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Raman spectroscopy 
and convolutional neural networks 
for monitoring biochemical 
radiation response in breast 
tumour xenografts
Alejandra M. Fuentes 1, Apurva Narayan 2,3, Kirsty Milligan 1, Julian J. Lum 4, Alex G. Brolo 5, 
Jeffrey L. Andrews 6 & Andrew Jirasek 1*

Tumour cells exhibit altered metabolic pathways that lead to radiation resistance and disease 
progression. Raman spectroscopy (RS) is a label-free optical modality that can monitor post-
irradiation biomolecular signatures in tumour cells and tissues. Convolutional Neural Networks (CNN) 
perform automated feature extraction directly from data, with classification accuracy exceeding 
that of traditional machine learning, in cases where data is abundant and feature extraction is 
challenging. We are interested in developing a CNN-based predictive model to characterize clinical 
tumour response to radiation therapy based on their degree of radiosensitivity or radioresistance. 
In this work, a CNN architecture is built for identifying post-irradiation spectral changes in Raman 
spectra of tumour tissue. The model was trained to classify irradiated versus non-irradiated tissue 
using Raman spectra of breast tumour xenografts. The CNN effectively classified the tissue spectra, 
with accuracies exceeding 92.1% for data collected 3 days post-irradiation, and 85.0% at day 1 post-
irradiation. Furthermore, the CNN was evaluated using a leave-one-out- (mouse, section or Raman 
map) validation approach to investigate its generalization to new test subjects. The CNN retained 
good predictive accuracy (average accuracies 83.7%, 91.4%, and 92.7%, respectively) when little to no 
information for a specific subject was given during training. Finally, the classification performance of 
the CNN was compared to that of a previously developed model based on group and basis restricted 
non-negative matrix factorization and random forest (GBR-NMF-RF) classification. We found that 
CNN yielded higher classification accuracy, sensitivity, and specificity in mice assessed 3 days post-
irradiation, as compared with the GBR-NMF-RF approach. Overall, the CNN can detect biochemical 
spectral changes in tumour tissue at an early time point following irradiation, without the need 
for previous manual feature extraction. This study lays the foundation for developing a predictive 
framework for patient radiation response monitoring.

Breast cancer is the most common malignancy among Canadian women, accounting for 25% of all new cancer 
cases and 13% of all female cancer  deaths1. Surgical resection constitutes the primary treatment for early breast 
cancer, achieving tumour control rates of 50–70%2. Furthermore, post-operative radiotherapy prescribed to the 
breast and lymph nodes has shown to be an effective tool in the management of breast cancer, leading to increased 
disease control and survival with good cosmetic  results3,4.

Radiotherapy (RT) utilizes high energy ionizing radiation to destroy tumour tissue, while minimizing damage 
to the healthy surrounding tissues. Due to its effectiveness, RT is prescribed to over 50% of all cancer patients 
as part of their  treatment2,5. Nevertheless, a proportion of breast cancer patients do not respond positively to 
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radiotherapy, leading to recurrence rates as high as 42%3. The extent of tumour response to radiotherapy may be 
partially attributed to intrinsic factors, including altered metabolic pathways in cancer cells and their surround-
ing environment, leading to radiation resistance and disease  progression6–9. Therefore, a tool that detects and 
monitors changes in metabolic signatures of radioresistance can potentially assist with identifying individuals 
with resistant tumours early during treatment, leading to personalized treatment strategies (e.g., dose escalation 
or radiosensitizing drugs) for such individuals.

Raman spectroscopy (RS) is a non-destructive, label-free optical spectroscopic modality that can monitor 
post-irradiation biomolecular changes in tumour cells and  tissues10–12, offering the potential for evaluating a 
patient’s response to  treatment13.

The Raman spectra of biological samples consist of several complex peaks that capture information of multiple 
biomolecules simultaneously. It is a challenging task to manually extract discriminative features from large data 
sets to develop predictive models that can guide clinical decisions. For that reason, Raman spectroscopy is often 
paired with machine learning techniques to facilitate spectral  analysis14,15.

Matthews et al. have successfully applied Raman spectroscopy and principal component analysis (PCA) to 
characterize radiation-induced biochemical changes in individual cancer cells and tumour  tissue16. Their work 
found radiation-induced increase of intracellular glycogen in H460 (lung) and MCF-7 (breast) cell  lines16 and 
non-small cell lung cancer  xenografts12. This signature was correlated with increased radiation resistance. An 
alternative approach, called group and basis restricted non-negative matrix factorization and random forest 
(GBR-NMF-RF), has also shown promise for simultaneous monitoring of multiple biochemicals in irradiated 
 cells17,18. Briefly, this algorithm decomposes the Raman spectra into a weighted combination of bases spectra of 
constrained biochemical bases with their corresponding scores. The bases are selected by the user from a library 
containing Raman spectra of pure cellular biomolecules. Hence, the scores can be used to monitor specific 
radiation-induced molecular responses in tumour cells and  tissues14.

Convolutional Neural Networks (CNN) are a state-of-the art deep learning algorithm designed for computer 
vision. Their architecture is inspired by patterns of the mammalian visual cortex, where cells are sensitive to small 
sub-regions of the visual  field19–21. CNNs perform automated feature extraction directly from data by operating 
the input through several layers of convolution filters, each of which captures different representations of the data. 
The values of the convolution filters are determined during model training in a supervised manner. The gener-
ated features can then be employed for specific tasks, such as classification. This end-to-end learning approach 
eliminates the need for manual feature extraction (i.e., dimensionality reduction), exceeding the classification 
efficiency of other machine learning  methods22. Furthermore, CNNs consider the spatial correlation of elements 
of the input data by enforcing a local connectivity pattern between neurons of adjacent layers, called receptive 
fields. This trait makes CNNs suitable for image and signal analysis.

In recent years, there has been a growing interest in using CNN-based architectures for medical image analy-
sis to assist with accurate and rapid detection of various  pathologies23. Furthermore, a number of publications 
have combined CNN models with Raman spectra of biological samples for disease screening and diagnosis, 
including tongue squamous cell  carcinoma24, prostate cancer bone  metastasis25,  pancreatic26 and breast  cancer27. 
The authors reported effective discrimination between healthy and malignant samples with superior accuracy 
compared to common machine learning techniques, including linear discriminant analysis (LDA) and support 
vector machines (SVMs). In summary, current research shows that CNN combined with Raman spectroscopy 
offer great potential for automated and accurate discrimination of clinical tumour tissue types. Thus, we are here 
interested in CNNs as a predictive model to characterize clinical tumour response to radiation therapy, specifi-
cally, to stratify samples based on their degree of sensitivity or resistance to treatment.

In this work, a CNN is built and trained for identifying post-irradiation biochemical spectral changes in breast 
tumour xenografts. The classification performance of the CNN is compared to that of the GBR-NMF-RF model, 
and we find that CNN offers improved discrimination between Raman spectra of irradiated and nonirradiated 
MDA-MB-231 tumours. Finally, the GBR-NMF decomposition reveals specific contributions of amino acids and 
lipids to the radiation response of this breast cell line.

Methods
Mouse model. The Raman spectra used in this study were collected from a previously developed mouse 
model in our  lab28. All animal procedures were approved by the University of Victoria Animal Care Committee 
(Victoria, BC) and were performed following the guidelines set by the Canadian Council on Animal Care. All 
animal methods and results are reported in accordance with the ARRIVE guidelines. NOD.CB17-Prkdcscid/J 
female mice were obtained from British Columbia Cancer Research Center (BCCRC) Animal Resource Center 
(Vancouver, BC). Mice were housed in microisolator cages and given access to food and water ad libitum. Mice 
were allowed one week to adjust to the environment before starting the  experiments28.

The human breast cancer cell line MDA-MB-231 was purchased from American Type Culture Collection 
(Manassas, VA, USA). Cells were cultured and injected subcutaneously into the right flank of each mouse at a 
concentration of 5 ×  106 cells in 0.1 ml phosphate buffered saline (PBS)28.

Tumour irradiation and harvesting. Mice were randomized into treatment groups once their tumour 
size reached a predetermined end point. Animals were anesthetized via isoflurane inhalation (1-3%, in oxygen) 
and exposed to single fractions of 0, 5 or 15 Gy produced by a small animal irradiator (Gulmay Medical Inc., 
Suwanee, GA) using two 220 kVp parallel opposed fields delivered to the tumour at a dose rate of 4 Gy/min. 
Following 1- or 3-days post-irradiation, animals were euthanized using isoflurane overdose (5%, in oxygen) 
followed by cervical dislocation, and tumours were removed. Embedded tumours were snap-frozen in liquid 
nitrogen and stored at – 80 ◦ C. For each mouse, three consecutive tumour slices were prepared using a rotary 
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microtome (MICROM International GmbH, Walldorf, Germany) and placed on magnesium fluoride slides for 
Raman  spectroscopy28.

In this study, a total of 13 mice were assessed 3 days following irradiation (4 mice each given 0 and 5 Gy, and 
5 mice given 15 Gy), and 6 mice were assessed 1 day following irradiation (3 mice each given 0 and 15 Gy)28.

Raman spectroscopic acquisition and spectral processing. Raman spectral maps were collected 
using a Renishaw inVia Raman microscope (Renishaw Inc, Illinois, USA) operating with a 785 nm excitation 
laser with sampling volume 2 × 5 × 10 µm3 and power density 0.5 mW/µm3, a 100× dry objective (NA = 0.9) 
and a charge-coupled device (CCD) detector. For each tumour section, two maps were acquired from randomly 
selected regions covering an area of 100 × 100 µm2 or 200 × 200 µm2, with step size 15 µm and 20 s collection 
time per  point28.

Each spectrum was pre-processed to remove cosmic rays, reduce noise via spectral smoothing, subtract 
background arising from substrate and biological fluorescence, correct for wavenumber calibration drifts, and 
normalize to the total area under the curve, as in previous  studies12,28,29. All pre-processing was performed using 
previously written MATLAB algorithms (version R2014B, MathWorks Inc, MA, USA).

The final data set consisted of 3054 spectra acquired at day 1 and 6708 spectra acquired at day 3 
post-irradiation.

CNN model building and architecture. A one-dimensional CNN for Raman spectra classification 
was developed in MATLAB (version R2021a) using the Deep Learning Toolbox. The CNN architecture and 
parameter optimization was performed with the data acquired at day 3 post-irradiation using a trial-and-error 
approach. Different combinations of number of layers, convolution filter size and number, activation functions, 
optimization algorithm, learning rate, and regularization techniques were tested. The final one-dimensional 
CNN architecture used in this work is shown in Fig. 1.

The spectra are input as a 582 × 1 vector containing the intensity values sampled at regular wavenumber 
intervals. Two convolutional layers are located behind the input layer to perform feature extraction on the 
Raman spectra. With an increase in convolutional layers, the model improves representation capabilities, as 
more features are captured from the  data20. However, increasing the depth of the model can lead to overfitting 
in smaller data sets. A CNN with two convolutional layers is consistent with models used in previous studies 
for spectral  analysis24,25. The first convolutional layer contains 32 convolution filters of size 20 × 1 and stride 1. 
Mathematically, the convolution operation is given  by24:

where y j is the j-th output feature map obtained from the operation, xi is the i-th input map, ki j is the convolu-
tion filter between xi and y j, * denotes convolution, b j is the bias term, and f is the activation function. The size 
(height × width) of the convolution output, O, is given  by30:

where I refers to the input size, K is the size of the convolution filters, S is the stride, and P is the amount of pad-
ding, which for our CNN, P = 0. Finally, the number of output maps is equal to the number of filters in the layer. 
The output of the first convolution layer is a 563 × 1 × 32 feature map, containing the spectral features learnt from 
the data. The resulting map is input to the second convolutional layer, containing 64 filters of size 20 × 1 and stride 
1 to extract higher order features. The result from the second convolution operation is a 544 × 1 × 64 feature map.

(1)yj = f (bj +
∑

i
kij ∗ xi),

(2)O =
(I− K + 2P)

S
+ 1,

Figure 1.  CNN architecture for Raman spectroscopy analysis.
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Batch normalization (BN) is performed after each convolution layer to standardize the output maps of a 
training mini-batch to subsequent layers. This operation improves the training speed and reduces  overfitting22,31. 
Following each BN layer, the rectified linear unit (ReLU) activation function is applied to the convolution feature 
maps to add nonlinear modelling ability to the neural  network32. The activated features are carried forward into 
the next layer.

The final output map is fed into fully connected layers to learn non-linear combinations of the extracted 
features. A dropout layer with inactivation probability of 0.1 is applied after the first fully connected layer to 
reduce overfitting by temporarily removing randomly selected  neurons22,33. Finally, the output layer takes the 
features learnt by the model to calculate the input’s classification scores for each possible category. In the cur-
rent architecture, the output layer contains two neurons to represent the irradiated and nonirradiated labels. 
The softmax activation function is used to transform the classification scores into values between zero and  121,22, 
representing the probability of the input spectra belonging to a given class. The category with highest probability 
is selected as the model prediction.

The optimal values of the neural connection weights and convolution filters are determined during the model 
training in a supervised  manner19. Briefly, the weights are randomly initialized to evaluate a set of labeled train-
ing examples. The model predictions are compared with the true values by means of a cost or error function. 
In our model, the cross-entropy loss function is used to determine the difference between true and predicted 
 distributions34. Then, the loss function is minimized in an iterative process by gradually updating the weights 
with each step until the loss function converges to a minimum. For each training iteration, a subset of the train-
ing set called a mini-batch is used to evaluate the loss function and update the weights.

In this work, the Adam  algorithm35, an extension of gradient descent, was used to optimize the network’s 
weights as used by  others22,27. The learning rate was set to 0.0001, and a mini-batch size of 175 was used. Table 1 
shows the set of hyperparameters chosen for the final CNN architecture.

CNN model training. The CNN was trained for classifying Raman spectra of irradiated and nonirradiated 
breast cancer xenografts. To evaluate the model’s capability of detecting post-radiation biochemical spectral 
changes at different doses and timepoints, the entire Raman data were split into experimental groups according 
to dose and collection timepoint as shown in Table 2: spectra from mice exposed to (a) 0 or 15 Gy and sacrificed 
3 days post-irradiation, (b) 0 or 5 Gy and assessed 3 days post-irradiation, and (c) 0 or 15 Gy and assessed 1 day 
post-irradiation.

For each experimental group, the Raman spectra were randomly split into training, testing, and validation 
sets with a ratio of 70/20/10, respectively. The training set was used to train the CNN, that is, to optimize the 
model’s weights. The validation set was used to monitor the CNN training progress every few iterations and 
ensure that the model does not overfit to the training set. Finally, the testing set was used to evaluate the clas-
sification performance of the final model.

The testing accuracy, sensitivity, specificity, and F1-score metrics were calculated to assess the CNN perfor-
mance. The definitions for these quantities are defined as in Ref.36. TP is the number of spectra correctly identified 

Table 1.  CNN hyperparameters and training details.

Implementation details Parameter name Selected value

CNN architecture

Number of convolution blocks 2

Number of filters 32 (first block), 64 (second block)

Filter size 20 × 1

Training
Mini-batch size 175

Dropout rate 0.10

Optimization

Optimizer Adam

Learning rate 0.0001

β1 0.9

β2 0.999

ε 1 ×  10−8

L2 regularization 0.0001

Loss function Cross entropy loss

Table 2.  Data set groups for CNN training, testing and validation.

Experimental group Control (0 Gy) Irradiated Total number of spectra

0 Gy and 15 Gy at Day 3 2,200 2,505 4,705

0 Gy and 5 Gy at Day 3 2,200 2,003 4,203

0 Gy and 15 Gy at Day 1 1,514 1,540 3,054
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as irradiated, FP is the number of spectra incorrectly identified as irradiated, TN is the number correctly identi-
fied as nonirradiated, and FN is the number incorrectly identified as nonirradiated.

For each experimental group, the results were presented as the mean ± one standard deviation of ten runs 
made with different partitions of the data subsets and weights initialization using the ‘random number genera-
tor’ function in MATLAB.

To investigate the CNN generalization ability to unseen subjects, the model was trained and tested using a 
subject-wise37 or leave-one-mouse/tissue section/Raman map-out validation approach. The analysis was con-
ducted on the day 3, 0 and 15 Gy treatment group data, which consists of spectra from 5 irradiated mice, cor-
responding to 15 irradiated tumour sections and 30 Raman maps.

The subject-wise validation workflow is described in Figure 2. First, the entire Raman data for a given mouse 
was held out of the data set. Then, the CNN was trained with the remaining spectra using an 85/15 training/
validation ratio. Finally, the model was tested with the spectra of the held out mouse. The process was repeated 
for each of the irradiated mice in the data set, and then implemented to assess each of the corresponding tumour 
sections and Raman maps. The results were presented as the percentage of correctly classified Raman spectra 
for each mice/tumour slice/map.

Non-negative matrix factorization and Random Forest. To visualize specific radiation-induced 
biochemical changes in the breast tumours with respect to dose and time, the GBR- NMF-RF model was used 
to obtain scores of constrained chemical bases. The GBR-NMF technique was implemented in R (version x64 
4.0.3) using the algorithm developed by Shreeves et al.17. For all analyses, the bases matrix was constrained as a 
set of 31 Raman spectra of pure biochemicals (listed in Supplementary Table S1), and one unconstrained factor 
to represent all the other biochemical changes unspecified in the bases. Random Forest was used as a classifier 
to distinguish irradiated versus nonirradiated tissue spectra based on their GBR-NMF scores. Random Forest 
was performed using the randomForest package in R as in our previous  work14. In addition, the Mean Decrease 
Accuracy (MDA) function was used to quantify the relative importance of the features (i.e., chemical bases) in 
the RF  classification14,18. The number of trees forming the RF was set to 2000, and the number of variables used 
in each decision tree split was set to 5, and the model was trained using a 75/25 training/testing ratio or following 
the subject-wise validation approach with no validation set. Results of the GBR-NMF-RF model were presented 
as average of 10 runs.

The CNN classification performance was compared with that of the GBR-NMF-RF model. The accuracy 
results for both models were compared using a Wilcoxon test (p < 0.05) to determine statistically significant 
differences.

Results
Radiation response profiles in tumour tissue. Figure 3 displays the mean Raman spectrum (black) 
with ± standard deviation (red) for all data collected at day 3 post-irradiation.

The greatest standard deviation appears at 1439  cm−1, which can be attributed to changes in lipids  (CH2 
deformation)28,38. Other prominent bands include those attributed to phenylalanine (1004  cm−1), lipids (1296, 
1424, 1455, 1658  cm−1), tryptophan (728, 1337  cm−1), nucleic acids (783, 1577  cm−1), and lactic acid (922  cm−1)39. 
There are very minor differences between the mean spectrum at days 1 and 3 post-irradiation, therefore day 1 
is shown in Supplementary Fig. S1.

Post-irradiation differences in the intensity of prominent Raman peaks were observed in the breast tissue 
spectra at both 5 and 15 Gy radiation doses. These differences correspond to changes in the biomolecular content 
of the tumour tissue following radiation exposure. The most prominent changes include increased lipid (720, 
1063, 1126, 1448, 1658  cm−1), collagen (851, 928, 1448, 1658  cm−1)40,41, phenylalanine (620, 1004  cm−1), and 
tyrosine (827  cm−1) content, and decreased nucleic acid (790, 812  cm−1) bands post-irradiation41.

Figure 4 shows the mean GBR-NMF scores of four of the highest ranked chemical bases over dose level and 
time post-irradiation. Figure 5 displays the MDA plots of the RF classification. Different types of lipids including 

Figure 2.  Subject-wise validation training approach.
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Figure 3.  Mean Raman spectrum (black) of breast cancer xenografts exposed to 0, 5 and 15 Gy and acquired at 
day 3 post-irradiation. The standard deviation at each wavenumber is shown in red.
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Figure 4.  Box plots showing mean (thick line) and median (thin line) (a) Tryptophan, (b) Stearic acid, (c) 
Phosphatidylinnositol, (d) Triglycerides GBR-NMF scores for breast tumour xenografts exposed to 0, 5, and 
15 Gy and harvested 1 and 3 days post-irradiation. Significance stars represent statistically significant score 
changes according to Wilcoxon’s unpaired test (*p < 0.05, **p < 0.01, ****p < 0.0001, ns = not significant).
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triglycerides, fatty acids (stearic acid), and phospholipids (phosphatidylinnositol), lactose, and amino acids were 
ranked as highly contributing to the observed response. These results show that the GBR-NMF-RF technique 
can track post-irradiation changes in multiple biochemicals throughout various post-treatment time points.

CNN training and testing: random splitting of data set. To evaluate the CNN’s ability to detect early 
post-radiation spectral changes, the model was trained and tested for the classification of irradiated and non-
irradiated breast tumour xenografts. In this initial evaluation, the model was trained using randomly defined 
training, testing, and validation sets.

Figure 6 shows the training, testing, and validation accuracy plotted against the number of training epochs 
for one run of the CNN on (a) Day 3, 0 and 15 Gy and (b) Day 3, 0 and 5 Gy data subsets, respectively. Similar 
plots were obtained for all runs on these subsets and for the Day 1, 0 and 15 Gy group. The training progress 
plots show, as expected, that the training accuracy improves with an increasing number of epochs, demonstrating 
that the CNN training is effective and stable. The validation and testing accuracies follow the same trend until 
reaching a point where they stop improving or decrease with increasing epochs. In order to avoid overfitting to 
the training set, the CNN training is stopped once the validation accuracy stops improving. The best performance 
epoch model is selected for the final results.

Figure 7 shows the classification results of the CNN and GBR-NMF-RF models corresponding to the (a) Day 
3, 0 and 15 Gy and (b) Day 3, 0 and 5 Gy data subsets. For both dose levels, the CNN achieved significantly higher 
testing accuracy, sensitivity, specificity, and F-1 score than GBR-NMF-RF in the classification of irradiated and 
non-irradiated tissue spectra. Specifically, the CNN distinguished nonirradiated and irradiated tissue spectra 
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Figure 5.  Variable importance plots of the classification of irradiated versus nonirradiated breast tissue Raman 
spectra based on GBR-NMF scores with Random Forest.

Training 
Testing 
Validation 

%
 A

cc
ur

ac
y 

-d
3 

0,
5G

y

100 100

95 95

90 90

85 85

80 80

75 75

70 70

65 65

60
0 5 10 15 20 25 30

Training Epochs

(a) 

60
0 5 10 15 20 25 30

Training Epochs

(b) 

Training 
Testing 
Validation 

%
 A

cc
ur

ac
y 

-d
3 

0,
15

G
y

Figure 6.  Training (magenta), testing (blue), and validation (green) accuracies plotted against number of 
training epochs for one run of the CNN model on (a) Day 3, 0 and 15 Gy and (b) Day 3, 0 and 5 Gy treatment 
groups.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1530  | https://doi.org/10.1038/s41598-023-28479-2

www.nature.com/scientificreports/

exposed to 15 Gy with testing accuracy 94.6%, while the GBR-NMF-RF model obtained a testing accuracy of 
84.9%. Similarly, the CNN achieved a testing accuracy of 92.1% in the classification of nonirradiated and irradi-
ated tissue spectra given 5 Gy, whereas the GBR-NMF-RF achieved 85.1%. These results show that the CNN 
is capable of accurately detecting biochemical spectral changes in breast tumour tissue at an early time point 
following irradiation without the need for previous manual feature extraction.

Figure 8 displays the results corresponding to the Day 1, 0 and 15 Gy subset. For both models, the classifica-
tion metrics were lower than those obtained for Raman spectra acquired 3 days post-irradiation. Furthermore, 
the CNN achieved only slightly better testing accuracy, sensitivity and F-1 score than the GBR-NMF-RF model. 
Specifically, the CNN obtained a testing accuracy of 85.0%, while the GBR-NMF-RF model achieved 82.5%. 
This could be due to the day 1 time point being too early for strong spectral changes to be detected, as seen in 
previous work with breast tumour  cells11,16.

CNN training and testing: subject-wise validation. In order for a trained predictive model to be 
useful in the clinical setting, it must be able to generalize to new patients/test subjects—that is, when little to no 
data from a given individual subject has been used to train the model. To test the generalization capability of the 
CNN, a subject-wise or leave-one-mouse (section and map)-out validation approach was implemented using the 
irradiated mice from the Day 3, 0 and 15 Gy subset.
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Figure 9 shows the percentage of correctly classified spectra (i.e, test accuracy) corresponding to each of the 
Raman maps of irradiated mouse 1 being the test set, for both models. As seen in the figure, the CNN achieved 
significantly higher testing accuracy than GBR-NMF-RF for 5 out of 6 test maps. Similarly, for the rest of the 
mice (shown in Supplementary Fig. S2), the CNN classification performance was better than GBR-NMF-RF in 
the majority of cases, specifically, 19 out of 30 Raman maps. The average testing accuracy over all test Raman 
maps was 92.7 ± 4.6% for the CNN, and 81.6 ± 16.6% for GBR-NMF-RF.

In all leave-one-map-out validations, there was little variability among the resulting training accuracy 
for CNN and GBR-NMF-RF and CNN validation accuracy, with overall average values being 98.3 ± 0.2%, 
85.4 ± 0.2%, 94.2 ± 0.2%, respectively. A representative result, corresponding to the maps of mouse 1, is shown 
in Supplementary Fig. S3.

Figure 10 shows the test accuracy results of the leave-one-section-out validation approach for all mouse 
sections. The training accuracy for CNN and GBR-NMF-RF, and CNN validation accuracy corresponding to 
each run are shown in Supplementary Fig. S4. In agreement with the leave-one-map-out validation, the CNN 
achieved a significantly higher percentage of correctly classified spectra than GBR-NMF-RF for the majority of 
test tissue sections (11 of 15), except for two of mice 2 and 3. The average testing accuracy over all sections was 
91.4 ± 2.8% for the CNN, and 77.8 ± 18.4% for the GBR-NMF-RF. Overall, the classification improvement of 
CNN over GBR-NMF-RF was maintained when going from map to section-wise validation, that is, when feeding 
less information of a given mouse to the model training.

Finally, Fig. 11 shows the classification results for the leave-one-mouse-out approach. When all the spectra 
for the selected test mouse were removed from the training and validation sets, the percentage of correctly 
classified spectra per test mouse decreased in both models, compared to when only a single map or section 
was removed from training. This could be attributed to inter-mouse variability in the spectral signatures or 
intensity of radiation response. Nevertheless, in agreement with the results presented above, the CNN achieved 
significantly higher classification accuracy than the GBR-NMF-RF model for all except one mouse, with overall 
average testing accuracies of 83.7 ± 11.8% versus 66.6 ± 26.9%, respectively.

Together, these results show that the CNN model retained good predictive capability when little to no infor-
mation for a specific subject was input to the CNN.

Discussion
In this work, a Convolutional Neural Network was built and trained for automated detection of post-irradiation 
biochemical changes in Raman spectra of human breast cancer xenografts. The CNN discriminated irradiated 
versus nonirradiated tissue spectra acquired at an early timepoint following treatment and at clinically relevant 
doses with high classification accuracy, sensitivity, and specificity.

The CNN effectively classified irradiated and nonirradiated breast tissue spectra, with testing accuracies 94.6% 
and 92.1% for data collected 3 days post-irradiation, and 85.0% at day 1 post-irradiation. In addition, the model 
achieved significantly higher classification performance than the GBR-NMF-RF model for tissues harvested at 
day 3 post-irradiation. This finding agrees with other authors that report improvement in accuracy metrics of 
CNNs over common machine learning models for spectral  analysis24,25,27. However, for spectra collected at day 
1 post-irradiation, the CNN did not offer a major improvement in the classification results over GBR-NMF-RF. 
This could be due to the 1 day timepoint being too early for significant post-irradiation molecular changes to be 
identified in the spectra, or because the CNN hyper-parameters were optimized using only the data acquired at 
day 3 post-irradiation. Further hyper-parameter tuning of the CNN including the day 1 data set could potentially 
improve the results, but more work is required to test this hypothesis.

The classification of irradiated versus nonirradiated samples is not the final goal of the CNN. However, these 
initial results demonstrate that a one-dimensional CNN architecture is suitable for identifying discriminative 
patterns in tumour tissue Raman spectra and distinguishing different treatment groups at an early timepoint 
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Figure 9.  Percentage of correctly classified spectra (test accuracy) corresponding to each Raman map of mouse 
1 being removed from the training set (leave-one-map-out validation). CNN (violet) and GBR-NMF-RF (blue). 
Map labels given as mouse number_(section #)_(map #). *Represent significant difference between CNN and 
GBR-NMF-RF (p < 0.05), ns = not significant.
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post-irradiation, with high accuracy and without the need for manual feature extraction (e.g., dimensionality 
reduction). In future work, the CNN can potentially be applied to distinguish Raman spectra of responding from 
nonresponding tumours to radiation therapy.

The subject-wise validation scheme was used to further test the CNN generalization ability when no informa-
tion of a specific individual (e.g., mouse, patient) is given to train the model. This is the case in a clinical environ-
ment, where the model would be applied to make predictions on new patients, whose response to treatment is 
unknown, based on features learnt from a dataset of training patients. When all the data for a specific Raman 
map, tumour section, or mouse was held out for testing, there was variability in the percentage of correctly 
classified spectra among test subjects. This could be attributed to inter-mouse variability in radiation-induced 
spectral profiles or heterogeneity in the tumour dose distribution among different mapped regions. However, 
in agreement with the previous results, the CNN yielded higher percentage of correctly classified spectra for 
the majority of subjects than the GBR-NMF-RF framework, with average accuracies for test maps, sections, and 
individual mice 92.7%, 91.4%, and 83.7%, respectively.

Identifying individuals with radioresistant tumours before or early during treatment could help customize 
treatment for nonresponding patients and lead to improved therapeutic outcomes. Raman Spectroscopy (RS) 
offers the potential for identifying and monitoring radiation-induced biomolecular changes and signatures of 
radiation resistance in tumour cells and tissues. Convolutional Neural Networks are a state-of-the art deep learn-
ing tool for computer vision that perform efficient, automated feature extraction directly from data in an end-to-
end learning manner, with outstanding classification performance. Hence, our group is interested in developing 
a Raman and CNN based predictive framework for rapid, automated, early characterization of tumour response 
to radiotherapy based on their degree of radiosensitivity or radioresistance.

In conclusion, the CNN can detect biochemical spectral changes in tumour tissue at an early time point fol-
lowing irradiation, without the need for previous manual feature extraction. A critical aspect in understanding 
the biological paths related to tumour radiation response and identify specific therapeutic targets, is to visualize 
the most critical spectral features/peaks extracted by the CNN to make its predictions. An example of explain-
able CNN models for spectral analysis was proposed by Zhang et al.34, wherein the authors implemented the 
Class Activation Map (CAM) technique to localize class-specific critical spectral peaks extracted by the CNN 
model in the classification of mid-infrared spectra of different strains of bacteria. Thus, future work will focus 
on developing methods to identify biochemical spectral signatures of radiation response captured by the CNN. 
The spectral features could then be assigned to specific biochemicals associated with radiation resistance or 
sensitivity. Finally, this initial study lays the foundation for developing a deep learning-based framework for 
characterization of tumour tissue responses based on their sensitivity to radiation treatment.

CNN
GBR-NMF-RF 

* *
*

CNN
GBR-NMF-RF 

* *

*

CNN
GBR-NMF-RF 

* *
*

%
 C

or
re

ct
ly

 c
la

ss
ifi

ed
 s

pe
ct

ra

%
 C

or
re

ct
ly

 c
la

ss
ifi

ed
 s

pe
ct

ra

%
 C

or
re

ct
ly

 c
la

ss
ifi

ed
 s

pe
ct

ra110

100

90

80

70

110

100

90

80

70

110

100

90

80

70

060606

050505

040404

30
1_1 1_2 1_3

(a) 

30
2_1 2_2 2_3

(b) 

30
3_1 3_2 3_3

(c) 

011011

001001

0909

0808

0707

0606

0505

0404

30
4_1 4_2 4_3

(d) 

30
5_1 5_2 5_3

(e) 

ns 
CNN
GBR-NMF-RF 

*

ns 

CNN
GBR-NMF-RF 

* *

*

%
 C

or
re

ct
ly

 c
la

ss
ifi

ed
 s

pe
ct

ra

%
 C

or
re

ct
ly

 c
la

ss
ifi

ed
 s

pe
ct

ra

Figure 10.  Percentage of correctly classified spectra (test accuracy) corresponding to each tumour section 
removed from the training set (leave-one-section-out validation). Section labels given as mouse number_
(section #). *p < 0.05, ns = not significant.
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Data availability
All code and data generated and analysed during the current study are available from the corresponding author 
on reasonable request.
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Figure 11.  Percentage of correctly classified spectra (test accuracy) corresponding to each mouse being 
removed from the training set (leave-one-mouse-out validation). Section labels refer to mouse number left out 
of training set.
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