using the highly conver-
gent Homotopy method to obtain the numerical results. Several earlier researches, including those by  Hady5, 
 Heruska6 and  Chiam7, are motivated by the potential significance of micropolar boundary layer flow in industrial 
applications. Since then, numerous  authors8–15 have investigated the impacts of different physical parameters 
on micropolar fluid, including magnetohydrodynamics (MHD), Joule heating, radiation, chemical reaction and 
viscous dissipation.
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On the other hand, numerous studies have examined the impact of nanoparticle inclusion on the properties 
of heat transport in various physical situations. A nanofluid is a fluid composed of highly thermally conduc-
tive nanoparticles suspended in a base fluid. Due to the metallic nanoparticles suspended in the fluid, the 
nanofluid has a greater thermal conductivity than a typical fluid, is chemically stable, and exhibits improved 
heat transfer rates, nanofluid has uses in the petroleum industries, pharmaceutical industry, and many other 
fields. Dulal  Pal16,17 analysed the hall effects and stagnation point flow of nanofluid over a stretching/shrinking 
sheet. Krishnandan et al.18 examined computationally MHD nanoparticles flow over a shrinking sheet under 
the impact of chemical reactions and applied heat approaching the stagnation point of micropolar fluid, their 
findings reveals that when the Biot number increases, the temperature of the nanofluid and the distribution of 
nanoparticles both increases. Alizadeh et al.19 investigated the heat transfer among permeable materials and 
micropolar nanofluid flow walls exposed to a magnetic field and heat radiation.  Bilal20 study involves mixed 
convective micropolar nanoparticles flowing over an upward sheet with slip and ohmic dissipation. The investi-
gation on MHD micropolar nanofluid flow enclosed by two surfaces with radiation and hall current was carried 
out by Saeed et al.21. Rafique et al.22 discussed micropolar nanofluid hydromagnetic flow. Patnaik et al.23 used 
ADM-Pade computation technique to analyse the mixed convection flow of MHD micropolar nanofluid flow 
with chemical reaction past a porous stretching surface. Aslani et al.24 conducted a study on MHD micropolar 
fluid flow across a penetrable stretching/shrinking sheet with a radiation effect. Gadisa et al.25 used a numerical 
technique to analyse the effect of couple stress of micropolar nanofluid flow by formulating the problem using 
a non-Fourier’s-law heat flux model.

Many researchers like Shaheen et al.26, Rojaa et al.27, Mahabaleshwar et al.28,29 investigated the micropolar 
nanofluid flow considering MHD, mass transpiration, viscous dissipation, thermal radiation, heat source/sink, 
chemical reaction. A two-dimensional motion past a porous linear stretching/shrinking sheet and mass transfer 
of the non-Newtonian flow with Cu-Al2O3 hybrid nanoparticles suspension is examined by Mahabaleshwar 
et al.30. An analysis of entropy generation using Darcy-Forchheimer model with hybrid nanofluid is reported by 
Gopinath and Dulal  Pal31. The numerical analysis of ternary hybrid nanoparticles motion in between the paral-
lel plates is illustrated by Bilal et al.32. Bhattacharyya et al.33, Heruska et al.34, Mohammadein et al.35,  Dulal36,37 
and  Mahmoud38 explained the thermal radiation effects on micropolar fluid past a shrinking/stretching sheet.

In this study, we analyse the impact of heat and mass transfer on a micropolar fluid suspended with ternary 
nanoparticles as it passes past a porous stretching/shrinking sheet. Dual solutions for the momentum and micro-
rotation are obtained using analytical technique. Heat and mass transfer are analysed for two different boundary 
conditions, and solutions are evaluated in terms of an incomplete gamma function. The characteristics of the flow 
field and skin friction are discussed and presented through graphs. The current paper explanation starts with 
a theoretical analysis in “Theoretical analysis” section. “Methodology and non-dimensional variables” section 
contains methodology, an analysis of the flow, heat and mass fields is mentioned in “Solution analysis” section. 
Further, “Result analysis” section mentions the result analysis followed by concluding remarks in “Concluding 
remarks” section.

Theoretical analysis
The steady, laminar, two-dimensional boundary layer flow of micropolar fluid infused with ternary nanoparticles 
of different shapes was under study to analyse the behaviour of the flow, energy, and mass transfer caused by a 
stretching/shrinking sheet under the influence of thermal radiation and chemical reactions as explained in Fig. 1.

The considered fluid has high porosity in the porous medium ( ε = 1 ). The fundamental equations of the flow 
field (Nagaraju et al.39) are modelled as follows:

Continuity equation. 

Momentum equation. 

Microrotation equation. 

Energy equation. 

(1)
∂u

∂x
+ ∂v

∂y
= 0,

(2)u
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= − 1
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,
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∂x
+ v
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= − 1
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+
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)(

∂2v

∂x2
+ ∂2v

∂y2
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∂ω

∂x
,
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∂ω

∂x
+ v

∂ω

∂y
= γtnf

J ρtnf

(

∂2ω

∂x2
+ ∂2ω

∂y2

)

− κtnf

J ρtnf

(

2ω + ∂u

∂y

)

+ κtnf

(

∂v

∂x
− ∂u

∂y

)

,
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Concentration equation. 

Here, u and v are the velocity components along x and y axis, respectively. dpdx is the pressure gradient. It is 
assumed to be zero because fluid flow is due to the stretching/shrinking of the sheet. ω is the microrotation 
component obtained from the vector �ω = (0, 0,ω).The terms: ρtnf  represents density, µtnf  denotes viscosity, αtnf  
stands for thermal diffusivity, νtnf  is kinematic viscosity of the ternary nanoparticles micropolar liquid. t  and c 
denotes thermal and solutal quantity of the liquid.K denote the first order chemical reaction.

Using the aforementioned boundary layer assumptions, Eqs. (1)–(6) are reduced to the following PDEs 
(Sankara and  Watson40):

It is evident that v represents the flow field entire spin, which includes the spin of the fluid media and micro-
structure. Additionally, it is possible that under some circumstances, the effects of the microstructure vanish and 
the flow takes on the characteristics of a typical viscous flow. As a result, if we insist that v is the angular velocity 
is a feasible solution, then we consider the following condition.

(5)u
∂t

∂x
+ v

∂t

∂y
= αtnf

(

∂2t

∂x2
+ ∂2t

∂y2

)

− 1
(

ρCp

)

tnf

∂qr

∂y
,

(6)u
∂c

∂x
+ v

∂c

∂y
= D

(

∂2c

∂x2
+ ∂2c

∂y2

)

− K(c − c∞).

(7)
∂u

∂x
+ ∂v

∂y
= 0,

(8)u
∂u

∂x
+ v

∂u

∂y
=

(

νtnf +
κtnf

ρtnf

)

∂2u

∂y2
− µtnf

ρtnf ktnf
u+ κtnf

ρtnf

∂ω

∂y
,

(9)u
∂ω

∂x
+ v

∂ω

∂y
= γtnf

J ρtnf

(

∂2ω

∂y2

)

− κtnf

J ρtnf

(

2ω + ∂u

∂y

)

,

(10)u
∂t

∂x
+ v

∂t

∂y
= αtnf

(

∂2t

∂y2

)

− 1
(

ρCp

)

tnf

∂qr

∂y
,

(11)u
∂c
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+ v

∂c
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= D
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(
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)

− K1(c − c∞).

Figure 1.  Schematic representation of the stretching/shrinking boundary.
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where, γtnf  signifies angular rotational viscosity. The relation in Eq. (6) is explained  by41–43.
The prescribed boundary conditions are as follows:

After obtaining the governing PDEs, we now proceed to the next section, which is methodology used to 
extract the solution via similarity transformations.

Methodology and non‑dimensional variables
The analysis of this problem is continued by employing the following non-dimensional variables:

Here we study the heat and concentration equation for two different conditions:
Temperature equation: PSH and PHF
(tw − t∞ is fixed for PSH case; t∞ = 0 ; rate of change of wall heat w.r.t ‘ x ’ is neglected for PHF case)
Concentration equation: PSC and PCF
(cw − c∞ is fixed for PSC case; c∞ = 0 ; rate of change of wall concentration w.r.t ‘ x ’ is neglected for PCF case)
Using Eq. (15), the governing non-linear PDEs are simplified as non-dimensional equations as follows:

The associated boundary conditions are:

In this paper, the nanoparticles with spherical and non-spherical shapes are used (cylindrical and platelet). 
When particles are dispersed in liquid, Suganthi et al.44 found that particle form has an impact on how the par-
ticles move. Additionally, their research showed that non-spherical nanoparticles perform less well in fluid flow, 
translational motions, and rotational motions than spherical nanoparticles. The dimensional parameters such 
as thermal conductivity κtnf  , density ρtnf  , viscosity µtnf  and heat capacity 

(

ρCp

)

tnf
 of different shaped ternary 

nanoparticles are considered as follows based on Table 1  data45–47

(12)γtnf = µtnf

(

1+ κtnf

2µtnf

)

νtnf

a
.

(13)
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t = tw (for the PST), −k
�

ν
a

∂t
∂y = qw , (for the PHF)

c = cw (for the PSC) −k
�

ν
a

∂c
∂y = mw , (for the PHF)











at y = 0

(14)u → 0 , ω → 0, t → t∞ , c → c∞} as y → ∞.

(15)
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( a

ν

)1/2
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( a

ν

)1/2
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(aν)1/2
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a
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cw − c∞
.

(16)
∂U

∂X
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∂Y
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(

∂2T
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)

− 1
(
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)

tnf

∂qr

∂y

)

1

νtnf
,

(20)U
∂C

∂X
+ V

∂C

∂Y
= D

νtnf

(

∂2C

∂Y2

)

− K1C.

(21)
U = ±X, V = Vw , N = −ξ ∂U

∂Y

T = 1 (PST) ∂T
∂Y = −1 (PHF)

C = 1 (PSC) ∂C
∂Y = −1 (PMF)







at Y = 0

(22)U = 0 , N = 0 , T → T∞ , C → C∞ as Y → ∞.
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 i. Spherical shaped nanoparticles: 

.
 ii. Cylindrical shaped nanoparticles:

 iii. Platelet shaped nanoparticles:

Similarity transformations. The existence of the stream function ψ(x, y) is considered as,

And the similarity variables are

Using Eqs. (23) and (24) to solve Eqs. (16)–(20), we obtain the following ODEs

The corresponding boundary conditions are,

ρtnf = (1− φ1 − φ2 − φ3)ρbf + φ1ρsp1 + φ2ρsp2 + φ3ρsp3,
�

ρCp

�

tnf
= (1− φ1 − φ2 − φ3)

�

ρCp

�

bf
+ φ1

�

ρCp

�

sp1
+ φ2

�

ρCp

�

sp2
+ φ3

�

ρCp

�

sp3
,

�

ρCp

�

tnf
= (1− φ1 − φ2 − φ3)

�

ρCp

�

bf
+ φ1

�

ρCp

�

sp1
+ φ2

�

ρCp

�

sp2
+ φ3

�

ρCp

�

sp3
,

µtnf =
µnf 1φ1 + µnf 2φ2 + µnf 3φ3

φ
,

κtnf =
κnf 1φ1 + κnf 2φ2 + κnf 3φ3

φ

and

φ = φ1 + φ2 + φ3.







































































,

µnf 1

µbf
= 1+ 2.5φ + 6.2φ2 , κnf 1 = κbf

[

2κbf + κsp1 + 2φ(κsp1 − κbf )

2κbf + κsp1 − φ(κsp1 − κbf )

]

µnf 2

µbf
= 1+ 13.5φ + 904.4φ2 , κnf 2 = κbf

[

3.9κbf + κsp2 + 3.9φ(κsp2 − κbf )

3.9κbf + κsp2 − φ(κsp2 − κbf )

]

µnf 3

µbf
= 1+ 37.1φ + 612.6φ2 , κnf 3 = κbf

[

4.7κbf + κsp3 + 4.7φ(κsp3 − κbf )

4.7κbf + κsp3 − φ(κsp3 − κbf )

]

(23)U = ∂ψ

∂Y
and V = −∂ψ

∂X
.

(24)ψ = X f (Y) , N = X g(Y) , T = �(Y) , C = �(Y)

(25)
(

1+ Er A3

A1

)

f ′′′(Y) + f (Y) f ′′(Y)− f ′2(Y)− Da−1A1

A2
f ′(Y)+ Er A3

A1
g ′(Y) = 0,

(26)
(

1+ Er A3

2A1

)

g ′′(Y) + f (Y)g ′(Y)− f ′(Y)g(Y)− Er A3

A1

[

2g(Y)+ f ′′(Y)
]

= 0,

(27)(A3 + R) �′′(Y)+ A2A4 Pr

A1
f (Y) �′(Y) = 0,

(28)�′′(Y)+ A2Sc

A1

[

f (Y)�′(Y)− Cr�(Y)
]

= 0.

Table 1.  Thermo-physical  properties48–51.

Sl. no. Source Base fluid and nano-particles ρ κ Cp Shape

1 48 Water  H2O 997.1 0.613 4180 -

2 49 Graphene 2200 5000 790 Platelet

3 50 Copper oxide (CuO) 6320 40 765 Spherical

4 51 Single wall CNT 2600 76.5 531.8 Cylindrical
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The non-dimensional parameters involved in Eq. (25)–(28) are:
Er = κf

µf
 is known as Eringen number,

Da−1 = νf
a k is known as inverse Darcy number.

The velocity component along the sheet is described as u = Uw = dax , such that d > 0 is the stretching 
parameter and d < 0 is the shrinking parameter and d = 0 represents permeability. The mass transpiration is 
defined as Vc = − vw√

aν
 in which Vc > 0 implies suction, Vc < 0 represents injection and Vc = 0 conveys no 

permeability.
The Prandtl number is denoted as Pr = νf

αf
 , radiation number is R = 16σ∗T3

∞
3κf k∗  , Schmidt number is denoted as 

Sc = νf
D  and chemical reaction parameter is Cr = K1

a .
Further,
A1 = B1φ1+B2φ2+B3φ3

φ
 , A2 = 1− φ1 − φ2 − φ3 + φ1

ρsp1
ρf

+ φ2
ρsp2
ρf

+ φ3
ρsp3
ρf

,

A3 = B1φ1+B2φ2+B3φ3
φ

 , A4 = 1− φ1 − φ2 − φ3 + φ1
(ρcp)sp1
(ρcp)f

+ φ2
(ρcp)sp2
(ρcp)f

+ φ3
(ρcp)sp3
(ρcp)f

,

B1 = 1+ 2.5φ + 6.2φ2 , B2 = 1+ 13.5φ + 904.4φ2 , B3 = 1+ 37.1φ + 612.6φ2 , B4 =
[

κsp1+2κf−2φ(κf −κsp1)

κsp1+2κf +φ(κf−κsp1)

]

 
, B5 =

[

κsp2+3.9κf −3.9φ(κf −κsp2)

κsp2+3.9κf +φ(κf −κsp2)

]

 and B6 =
[

κsp3+4.7κf −4.7φ(κf −κsp3)

κsp3+4.7κf +φ(κf−κsp3)

]

.

Solution analysis
Exact solution for momentum and microrotation. The analytical solutions for momentum Eq. (25) 
and microrotation Eq.  (26) when subjected to boundary conditions Eq.  (29) are as follows (Mahabaleshwar 
et al.52):

Using Eqs. (30) and (31), we solve the Eqs. (25) and (26) to obtain the following algebraic equation:

Here, ξ is the boundary constant which lies between 0 and 1. When ξ = 0 , it implies a strong concentration 
of microelements at the sheet while ξ = 1

2 represents a weak concentration, where as ξ = 1 is used to represent 
the turbulent flow of fluid.

The algebraic equation in Eq. (32) has the following zeros:

where,

and

Here, existence of the unique solution for d = 1(stretching sheet) and dual solutions exists for d = −1(shrink-
ing sheet) are determined. Also, in Eq. (34), δ1 corresponds to the UB solution and δ2 corresponds to the LB 
solution. Note that Da−1 , Er and δ parameters are negative in order to satisfy the boundary condition far from 
the wall.

Quantities of physical interest. The non-dimensional coefficient of skin friction is defined as,

(29)

f (0) = Vc , f ′(0) = d, g(0) = −ξ f ′′(0)
�(0) = 1 (for the PST) �′(0) = −1 (for the PHF )
�(0) = 1(for the PSC), �′(0) = −1 (for the PMF )
f ′(∞) = 0, g(∞) = 0, �(∞) = 0 �(∞) = 0.











(30)f (Y) = Vc +
d

δ

[

1− Exp(−δη)
]

,

(31)g(Y) = d ξ δ Exp(−δY).

(32)
[

1+ Er A3

A1
(1− ξ)

]

δ2 − Vcδ −
(

d + A1 Da
−1

A2

)

= 0,

(33)
(

1+ Er A3

2A1

)

ξ δ2 − Vc ξ δ +
[

Er A3

A1
(1− 2ξ)− dξ

]

= 0.

(34)
δ1 =

Vc +
�

4pq+ V2
c

2p

δ2 =
Vc −

�

4pq+ V2
c

2p



















for ξ =1

2
,

p =
[

1+ Er A3

A1
(1− ξ)

]

q =
[

d + A1 Da
−1

A2

]

.
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where,

and, Rex = a x2

νf
 represent local Reynolds number.

Solution of the temperature equation. Rewriting Eq. (27) by substituting f (Y) = Vc + d
δ

[

1− Exp(−δη)
]

,
we get,

Now, introducing a new variable ϑ1 =
(

d Pr
δ2

)

Exp[−δY ] and substituting in Eq. (37),
we get,

where,

and

With the corresponding imposed boundary conditions

The analytical solution to the heat equation for both PSH and PHF cases is derived in terms of incomplete 
gamma function.

Solution of the concentration equation. Rewriting Eq.  (28) by substituting f (Y) = Vc +
d
δ[

1− Exp(−δη)
]

,

Now, introducing a new variable ϑ2 =
(

d Sc
δ2

)

Exp[−δY ] and substituting in Eq. (43),
we get,

where,

With the corresponding boundary conditions:

(35)
√
ReCf x =

[

A1 + (1− ξ)Er A3

A2

]

f ′′(0),

(36)Cf x =

[

(µtnf + κtnf )

(

∂u
∂y

)

+ κtnf
a N

]

y=0

ρtnf u2w
,

(37)(A3 + R) �′′(Y)+ A2A4 Pr

A1

(

Vc +
d

δ

[

1− Exp(−δη)
]

)

�′(Y) = 0.

(38)ϑ1
d2�

dϑ1
+ [1− b1 + c1 ϑ1]

d�

dϑ1
= 0,

b1 =
A4 Pr Vc(δ + d)

δ2(A3 + R)

(39)c1 =
A3 Pr

A3 + R
.

(40)�(ϑ1 = 0) = 0, �

(

ϑ1 =
d Pr

δ2

)

= 1 (PSH case) and �′
(

ϑ1 =
d Pr

δ2

)

= −1 (PHF case).

(41)�(η) =
Ŵ[b1, 0] − Ŵ

(

b1,
c1 d Pr
δ2

Exp[−δY ]
)

Ŵ[b1, 0] − Ŵ

(

b1,
c1 d Pr
δ2

) (PSH case),

(42)�(Y) =
Ŵ[b1, 0] − Ŵ

(

b1,
c1 d Pr
δ2

Exp[−δY ]
)

δ Exp
[

−c1 d Pr
δ2

](

c1 d Pr
δ2

)b
(PHF case).

(43)�′′ (Y)+ A2Sc

A1

(

Vc +
d

δ

[

1− Exp(−δη)
]

)

�′ (Y) = 0.

(44)ϑ2
d2�

dϑ2
+ [1− b2 + c2 ϑ2]

d�

dϑ2
= 0,

(45)b2 =
A4 Pr Vc(δ + d)

δ2(A3 + R)
and c2 =

A3Sc

A3 + R
.
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The analytical solution to the heat equation for both PSH and PHF cases is derived in terms of incomplete 
gamma function.

Result analysis
The boundary layer flow of the micropolar fluid, which is infused with ternary nanoparticles is analysed in this 
problem. The thermal conductivity and mass transfer are noted in this analysis. Solution plots are represented 
through graphs for various parameters. Furthermore, the current work’s results are analysed for the presence of 
nanoparticles and compared to the absence of nanoparticles. Results of the presence and absence of the nanopar-
ticles are shown in the graphs using red lines (for the presence of nanoparticles) and blue lines (for the absence 
of nanoparticles). The solution domain of δ is plotted versus Vc for distinct values of d and Er , respectively, is 
shown in Fig. 2a,b. While decreasing the LB solution, increasing value of d increases the UB solution. The LB 
solution is increased while the UB solution is decreased as the parameters Er and Vc is increased. This is clear 
from Fig. 2 that is highly dependent on the variables Vc , Er , and d.

The impacts of the Vc(suction), Er and Da−1 are examined in the axial velocity profile, as shown in Fig. 3a–c. 
The UB velocity increased as Vc and Da−1 is increased while the LB velocity decreases. However, Er show the 
opposite trend. As a result, in every instance, the UB and LB solutions displayed opposing characteristics.

(46)�(ϑ2 = 0) = 0, �

(

ϑ2 =
d Sc

δ2

)

= 1 (PSH case) and �′
(

ϑ2 =
d Sc

δ2

)

= −1 (PHF case)

(47)�(η) =
Ŵ[b2, 0] − Ŵ

(

b2,
c2 d Sc
δ2

Exp[−δY ]
)

Ŵ[b2, 0] − Ŵ

(

b2,
c2 d Sc
δ2

) (PSH case)

(48)�(Y) =
Ŵ[b2, 0] − Ŵ

(

b2,
c2 d Sc
δ2

Exp[−δY ]
)

δ Exp
[

−c2 d Sc
δ2

](

c2 d Sc
δ2

)b
(PHF case)

Figure 2.  (a,b) Illustration of the solution for various values of d and Er parameters.
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In the case of the stretching, the axial velocity profiles are shown in Fig. 4a,b for several values of Er and Da−1 . 
Since the viscous force and microrotation are produced due to non-Newtonian fluid, for large Er value, velocity 
is enhanced, i.e., the boundary layer thickness is enhanced with the increased Er values. As can be seen from 
Fig. 4b, the inverse behaviour was observed in the case of the Da−1.

The impact of the Vc(> 0) and d(< 0) on g(Y) , g ′(Y) profiles relative to Y  are shown in Fig. 5a,b for both 
UB and LB solutions. The microrotation in the UB increases due to the increased values of d and Vc , while the 
microrotation tends to decrease in the LB case, as seen in Fig. 5a,b. Graphs of the g ′(Y) against the similarity 
variable for different Er and Da−1 values in the stretching case are shown in Fig. 5c,d. When Da−1 increases,g ′(Y) 
decrease and g ′(Y) increases with increase of Er value. As a result, Er and Da−1 behave in opposing ways to g ′(Y).

For PSC and PMF cases, �(Y) profiles are shown in Fig. 6. Figure 6a,b show the shrinking sheet PSC cases for 
different values of Da−1 and Vc . The concentration increases in the UB when we increased these parameters, but 
it opposite trend is observed in the LB. Figure c–e show the stretched sheet PSC examples, while Fig. 6e,f show 
the PMF cases. When the values Er , Sc and Da−1 are increased, the concentration increased in both instances. 

Figure 3.  (a–c) Axial velocity plot for various physical parameters.
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Therefore, these parameters have the effect of making the concentration boundary layer thicker. The boundary 
layer’s temperature profile could be extremely important in solar heater applications.

For different values of the Vc(> 0) , Pr and Er, �(Y) is plotted for the PST and PHF cases, respectively, 
Fig. 7a–c illustrates the variation of temperature profiles. Due to the increased shear rate observed in this area, 
the effect of Vc(> 0) on the temperature profiles is significant near to the solid wall. Additionally, in the PSH 
situation, temperature profiles values decrease as Vc , Pr and Er values increase, similar effect is observed in the 
PHF Fig. 7d,e case also.

Figure 8 shows the streamline flow pattern of boundary layer flow for the stretching and shrinking cases, 
respectively. It demonstrates that the nanoparticles’ paths are straight, and a tangent made to one of them at any 
point reveals the direction in which the liquid is moving at that location. In the case of shrinking, the fluid flow 
is moving adjacent to the surface faster when compared with their movement in the stretching case.

Concluding remarks
The boundary layer flow of micropolar fluid that is infused with ternary nanoparticles is analysed in this study. 
Due to the inclusion of ternary nanoparticles, enhanced thermal conductivity is observed in this analysis. Solu-
tion plots are represented through graphs for various parameters. The following are the results noted in this study:

• The UB velocity increased as Vc and Da−1 is increased while the LB velocity decreases while, increased values 
of Er is decreasing the UB velocity and increasing LB velocity.

• In the case of the stretching, for large Er value, velocity is enhanced. But there seems to be velocity drop in 
the case of the Da−1.

• The impact of the Vc(> 0) and d(< 0) are greatly influencing g(Y) , g ′(Y) profiles. The microrotation in the 
UB increases due to the increased values of d and Vc , while the microrotation tends to decrease in the LB 
case.

• For shrinking sheet, concentration is increased for increased values of Da−1 and Vc , while for stretching sheet, 
concentration is decreased for PSC case for Sc and Er parameters but observed increasing for increasing 
values of Da−1 for PMF case.

Figure 4.  (a,b) Representation of f ′(Y) versus Y .
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• The existence of dual solutions is found for velocity, microrotation, and concentration in the case of a shrink-
ing sheet and the existence of unique solution is observed for the stretching sheet.

Figure 5.  (a–d) Illustration of g(Y) verses Y  and g ′(Y) verses Y .
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Figure 6.  (a–h) Illustration of �(Y) versus Y .
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Figure 6.  (continued)

Figure 7.  (a–e) Solution of heat versus similarity variable.
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