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Shape classification technology 
of pollinated tomato flowers 
for robotic implementation
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Hiroyuki Shimizu 1

Three pollination methods are commonly used in the greenhouse cultivation of tomato. These are 
pollination using insects, artificial pollination (by manually vibrating flowers), and plant growth 
regulators. Insect pollination is the preferred natural technique. We propose a new pollination 
method, using flower classification technology with Artificial Intelligence (AI) administered by drones 
or robots. To pollinate tomato flowers, drones or robots must recognize and classify flowers that 
are ready to be pollinated. Therefore, we created an AI image classification system using a machine 
learning convolutional neural network (CNN). A challenge is to successfully classify flowers while 
the drone or robot is constantly moving. For example, when the plant is shaking due to wind or 
vibration caused by the drones or robots. The AI classifier was based on an image analysis algorithm 
for pollination flower shape. The experiment was performed in a tomato greenhouse and aimed for an 
accuracy rate of at least 70% for sufficient pollination. The most suitable flower shape was confirmed 
by the fruiting rate. Tomato fruit with the best shape were formed by this method. Although we 
targeted tomatoes, the AI image classification technology is adaptable for cultivating other species for 
a smart agricultural future.

Smart agriculture actively incorporates engineering and chemical technologies in agriculture, especially crop 
cultivation. Smart agriculture aims for labor saving and high-quality  production1,2. In particular, the digitized 
data (such as temperature, humidity, sunshine hours, and soil components) assist cultivation management by 
providing information and communications technology (ICT) and the Internet of Things (IoT)3–7. For example, 
physiological and physiological plant growth models can provide optimal  methods8. However, the parameters 
interact with complex control variables. These parameters vary widely, including nutrients, flooding, photosyn-
thetic light intensity, and carbon dioxide. Moreover, changes in plant species and environmental conditions lead 
to interactions between these parameters, limiting independent utility.

Therefore, to improve smart agriculture, we propose using artificial intelligence (AI) with machine  learning9,10. 
Practical AI are already in operation in plant factories such as  hydroponics11. For example, it is useful when cul-
tivating in artificially controlled environments to optimize the water and air temperature and light intensity. AI 
is also used to improve soil management and analyze nutrient  levels12–14. Furthermore, advanced technology is 
underway to use robots with AI to support cultivation to reduce labor costs. For example, pesticide  application15 
and automated  harvesting16,17.

Tomato is a high demand and popular cultivation crop. Tomato ranks first in crop production in the world. 
A total of 1.8 million tons of tomato are produced annually, followed by onions (1.04 million tons) and cucum-
bers (0.91 million tons)18. Tomato are the most popular crops but have many cultivation problems, including 
 pollination19. Pollination involves the pollens being created in the stamens, which pollinates the pistils to bear 
seeds and fruits. Cross pollinated plants must be pollinated by pollen from different strains. However, tomatoes 
can easily be pollinated within a single flower once pollen is created. Hence, tomatoes are self-pollinated when 
flowers are shaken. In tomato greenhouse cultivation, pollination schemes commonly use three methods. These 
are pollination using insects, artificial pollination (by manually vibrating flowers), and hormonal pollination 
using plant growth regulators.

Pollination using insects follows nature. Tomato flowers are pollinated by shaking of the flowers when honey-
bees and bumblebees collect pollen. However, insect management and rearing are difficult and bees are inactive 
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in high temperatures, reducing pollination efficiency. Therefore, artificial pollination is often used to manually 
vibrate flowers. In artificial pollination, farm workers visually classify the shapes of flowers that are ready for 
pollination and shake them using a vibrating instrument. However, farm workers require experience and skills 
to classify flowers. Hence, many skilled farm workers are required, increasing expenses. Hormonal pollination 
involves plant growth agents, forcing fruiting, growth, and pollination. Hormonal pollination is an easy and 
useful technique that does not required experience or skills in classifying  flowers20. However, if strict guidelines 
are not followed then phytotoxicity occurs, resulting in quality problems such as deformation of the fruit and 
limited taste. We propose new pollination schemes and have developed a system to solve these problems (see 
Fig. 1). The proposed pollination system uses small drones or robots instead of bees and humans. However, this 
is a complicated process.

For example, drones and robots must be able to find flowers like bees and humans do. Drones and robots 
require the ability to discriminate ripe flowers. Communication technology for remotely controlling drones and 
robots is required. A mechanism for pollinating flowers is also required. We focus on the technologies for drones 
and robots to distinguish flowers autonomously. Furthermore, the robots need to distinguish flowers and also 
identify the detailed shape of flowers that are ready for pollination.

Drones and robots equipped with cameras captured image data and classified the flowers. We developed 
an AI image classification system using a convolutional neural network (CNN) based on machine learning. 
Drones and robots classify the flowers while moving. For example, flowers are shaking due to the wind caused 
by the drone or the vibration caused by the robot. Movement impacts the analytical performance of the AI 
image classifier. Therefore, it is necessary classify the shape of flowers in conditions and environments involving 
drones and robots. We aim to develop the technology to be able use drones and robots to support cultivation by 
using complicated state-of-the-art technology. It is most important that the technology is effective and meets 
the requirements of both plant characteristics and actual cultivation conditions. Therefore, we have developed 
the technology and confirm the usefulness of this AI image classification system in a greenhouse experiment, 
resulting in fruiting tomatoes.

Methodology
This section mainly describes basic AI development techniques for robots to classify flowers. To classify pol-
linable flowers, we used a machine learning CNN  algorithm21, which is generally used for image analysis. We 
created an AI image identification device as the basic technology for a pollination system that does not require 
human involvement, such as visual inspections or managing insects. The CNN techniques used in this study are 
detailed below. Using the flower classification criteria and CNN algorithms described in this section, the next 
section leads to mounted technology suitable for pollination robots.

Flower shape machine learning. The process of tomato flower budding, flowering, and fruiting is pro-
vided in Fig. 2. The process from (a) to (f), (a) is a bud, and fruits are grown after (f). The shape of flowers varies 
during the process of flower bud differentiation. A general empirical rule is that the shape of a pollination flower 
has petals curled in (d). The stamen protrudes from the center of the flower. Pollen is attached to the inside of 
the stamens. The stigma of the pistil is surrounded by stamens.

The shape (d) produces the most pollen when the stigma is long, increasing the probability of pollination. 
Tomatoes are self-pollinated, when the stamen vibrates, pollen adheres to the stigma and pollination begins. 
Therefore, the AI image classifier identifies shape (d) using the captured image. Assessing the images taken by 
drones and robots need to account for the additional shaking by the drone or robot. To simulate image blurring, 
the image was smoothed using a Gaussian filter. An example image after Gaussian filtering is provided in Fig. 3. 
We developed an AI image classifier using both normal images and smoothed images for the CNN machine 
learning.

Figure 1.  Pollination system using AI.
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Ingenuity of CNN in image analysis. The CNN used in this study was neural networks, extracting fea-
tures using a convolution (Conv) layer and a Pooling layer. A configuration example using CNN is provided 
in Fig. 4. The figure numbers represent the pixel size of the image. Conv performs convolution processing on 
the image data converted into a cubic matrix of red/green/blue (RGB) and extracts the feature map. To extract 
features (such as edges), zero padding was performed by adding 0 surrounding the image of 32 × 32 pixels. 
Moreover, a feature map was obtained by shifting the 3 × 3 window one pixel at a time while applying a kernel 

Figure 2.  Flowering process and conditions for determining flower shapes of flowers ready for pollination. The 
process of tomato flower budding, flowering, and fruiting. The process from (a) to (f), (a) is the start of a bud, 
and fruits grow after (f).

Figure 3.  Gaussian filter. (a) Is the image before applying Gaussian filter. (b) Is the image after applying 
Gaussian filter.

Figure 4.  Configuration of CNN. The figure numbers represent the pixel size of the image. Conv performs 
convolution processing on the image data converted into a cubic matrix of red/green/blue (RGB) and extracts 
the feature map.
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filter. The maximum value pooling and average value pooling were performed in the pooling layer to counteract 
image shifts and differences in appearance. Next, Dense (connective layer) weighed the extracted features and 
transformed them into a one-dimensional vector. Finally, Output (output layer) calculated each classification 
using an activation function, such as a softmax function. CNN is mainly used in image analysis because of these 
 functions9.

CNN algorithms require learning using a large amount of image data. However, it is difficult to collect a large 
amount of image data, so we padded the data by rotating or reversing the images. The AI image assessment used 
two types of flower image data to identify flowers ready for pollination and unripe flowers. After learning the 
two-class classifications, the accuracy rate of the classification results was assessed (see Fig. 5). The training image 
data involved the original image of 4608 × 2592-pixels. From these images, 100 images were prepared by remov-
ing the flower parts and dividing the images into six stages, from bud emergence to the initiation of fruiting.

The image size was condensed to 32 × 32 pixels with an average size of 100 KB. In addition, the padding and 
preprocessing of the training image data was performed, including rotations, grayscale conversions, binariza-
tions, and preprocessing with a Gaussian filter (see Fig. 6). Processing to extract yellow from the image was 
also performed to learn the flower shape. At the time of learning, the number of training images was padded to 
approximately 85,000 by dividing them into training images and test images before performing preprocessing. 
Images of flowers with the high possibility of pollination were extracted to calculate the most accurate rate of pol-
lination by the AI image classifier (see Fig. 2). Moreover, we confirmed the accuracy rate of the smoothed images 
(representing blurring by movement). Our evaluation assessed the accuracy rate (validation accuracy), which is 
the percentage of successful discrimination to test additional images not included in the initial image database.

Ethics declarations. The use of plants in this study complied with relevant institutional, national, and 
international guidelines and legislation.

Results
Evaluation of CNN machine learning. The analysis of the AI classification algorithm is provided in 
Fig. 7. The vertical axis provides the accuracy rate, and the horizontal axis is the number of epochs. The red 
line indicates validation accuracy (val_accuracy), and the blue line indicates training accuracy (accuracy). The 
experimental results converged at eight epochs (due to early stopping) and the validation accuracy was 87.3%. 
One of the reasons for the low accuracy rate (of ≤ 90%) is the insufficient number of original training images.

However, our result is a trade off as we decided it is preferable to determine the operation accuracy rather 
than focus on an extreme accuracy of the pollination images. Therefore, the accuracy rate may decrease due to 
images which were difficult to identify between ripe flowers and their boundaries. In contrast to the red line of 
val_accuracy, the yellow dashed line (nothing) is the validation accuracy when learning without data augmen-
tation as shown in Fig. 7, but the accuracy rate was as low as approximately 70%. Therefore, we confirmed the 
effectiveness of padding. Table 1 shows the probability of the AI classification algorithm identifying pollination 
using the shape of the flower cluster. The flower shape of (d) was effectively ripe with approximately 97% accu-
racy. This technique provided the most accurate results, so the accuracy of image is sufficient. In addition, the 
smoothed images using the Gaussian filter produced an accuracy rate for the flower shape (d) of approximately 
96%. This result suggests the AI remains effective even with shaking caused by drones and robots.

Figure 5.  A two class classification system.

Figure 6.  Inflation and pretreatment.
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AI image classifier suitable for robot mounted technology by experimental results. We veri-
fied the accuracy of the image classification algorithm using real flowers in the tomato growing greenhouse. The 
image classification algorithm was used in a small computer as an AI image classification machine. The small 
computer used was a Raspberry Pi (hereafter RasPi)22, a single-board computer equipped with an ARM proces-
sor. The configuration and operation of the AI image classification machine is provided in Fig. 8. The RasPi 
was connected to a camera module, an ultrasonic sensor module, and an external LED display that outputs the 
results. The ultrasonic sensor measured the distance between the flower and RasPi to link the camera to take an 
image. Hence, the image was only automatically taken when the tomato stem was within 0.3 m of the camera. 
Since this function eliminates the need to take extra images and obtains only image data with a fixed view angle, 
the flower parts can be easily extracted. The output of the AI image classification machine displays an accuracy 
rate (%) on the external LED display. It also states outputs 1 when it determines pollination is possible, and out-
puts 0 when it determines pollination is not possible.

In this experiment, we aimed to confirm the performance of the AI image classification machine with simple 
information was displayed on the external display. When the pollination system in Fig. 1 was actually used, the 
output of the identification result notifies the robot or drone to undertake pollination. Conversely, when the out-
put is 0, the operation resumes searching for ripe flowers. A photograph of the AI image classification machine in 
the experimental location is provided in Fig. 9. The displayed result of 1 or 0 allows us to assess the accuracy rate 
in real time using the LED external display. Therefore, the experimenter can visually confirm the data during the 
experiment. Moreover, when 1 is the output the accuracy rate is ≥ 70%. When the output is 0 the accuracy rate 
is ≤ 70 %. This accuracy rate is intentionally relatively low to represent actual field operational conditions. We 
randomly selected 200 flower clusters were assessed using the AI image classification machine. If the output was 
1 on the display, the pollination process was performed by physically vibrating the flower. The captured images, 

Figure 7.  The learning results. The vertical axis provides the accuracy rate, and the horizontal axis is the 
number of epochs. The red line indicates validation accuracy (val_accuracy), and the blue line indicates training 
accuracy (accuracy).

Table 1.  Probability of judging that pollination is possible (%).

(b) (c) (d) (e)

Normal image 5.0 60.0 96.9 67.4

Image of gaussian filter 4.1 54.7 95.9 63.5

Figure 8.  Operation and configuration of the AI image classifier.
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accuracy rate, and results (1/0) were saved separately in the internal memory and analyzed after the experiment. 
In addition, we marked the selected and pollinated flowers and continuously observed them to verify successful 
fruiting. The accuracy of the AI image classification machine is provided in Table 2. The fruiting rate is provided 
in Fig. 10. The figure provides the ratio of the number of setting fruits to the number of pollinated flowers. Fig. 11 
provides the accuracy rate of the AI image classification machine with the fruiting rate.

Figure 9.  AI software implementation. An example and an image of an experimenter performing the 
experiment.

Table 2.  Analysis accuracy of AI image classification machine. Correct answer rate = 1 - (errors/flowers 
judged).

Pollination flowers Non-pollination flowers

Flowers judged 108 86

Errors 1 5

Correct answer rate (%) 99.07 94.18

Figure 10.  Fruit setting rate for each type of flower shape.

Figure 11.  Threshold of the accuracy rate obtained from fruiting rate.
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Discussion
The accuracy of the AI image classification machine is provided in Table 2. The number of misclassified flow-
ers was 6 flowers in approximately 200 flowers, resulting in a misclassification rate of approximately ≤ 5%. This 
misjudgment was due to the camera shaking during photography causing the flower to be misjudged by the 
ambiguous and indeterminate shapes, or altered with sunlight effects in the greenhouse. Therefore, the image 
analysis performed well. However, when performing the image analysis, attention must be paid to deal with 
light. An example of flowers with uncertain shapes degrading accuracy is provided in Fig. 12. Even when visu-
ally confirmed, these ambiguous shaped flowers don’t consistently pollinate. The fruiting rate results provided 
in Fig. 10 are compared with the desktop predictions in Table 1. We confirmed the flower shape (d) provides the 
highest accuracy rate. The fruit setting rate was ≥ 70 %, confirming the flower shape in (d) is the most suitable 
for pollination.

The results confirmed successful pollination using the AI image classification machine. Therefore, we expect 
the AI image classification machine will sufficiently perform even when installed in a robot in an agricultural 
field. Figure 11 provides the success rate against the accuracy rate. When the accuracy rate of the AI image 
classification machine is below 70 %, the success rate is approximately 40 %. Conversely, when the accuracy 
rate of the AI image classification machine was 70 % or above, the fruiting rate was 60% or higher. Therefore, 
if the output accuracy rate is 70 % or above, the robot will correctly identify flowers ripe for pollination. The 
threshold of the AI image classification machine was set at ≥ 70%, which should provide sufficient pollination 
in real agricultural situations.

The relationship between the shape of the pollinated flower and the shape of the fruit set is demonstrated 
in Fig. 13. The flower shapes were classified from types #1 to #6 using the fruiting results. When the artificially 
pollinated flower shapes were (c), (d) or (e), they produced relatively high fruiting rates. The highest quality fruit 
shape was set by #6 shaped flowers. Thus, the fruit setting rate of #6, (c) was 40 %, (d) was 50 %, and (e) was 19 
%. From these results, we identified flower shape (d) provides the highest fruit setting rate and also forms the 
highest quality fruit.

Image classification accuracy of AI by machine learning is generally required to be close to 100% classification 
accuracy, when applied to medical and engineering fields. However, we considered sufficient if the accuracy rate 
of 70% or more is obtained for the shape of flowers that can be pollinated, as shown in the result of Fig. 11. The 
reason is that not only the flower shape of Fig. 2 (d) can be pollinated. Of course, the flower shape (d) has the 
highest fruiting success ratio, but the (c) and (e) shapes can also fruit. The fuzzy accuracy rate is effective for the 
performance of the AI classifier system to improve the tomato yield.

In point of classification accuracy, in order for this technology to be installed in various robots in the future, 
it is desirable to extend machine learning by the transfer learning (TL) and Fine Tuning  technology23,24. TL or 
Fine Tuning can be transferred or reused based on the original deep learning. Conventionally, when the grow-
ing season or the type of tomato is different, the shape of the flower changes slightly, so new machine learning is 
required. However, in the future, we hope to advance to a technology with a wider range of versatility by adding 
technologies such as TL and Fine Tuning. TL and Fine Tuning technology are positioned as extensions of this 
research, and we will be a future works.

Possibility of implementing to small drones with low‑resolution cameras. In order to consider 
the performance of the AI classification machine developed in this paper, we performed verification with a 

Figure 12.  Examples of ambiguous flower shapes.
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small camera for reference. Machine learning using CNN was performed assuming camera images mounted on 
ultra-small drones. The resolution of the camera used in the experiment in Fig. 9 is 1920 pixels × 1080 pixels, 
while the camera mounted on the ultra-small drone is 276 pixels × 196 pixels, which is about 1/6 the resolution. 
Figure 14 is the flower shape of (d) at this resolution. In the result of using AI image classification machine, the 
classification result of 88.7% was obtained. The classification result of the camera image used in the experiment 
was 95% or more, so this result was about 7% lower. However, since the accuracy rate of 70% or more is obtained, 
sufficient accuracy will be obtained even if the low-resolution camera for ultra-small drones is used. The reason 
for this result is machine learning was performed on images with Gaussian filter applied, and the high accuracy 
rate was obtained even when the image was blurred.

Conclusion
We developed an AI image classification machine using CNN machine learning for a robot to determine the 
shape of tomatoes ready for pollination without the need for humans or bees. The image analysis algorithm was 
implemented as an AI image classification machine and its effective operation was confirmed in a tomato grow-
ing greenhouse. Pollination was only performed on ripe flowers. We compared the fruiting rate of the artificially 
pollinated tomatoes. When the accuracy rate of the AI image classification machine was set at 70% or above, the 
practical use of the pollination robots is realized. Moreover, we also identified the flower shape that yielded the 
highest fruiting rate and the highest quality fruit shape.

Figure 13.  Fruit quality of the pollination experiment.

Figure 14.  Low-resolution camera images intended for implementation on ultra-compact drones.
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The datasets used and/or analyzed during the current study are available from the corresponding author on 
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