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Hybrid mesh for magnetotelluric 
forward modeling based 
on the finite element method
Nian Yu 1,3, Xialan Wu 1, Xinyu Liu 2, Ruiheng Li 2,3*, Hongye Zhang 1 & Lei Gao 1

Unstructured tetrahedral grids have been applied in magnetotelluric (MT) forward modeling using the 
finite element (FE) method because of their adaptability to complex anomalies. However, high-quality 
results require an extreme refinement of the near-surface area, which leads to excessive meshes 
and an increased degree of freedom (DoF) of the governing equation of the finite element system. 
To reduce the computational cost, we have developed a hybrid mesh based on triangular prisms and 
tetrahedrons. The required elements in the near-surface area are reduced because the quality of the 
triangular prism is not limited by the element aspect ratio. The deep area is discretized by tetrahedral 
elements to ensure the flexibility of the unstructured grids. The superiority of this hybrid mesh has 
been tested on a layered model, the DTM1 model and terrain relief models. The results show that 
the modeling efficiency has been improved, especially for high-frequency data. The accuracy of the 
modeling using the hybrid mesh is significantly higher than that of the tetrahedral mesh with a similar 
DoF. Usage of the hybrid mesh can be easily adapted to complex geoelectric models with strong 
terrain fluctuations, which requires less computational cost than using conventional unstructured 
elements.

Unstructured grids with tetrahedral elements are suitable for dividing complex underground anomalous bod-
ies in terms of topography and bathymetry because they can fit arbitrary shapes of geological bodies  well1–5. 
This type of grid has become a useful tool for discretizing the geoelectric model in the numerical simulation of 
three-dimensional geophysical electromagnetic (EM) fields using the finite element method (FEM)6–8 and has 
been widely used in magnetotelluric (MT) forward  modeling9–11. However, unstructured grids often need to be 
refined into extremely small elements to avoid ill-conditioning12,13. The refinement often results in too many 
redundant elements and reduces the computational efficiency of the FEM forward modeling.

To reduce the number of required elements, a scheme of nonconforming grids has been used to discretize the 
geoelectric  model14,15. This kind of regular grid, whose element quality is not restricted by the aspect ratio of the 
element, has a variable scale and stable local refinement  capabilities16,17. It helps to reduce the degrees of freedom 
(DoF) and is suitable for large-scale 3-D geophysical EM forward problems, such as MT forward modeling. A 
multiresolution approach suggested by Cherevatova et al.13 allows grid refinement only in the horizontal direc-
tions and keeps the degree of refinement in the vertical direction constant. The stretching grid obtained from 
this multiresolution approach can help to improve calculation accuracy with fewer elements in the near-surface 
area . In addition, the longer the element is stretched, the more elements are saved, and the decrease in numerical 
accuracy caused by element stretching can be compensated by a higher-order element processing  scheme18,19. 
However, some elements of the stretched grid with hanging nodes cannot share just one whole edge or  face13,14, 
and the convenience and flexibility of mesh generation are not as good as traditional tetrahedral elements.

Triangular prism elements can be used to build the stretched grid in the near surface  area20. However, the 
accuracy of the numerical solution will be reduced when the stretched grid extension is too long. In this research, 
second-order shape functions are used to discretize near-surface prismatic elements. The deep region is still 
freely discretized by the tetrahedral elements. Because triangular prism elements and tetrahedral elements can 
share a triangular surface, we developed a hybrid mesh with second-order shape functions containing two kinds 
of elements.

This paper is structured as follows. We first introduce our governing equations for forward modeling, the A
-ϕ system with gauge fixing. Then, we describe how to create a hybrid mesh with triangular prism elements and 
tetrahedral elements and how we apply it to FEM forward modeling. We use a layered model to preliminarily 
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illustrate the advantages of this method in terms of calculation efficiency and accuracy. The advantages of the 
hybrid mesh are further demonstrated by three types of numerical examples. The conclusion is in the last section.

Theoretical background
When the displacement current is ignored in the quasistatic approximation and the time dependence is assumed 
to be eiωt , the governing equations for the induced EM fields are written as:

where E and H are the induced electric and magnetic fields, respectively. ω is the angle frequency. σ and µ are 
the conductivity and permeability of the EM medium, respectively. By substituting Eq. (2) into the formula after 
taking the curl of Eq. (1), the Helmholtz equation of the electric field E can be obtained as:

Governing equation. The electric field can be decomposed into the magnetic vector potential A and elec-
tric scalar potential ϕ . This can reduce the weakness of the curl-curl electric  equation21–24, accelerate the speed of 
solving the FE system with an iterative solver and obtain higher numerical accuracy. The relation of the poten-
tials and fields can be represented as:

Substituting Eq. (4) into Eq. (3) results in the following  equation25:

In conjunction with J = σE, by substituting Eq. (4) into the Gaussian divergence equation, the current diver-
gence is zero and can be expressed as follows:

When both the curl and divergence of A are given, A is uniquely defined up to a constant. Therefore, to obtain 
a unique solution, we add the Coulomb gauge  condition26,27:

The Coulomb gauge is imposed to strengthen the divergence limit and enhance the uniqueness of the FE 
equations. On the basis of Eq. (6) derived from Ampere’s rule, we add a Lagrange multiplier term to eliminate 
the external current density  divergence21,23. Equations (6) and (7) can be rewritten as follows:

In Eq. (10), −iωσ is constant, so the divergence of the magnetic vector potential is specified.
For the geophysical EM field propagation problem, we use homogeneous Dirichlet boundary conditions in 

the truncated model boundary.

Solving a linear system of equations. We use the Galerkin method to discretize Eq. (9). The discretized 
expression is as follows:

where N denotes the vector shape function. Ã , ϕ̃ , and �̃ are the approximate solutions of A , ϕ , and � , respectively. 
� is all domains of the calculation model. Ŵ and γ are the outer and inner boundaries of the mesh, respectively. 
Similarly, the discrete forms of Eqs. (7) and (8) are obtained as  follows23:

where N denotes the scalar shape function. We use natural electromagnetic field sources to form the right side 
of the system. When the polarization direction of the magnetic field source is the y direction, the air top inter-
face loads the magnetic field source H0 = (0, 1, 0), the boundary condition of the outer boundary parallel to the 
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x-axis is n̂× (1/µ)∇ × A = 0 , and the boundary conditions of the outer boundary perpendicular to the x-axis 
and the bottom boundary are n̂× A = 0 . When the polarization direction of the magnetic field source is the x 
direction, the air top interface loads the magnetic field source H0 = (1, 0, 0), the boundary condition of the outer 
boundary perpendicular to the x-axis is n̂× (1/µ)∇ × A = 0 , and the boundary condition of the outer bound-
ary and the bottom boundary parallel to the x-axis are n̂× A = 0 . The boundary condition of ϕ is ϕŴ = 0 . Add 
the relevant boundary conditions through the second term in Eq. (11). The relationship between the magnetic 
field H and A is expressed as follows:

After the outer boundary is discretized, it is assumed that one surface of the i element is at the air top interface 
and denoted by Ŵi . Combining Eq. (14) and adding the field source of MT through the second term in Eq. (11), 
the expression is shown as follows:

The calculation area is subdivided into units of smaller subdomains. The vector and scalar potential of each 
element in the grid are represented by piecewise polynomial basis functions, and the expressions are listed as 
follows:

where Nj denotes the vector shape function on the jth edge in the element, Nj denotes the scalar shape function 
of the jth node in the element, and nedge and nnode represent the number of edges and nodes in the element, 
respectively. Combining Eqs. (11) to (13) and Eqs. (16) to (18), the matrix form of the system equations after 
finite element discretization is obtained as follows:

where Ŵair isthe air top interface. i, j = 1, ..., nedge and l, k = 1, ..., nnode . We use the MUMPS direct solver to solve 
the A-ϕ system equations.

FEM with a hybrid mesh
Mesh generation. The geoelectric model can be divided into near-surface areas and deep areas. The near-
surface area is discretized by triangular prism elements, which can be seen as a boundary layer near the surface 
(Fig. 1a). The deep area is discretized by tetrahedrons, which lie below the boundary layer. The triangular prism 
and the tetrahedron can share a triangular face, which perfectly couples the triangular prism mesh and the 
tetrahedral mesh (Fig. 1b). We use the mesh generator in COMSOL to build the mesh, which is based on the 
Delaunay  algorithm28–33. Other software capable of generating tetrahedrons, prisms, hexahedrons and other 
meshes can also be used to generate hybrid meshes, such as  Gmsh34.

For the near-surface area of the geoelectric model, we use Delaunay triangulation algorithms to freely divide 
the Earth’s surface into triangular meshes and then extend the triangular meshes in the vertical direction to be 
a top layer comprised of triangular prisms. The extending distance is approximately 1 to 2 times the skin depth. 
The near-surface layer is approximately vertical. The change in the underground electromagnetic field can be 
measured by the skin depth. After passing our experiment, the vertical size of each subdivision layer is set to be 
less than 1/3 of the skin depth.

The areas adjacent to the triangular prism layers are the deep area below it and the air layer area above it. 
These adjacent areas are discretized into free tetrahedrons, which couple the upper and lower interfaces of the 
triangular prism layer through the triangular plane. The sizes of the tetrahedrons are based on the sizes of the 
triangles on the coupling surface and gradually grow away from the surface.

Element analysis of triangular prism and pyramid. The shape functions of the triangular prism ele-
ments (Fig. 2) consist of vector edge-shaped functions and scalar node-shaped  functions36. A triangular prism 
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Figure 1.  Meshing of a triangular prism element. (a) shows that two-layer triangular prism meshes can be 
directly spliced. The triangle at the top of the triangular prism can be generated with the topography. According 
to the top triangle, we extend the shape downward to create a triangular prism element. (b) represents the 
coupling of tetrahedral elements and triangular prism elements. The red surface is the coupling  surface35.

Figure 2.  Illustration of one triangular prism element. There are six nodes and nine edges in the element, and 
the serial numbers of nodes and edges are defined in the coordinate system ( ξ1 , ξ2 , ξ).
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element consists of two triangles at the top and the bottom and four rectangles around it. The shape functions of 
edges and nodes are shown in Appendix A.

The shape functions of the pyramid elements (Fig. 3) consist of vector edge-shaped functions and scalar node-
shaped functions. A pyramid prism element consists of one rectangle at the bottom and four triangles around it. 
The shape functions of the pyramid element are listed in Appendix A.

Shape functions of second-order triangular prism element. The quadratic triangular prism element 
is shown in Fig. 4. It has a total of 15 nodes, eighteen variables along edges and ten on faces in the element. V i  (i 
= 1, 2, ..., 28) is the variable in the element. The element illustrated in Fig. 4 has fifteen scalar node-based shape 
 functions37.

The scalar node-based shape functions of the triangular prism element of corner nodes are:

The scalar node-based shape functions of the mid-edge of the triangle are:

The scalar node-based shape functions of the mid-edge of the rectangle are:

Ahagon et al. presented that the vector edge-shaped functions are derived from those scalar node-based 
shape  functions38,39. Their relationship is:

where the edge i-j is associated with the node j shape function. According to Eqs. 21–24, the 2nd vector edge-
shaped functions of triangular prisms can be derived easily. Taking node 1, node 7 and node 11 as examples:
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Figure 3.  Illustration of one pyramid element. There are five nodes and eight edges in the element, and the 
serial numbers of nodes and edges are defined in the coordinate system ( ξ1 , ξ2 , ξ).
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Figure 4.  Illustration of one second-order triangular prism element; the serial numbers of nodes and edges are 
defined in the coordinate system ( ξ1 , ξ2 , ξ).
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The other 2nd vector edge-shaped functions can be deduced in the same way as above. We can divide the 
vector edge-shaped functions into several categories as follows:

The vector edge-shaped functions for the bottom and top triangle edges can be expressed as:

The vector edge-shaped functions for the rectangle edges (volume vector functions) can be expressed as:

The vector edge-shaped functions for the bottom and top triangle faces can be expressed as:

The vector edge-shaped functions for the rectangle faces can be expressed as:

Advantages of hybrid mesh
We use the numerical example of a layered model to illustrate the superiority of triangular prism elements in 
MT forward modeling with FEM. The apparent resistivity and phase are the responses, which help us to analyze 
the accuracy of the calculation.

To simplify the analysis, we use the highest frequency to calculate the smallest skin depth, which is used to 
stretch the triangular prism layer in the near-surface area. Although this size is sufficient for the calculation of 
an EM field with lower frequencies, it does not affect the analysis of the superiority of the triangular prism to 
the tetrahedron.

Meshing the three-dimensional layered model. The layered model is divided into three layers (Fig. 5). 
The resistivities of the first, second and third layers are 200 �· m, 1000 �· m, and 200 �· m, respectively. The thick-
nesses of the first layer and the second layer are both 0.5 km. The measuring points are located from −1200 m to 
1200 m along the X direction at Y = 0 m and Z = 0 m, with a distance of 300 m. The size of our entire calculation 
model is 20 km × 20 km × 70 km.

The sizes of mesh elements can be divided into horizontal sizes and vertical sizes and are controlled by the 
maximum unit size (MES) and growth rate. The control of these sizes mainly lies in the discretization of prismatic 
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elements in the near-surface area. The size of the tetrahedron in the deep area depends on the size of the bottom 
surface of the triangular prism.

For the near-surface area, the horizontal sizes are controlled by the triangles used for meshing the ground. 
We use the triangular MES (TriMES) and triangular growth rate (TriGR) to generate these triangles. We use the 
prism growth rate (PriGR) to control the growth multiple of the vertical size of the triangular prism and control 
the total thickness of the prismatic layer.

For the deep area, the sizes of the top layer of the tetrahedrons, which are coplanar with the coupling plane, 
are controlled by the size of the coupling triangles. The sizes of the other tetrahedrons are controlled by the 
tetrahedral growth rate (TetGR).

We use four types of meshes (Table 1) to discretize the three-dimensional layered model. Mesh A is a hybrid 
mesh that is divided into two parts: the upper part is a triangular prism mesh, and the lower part is a tetrahedral 
mesh. The horizontal size is determined by the size of the triangular element at the top. The TriMES is 1500 m, 
and the TriGR is 1.3. The vertical size of the hybrid mesh is determined by the vertical size of the triangular 
prism and the tetrahedron at the same time. The vertical size of the first prismatic layer is 8 m, and the PriGR is 
equal to the TetGR. The total number of prismatic layers is 10. Below the prismatic layers, the vertical size of the 
tetrahedral element is controlled by the TriMES and TetGR. The TetGR in hybrid mesh A is 1.5.

Meshes B1, B2, and B3 are tetrahedral meshes, and their granularities are different. Mesh B1 is the coarsest-
grained mesh. The horizontal size of the mesh B1 element is the same as that of the triangular prism element, and 
the TriMES is 1500 m. The vertical size of the mesh B1 element in the first layer is approximately 500 m under 

Figure 5.  Three-dimensional layered geoelectric model.

Table 1.  Parameters of different meshes for the three-dimensional layered model.l layered model. MES 
means maximum unit size. The horizontal size is controlled by the triangular MES (TriMES) at the Earth’s 
surface and triangular growth rate (TriGR). The TriGR represents the maximum element growth rate of the 
triangular element size. Vertical size is controlled by the thickness of the prismatic layer and tetrahedral 
growth rate (TetGR). The TetGR represents the maximum element growth rate of the tetrahedral element size. 
The prismatic growth rate (PriGR) represents the vertical prismatic element growth rate of the prism layer 
thickness

Mesh property

Horizontal size Vertical size

TriMES (m) TriGR Thickness of the first layer (m) PriGR/TetGR

Mesh A Hybrid mesh 1500 1.3 8 1.3/1.5

Mesh B1

Tetrahedral mesh

1500 1.3 500 1.5

Mesh B2 250 1.3 200 1.5

Mesh B3 100 1.3 65 1.5
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the premise of effective meshing for good mesh quality. Meshes B2 and B3 have smaller granularity than mesh 
B1. The TriMES and the first layer thickness of the B2 mesh are 250 m and approximately 200 m, respectively. 
The TriMES and the first layer thickness of the B2 mesh are 100 m and approximately 65 m, respectively. We 
compared the mesh refinement at measuring points (Fig. 6) and the grid diagram of the cross section (Fig. 7) 
of the four grids.

Higher-order shape function. MT responses are calculated in the frequency range of 1E5 Hz to 1E−1 
Hz with hybrid  mesh20 of different orders. In total, 26 frequency points were calculated, of which 10 frequency 
points were equally spaced between 1E5 Hz and 1E4 Hz, and the other frequency points were equally spaced 
from 1E4 Hz to 1E−1 Hz. The apparent resistivity and phase change with frequency are shown in Fig. 8. When 
the shape function is first order, the maximum absolute errors of the apparent resistivity and phase are 27.8510% 
and 6.8170%, respectively. When the shape function is second order, the maximum absolute errors of the appar-
ent resistivity and phase are 2.0968% and 0.4063%, respectively. All the computations are implemented in MAT-
LAB 2019 with an Intel Core i5-10400 CPU @ 2.90 GHz and 32 GB RAM.

Mesh quality. MT responses are calculated in the frequency range of 1E4 Hz to 1E−1 Hz. The apparent 
resistivity and phase change with frequency are shown in Fig. 9. The accuracy of the apparent resistivity and 
phase calculated by different meshes is quite different in this frequency range. We use the root mean square error 
(RMSE) to measure the overall error of the apparent resistivity and phase, and the reference solution uses the 
semianalytical solution of the 1D layered model.

For a mesh containing only tetrahedrons, the smaller the mesh granularity is, the smaller the calculated 
response misfit. For the layered model, the vertical size of the element is a key factor affecting the calculation 
accuracy. Considering the element quality, the horizontal size of the element needs to be consistent with its 

Figure 6.  Mesh refinement at measuring points of the three-dimensional layered geoelectric model. (a) is the 
mesh refinement at the measuring points of Mesh A. (b) is the mesh refinement at the measuring points of Mesh 
B1. (c) is the mesh refinement at the measuring points of Mesh B2. (d) is the mesh refinement at the measuring 
points of Mesh  B340.
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vertical size. However, this causes the number of elements (NE) and number of DoFs to increase sharply, and 
the calculation time increases with additional DoFs.

A hybrid mesh with a triangular prism can overcome this limitation. Even if the aspect ratio of the triangular 
prism element is greater than 100 times, high accuracy can be obtained. When the accuracy is not limited by the 
aspect ratio, the number of required elements is greatly reduced, and the required DoF number is also reduced. 
The DoF, mean absolute error (MAE) misfit and NE of the response results are all shown in Table 2.

System matrix quality. Table 2 shows the comparison of the FE system element number, DoF, calculation 
time and numerical solution accuracy information of different grids. A higher order is helpful to improve the 
accuracy of the numerical solution for the prismatic element. A comparison of the calculation results of mesh 
A and mesh B1 shows that mesh A has a greater DoF and more accurate numerical solutions. A comparison of 
the calculation results of meshes A and B2 shows that even if the DoF number of the tetrahedral mesh is eight 
times that of the hybrid mesh, the accuracy of the hybrid mesh is much higher than that of the tetrahedral mesh. 
A comparison of the results of meshes A and B3 shows that when the DoF number of the tetrahedral mesh is 56 
times that of the hybrid mesh, the accuracy of the tetrahedral mesh can be at the same level as that of the hybrid 
mesh. This shows that the mesh type not only affects the size and DoF number of the system matrix but may also 
affect the solution properties of the system matrix.

The sparsity distribution of the system matrix of different meshes can reflect that the system matrix of the 
hybrid grid has better solution properties. For tetrahedral grids, as the number of DoFs increases, the bandwidth 
of the system matrix gradually weakens. The DoF of the hybrid grid is between the number of DoFs of meshes B1 
and B2, but the bandwidth of its system matrix is notably better than that of the other two tetrahedral meshes.

Numerical example: DTM1
The hybrid mesh mainly uses triangular prism elements to process near-surface areas, which are often related to 
the calculation accuracy of high-frequency data. To verify the role of the hybrid mesh in improving the accuracy 
of the high-frequency data solution, we increase the complexity of the model on the basis of the three-dimen-
sional layered model and select the DTM1  model41–44 to show the advantages of the prism elements. A survey 
line is selected to record the responses of apparent resistivity and phase (Fig. 10). In the public DTM1 test data 

Figure 7.  Grid diagram of the cross section of the three-dimensional layered geoelectric model. (a) is the cross 
section of Mesh A. The red part represents the triangular prism mesh, and the remaining part represents the 
tetrahedral mesh. (b) is the cross section of Mesh B1. (c) is the cross section of Mesh B2. (d) is the cross section 
of Mesh  B340.
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set, the results of four often used methods, Han’s44, Mackie’s42,  wsinv3dmt41, and  mt3dinv45, are summarized. We 
compare the results of these four methods.

We set up four different meshes in total, namely, a hybrid mesh and three tetrahedral meshes. The parameters 
of different meshes are shown in Table 3. In the hybrid mesh, the TriMES, which controls the size of the hori-
zontal element, is set to 2000 m, and the thickness of the first layer of the triangular prism element is 318 m. In 
the tetrahedral mesh, the TriMES gradually changes from 2000 m to 500 m. The size of the tetrahedral element 
on the first layer is approximately equal to the TriMES on the surface. In the four meshes, the growth rate of 
both the triangular element and the tetrahedral element, TriGR and TetGR, is set to 1.5. The system equations 
established by TriMES’s 1000 m tetrahedral mesh and TriMES’s 2000 m hybrid mesh have the same DoF. The 
tetrahedral mesh of 500 m TriMES can be regarded as a dense tetrahedral mesh.

The calculation results of the apparent resistivity and phase at frequencies of 0.1 Hz, 1 Hz, and 10 Hz are 
shown in Fig. 11. When the frequency is 10 Hz (Fig. 11a, d), the denser the tetrahedral mesh is, the smaller the 
oscillation of the apparent resistivity curve and the phase curve, but neither is as smooth as the response curve of 
the hybrid mesh. When the frequency is 1 Hz (Fig. 11b, e), the oscillation of the response curves of the tetrahedral 
mesh is reduced, but there is still a gap between the smoothness of the response curve of the hybrid mesh. Up to 
the frequency of 0.1 Hz (Fig. 11c, f), the smoothness of the response curves of the tetrahedral mesh is equivalent 
to that of the hybrid mesh. When calculating the MT high-frequency electromagnetic field, the discrete equation 
using the hybrid mesh is smoother, and the calculation result has higher accuracy.

When the horizontal size of the hybrid mesh and the tetrahedral mesh are both approximately 2000 m, 
because the triangular prism element in the hybrid mesh can reduce the vertical size without reducing the mesh 
quality, the hybrid mesh has more DoFs and smoother responses. When we refine the tetrahedral mesh, we 
reduce its horizontal size to approximately 1000 m and set the vertical size to approximately 1000 m to ensure 
that the number of DoFs of the tetrahedral mesh is similar to that of the hybrid mesh. The apparent resistivity 
and phase curves calculated by this dense tetrahedral mesh still oscillate significantly. The tetrahedral mesh 

Figure 8.  The MT responses of the three-dimensional layered model calculated with hybrid meshes of 
different orders. Apparent resistivity and phases are shown in (a) and (b), respectively. The misfits of the 
apparent resistivity and phases are shown in (c) and (d), respectively. The absolute misfit is normalized by the 
semianalytic solution.
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is further refined, and the horizontal and vertical sizes are both set to approximately 500 m. At this time, the 
number of DoFs is nearly twice that of the hybrid mesh, but the calculation result is still not as stable. This shows 
that the hybrid mesh is indeed more efficient than the pure tetrahedral mesh in calculating high-frequency data.

Numerical example: sloped terrain models
Due to the volume effect of the electromagnetic method, the calculation of the high-frequency electromagnetic 
response is more difficult when the terrain is undulating. We adjust the change in the terrain undulation angle 
to analyze the improvement in the calculation efficiency of the hybrid mesh under different terrain conditions 
when the frequency is 1E4 Hz (Fig. 12).

Figure 9.  The MT responses of the three-dimensional layered model calculated with different meshes. 
Apparent resistivities and phases are shown in (a) and (b), respectively. The misfits of the apparent resistivities 
and phases are shown in (c) and (d), respectively. The absolute misfit is normalized by the semianalytic solution.

Table 2.  Calculation results of different meshes for the three-dimensional layered model. The number of 
element (NE) represents the total number of all elements in a hybrid or tetrahedral mesh. The DoF number 
and number of nonzeros (NNZ) reflect the basic situation of the FE system matrix. Based on the semianalytic 
solution, we use the MAE to measure the misfit of the results generated from different meshes. We provide the 
memory occupied by the four meshing calculations Significant values are in [bold].

Mesh property NE DoF NNZ Time (min)

MAE ( %)

Apparent resistivity Phase

Mesh A
Hybrid mesh (First order) 11,014 18,234 555,213 1.783 5.462 2.371

Hybrid mesh (Second order) 11,014 112,082 8,786,634 8.833 0.2679 0.104

Mesh B1

Tetrahedral mesh

10,079 81,616 5,101,464 5.25 62.396 19.412

Mesh B2 185,593 1,439,313 92,848,086 42.133 2.765 3.802

Mesh B3 1,235,632 9,513,920 616,910,456 548.15 0.966 2.143
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We set up three kinds of meshes, namely, a hybrid mesh, general tetrahedral mesh and dense tetrahedral 
mesh. The parameters of different meshes are shown in Table 4. The hybrid mesh and general tetrahedral mesh 
have the same horizontal element size, and their TriMESs are both 120 m. The horizontal element size of the 
dense tetrahedral mesh is smaller, and its TriMES is 50 m. The thickness of the first layer of triangular prism 
elements in the hybrid grid is 15 m. The vertical size of the first tetrahedron in the other two tetrahedral meshes 
is approximately equal to its horizontal size. Among these meshes, the mesh growth rates of triangles and tetra-
hedrons are both 1.5. The system matrix produced by the hybrid mesh and the tetrahedral mesh with the same 
horizontal element size has a similar number of DoFs, while the system matrix produced by the tetrahedral grid 
with the smallest horizontal element size has nearly twice the number of DoFs.

When the tilt angle changed, we calculated the responses of the xy component (Fig. 13) and the responses 
of the yx component (Fig. 14) with various types of meshes. For the xy component (Fig. 13), the accuracy of the 
resolution of the apparent resistivity accuracy is similar, and the calculation results of the general tetrahedral 

Figure 10.  DTM1 model. (a) and (b) represent the vertical and horizontal sections of the model, respectively. 
The survey line is shown in the horizontal section.

Table 3.  Parameters of different meshes for DTM1 model.

Mesh property
Relationship with hybrid 
grid

Horizontal size Vertical size

NE DoF Time (min) Memory (GB)TriMES (m) TriGR
Thickness of the first layer 
(m) PriGR/TetGR

Hybrid mesh 2000 1.5 318 1.5 34,489 350,809 11.833 33.04

Tetrahedral mesh

Similar horizontal size with 
that in hybrid mesh 2000 1.5 2000 1.5 22,083 170,129 3.467 15.383

Similar DoF with that in 
hybrid mesh 1000 1.5 1000 1.5 46,340 356,659 8.933 29.27

Much denser than other 
meshes 500 1.5 500 1.5 153,754 1,180,702 55.833 109.87
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Figure 11.  Calculation results of the DTM1 model. (a) and (d) represent the apparent resistivity result and 
phase result at a frequency of 10 Hz, (b) and (e) represent the apparent resistivity result and phase result at a 
frequency of 1 Hz, and (c) and (f) represent the apparent resistivity result and phase result at a frequency of 0.1 
Hz. The responses of Nam’s code are obtained with  FEM43 by Han/Lee44. The responses of Mackie’s code are 
obtained using the finite difference method by Mackie et al.41. The responses of  wsinv3dmt42 and mt3dinv are 
obtained by the FD  codes45.

Figure 12.  Sloped terrain models. The tilt angles of the slope are 10, 20, and 30 degrees.
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mesh have weak oscillations. The difference in the calculation results of different meshes is obvious in the phase 
results, but the difference in oscillating properties is essentially unchanged with the change in the tilt angle. Note 
that for both the apparent resistivity result and the phase result, the calculation result of the hybrid mesh is very 
stable for different tilt angle models.

The calculation results of the yx component are consistent with those of the xy component at three points. 
(1) the calculation results oscillate, but the hybrid mesh calculation results oscillate the least; (2) the oscillating 
difference of the results calculated by different meshes hardly changes with the change in tilt angle of sloped 
terrain models; and (3) the difference of oscillating is more obvious in the phase results.

The inconsistent point between the yx component and the xy component is that the response of the yx com-
ponent has more dramatic oscillation (by comparing Figs. 13 and 14). The elevation on the slope changes along 
the X direction, which brings greater misfit to the yx component. It can be suggested that there may be a large 
misfit in the direction of large topographic relief.

Numerical example: terrain relief model
In the high-frequency range, the hybrid mesh can obtain a high-precision EM response regardless of whether 
it is in flat terrain or undulating terrain with slopes. To further verify the adaptability of the hybrid mesh to 
undulating terrains, we design a three-dimensional geoelectric model with complex undulating terrain, which 
is referred to as the real terrain undulations (Fig. 15), and compare the accuracy of the MT response calculated 
by the hybrid mesh and the tetrahedral mesh. Here, the frequency is 1E4 Hz.

We set up three kinds of meshes, namely, a hybrid mesh, general tetrahedral mesh and dense tetrahedral mesh. 
The parameters of different meshes are shown in Table 5. The hybrid mesh and general tetrahedral mesh have the 
same horizontal element size, and their TriMESs are both 100 m. The horizontal element size of the dense tetrahe-
dral mesh is smaller, and its TriMES is 20 m. The TriGRs in the three kinds of meshes are all 1.5. The thicknesses 
of the first layer in the three kinds of meshes are 15 m, 80 m and 20 m. To make the system matrix generated by 
the hybrid mesh and general tetrahedral mesh have similar DoF numbers, we set the growth rates of the hybrid 
mesh and general tetrahedral mesh to 1.5 and 1.34, respectively. The TetGR in the dense tetrahedral mesh is 1.5.

The MT response results of the xy and yx components on the two survey lines are shown in Figs. 16 and 17. 
On survey line 1 (Fig. 16), the calculation result of the general tetrahedral mesh is the most inaccurate. The result 
of the hybrid mesh is closer to the result of the dense tetrahedral mesh. For the phase responses, the results of the 
dense tetrahedral mesh have obvious oscillations. This shows that the hybrid mesh can obtain stable calculation 
results while building a system matrix with a lower number of DoFs.

The response results on survey line 2 (Fig. 17) also show that when the DoF numbers are similar, the calcula-
tion results of the hybrid grid have higher accuracy than the calculation results of the general tetrahedral mesh. 
The dense tetrahedral grid can obtain more accurate calculation results, but the system matrix DoF number is 
nearly 2.6 times that of the hybrid grid. Additionally, compared with the phase results of the hybrid grid, the 
phase results of the dense tetrahedral grid also show stronger oscillations.

Conclusions
We have proposed a hybrid mesh strategy for MT forward modeling with the FEM, which contains triangular 
prism elements and tetrahedral elements. The use of triangular prism elements to discretize the near-surface area 
can significantly reduce the amount of required NE, which is caused by mesh quality constraints for tetrahedrons. 
It can improve the computational efficiency of high-frequency data.

Different geoelectric models are used to analyze the accuracy and efficiency of the hybrid mesh in calculat-
ing the MT responses. The three-dimensional layered model and the DTM1 model verified their accuracy and 

Table 4.  Parameters of different meshes for the sloped terrain models.

Tilt angle
Mesh 
property

Horizontal size Vertical size

NE DoF Time (min)
Memory 
(GB)TriMES (m) TriGR

Thickness of 
the first layer 
(m)

PriGR/
TetGR

10

Hybrid mesh 120 1.5 15 1.0/1.5 39,112 402,554 6.7 40.9

General tetra-
hedral mesh 120 1.5 120 1.5 53,403 414,966 6.483 41.62

Dense tetra-
hedral mesh 50 1.5 50 1.5 101,733 786,072 8.683 62.7

20

Hybrid mesh 120 1.5 15 1.5 37,873 394,195 6.417 40.07

General tetra-
hedral mesh 120 1.5 120 1.5 55,327 430,114 7.567 43.07

Dense tetra-
hedral mesh 50 1.5 50 1.5 112,294 867,347 10.483 71.2

30

Hybrid mesh 120 1.5 15 1.5 35,659 350,706 4.467 32.63

General tetra-
hedral mesh 120 1.5 120 1.5 65,500 508,124 9.867 55.29

Dense tetra-
hedral mesh 50 1.5 50 1.5 116,996 903,361 12.817 79.18
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Figure 13.  For the sloped terrain model, when the tilt angle changes, the MT response results of the xy 
component are calculated by different meshes. (a1), (b1) and (c1) represent the calculation results of the 
apparent resistivity, and (a2), (b2) and (c2) represent the calculation results of the phase. (a), (b) and (c) 
represent the calculation results when the tilt angle is 10, 20, and 30 degrees, respectively.
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applicability to general types of geoelectric models. A hybrid mesh can build an FE system matrix with fewer 
DoFs and obtain high accuracy in the solutions. Its superiority has also been verified in the example of terrain 
relief models.

The triangular prism elements have the flexibility of horizontal refinement, which is controlled by the tri-
angular elements. It also has stability in terms of the element quality because the rectangular elements are not 
affected by the aspect ratio. We believe that application of this type of hybrid mesh is not limited to MT forward 
modeling but can also be useful to other geophysical electromagnetic calculation problems.

Figure 14.  For the sloped terrain model, when the tilt angle changes, the MT response results of the yx 
component are calculated by different meshes. (a1), (b1) and (c1) represent the calculation results of the 
apparent resistivity, and (a2), (b2) and (c2) represent the calculation results of the phase. (a), (b) and (c) 
represent the calculation results when the tilt angle is 10, 20, and 30 degrees, respectively.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Appendix A
Shape functions of triangular prism element. The vector edge-shaped functions of the triangles are 
chosen as the Whitney-1 form basis  function46,47 and can be represented as W . The corresponding edge is deter-
mined by the node number indicated by the subscript W . Two nodes at both ends determine the edge repre-
sented by W . W can be expressed as:

where ξi (i = 1, 2, 3) is a plane triangle nodal shape function established by Lagrangian interpolation. The Whit-
ney-1 shape function represents the area coordinates of the triangle element. ∇ξi (i = 1, 2, 3) represents the gra-
dient vector of the triangular element. The calculation of these shape functions can directly refer to the element 
analysis of triangular elements in the two-dimensional case, but the three-dimensional shape function of the 
triangular prism cannot refer to the two-dimensional case. The local coordinate ξ(Fig. 2) in the height direction 
needs to be added to the shape function.

The vector edge-shaped functions for the bottom triangle edges (bottom vector functions) can be expressed as:

The vector edge-shaped functions for the top triangle edges (top vector functions) can be expressed as:

The vector edge-shaped functions of the rectangle edges (volume vector functions) can be expressed as:

(33)
W23=ξ2∇ξ3 − ξ3∇ξ2
W31=ξ3∇ξ1 − ξ1∇ξ3
W12=ξ1∇ξ2 − ξ2∇ξ1

(34)
N1=(1− ζ )W23

N2=(1− ζ )W31

N3=(1− ζ )W12

(35)
N4=ζW23

N5=ζW31

N6=ζW12

(36)N7=ξ2∇ζ N8=ξ3∇ζ N9=ξ1∇ζ

Figure 15.  Three-dimensional geoelectric model with complex undulating terrain. (a) represents the 
undulating terrain and the two survey lines. (b) represents the whole three-dimensional  model40.

Table 5.  Parameters of different meshes for the terrain relief model.

Mesh property

Horizontal size Vertical size

NE DoF Time (min) Memory (GB)TriMES (m) TriGR
Thickness of the 
first layer (m) PriGR/TetGR

Hybrid mesh 100 1.5 15 1.0/1.5 53,108 500,815 6.617 44.4

General tetrahe-
dral mesh 100 1.5 80 1.34 65,667 508,996 7.033 47.58

Dense tetrahedral 
mesh 25 1.5 20 1.5 135,669 1,046,150 16.833 97.45
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The scalar node-based shape functions of the triangular prism element are:

Shape functions of the pyramid prism element. The vector edge-shaped functions for the bottom 
rectangle edges can be expressed as:

where Nprepresents the vector shape function of the pyramid element and Np represents the node shape function 
of the pyramid element. The expression of the vector shape function of the bevel of the pyramid element  is48,49:

The scalar node-based shape functions of the pyramid element are:

(37)Ni =

{

(1− ζ )ξi i = 1, 2, 3

ζ ξi i = 4, 5, 6
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Figure 16.  MT response calculation results of different meshes on survey line 1 to the terrain undulation 
model. (a) and (b) represent the MT response of the xy and yx components, respectively. (a1) and (b1) represent 
the apparent resistivity, and (a2) and (b2) represent the phase results.
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