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Predicting efficacy of drug‑carrier 
nanoparticle designs for cancer 
treatment: a machine 
learning‑based solution
Md Raisul Kibria 1*, Refo Ilmiya Akbar 1, Poonam Nidadavolu 1, Oksana Havryliuk 1, 
Sébastien Lafond 1,2 & Sepinoud Azimi 1,2

Molecular Dynamic (MD) simulations are very effective in the discovery of nanomedicines for treating 
cancer, but these are computationally expensive and time‑consuming. Existing studies integrating 
machine learning (ML) into MD simulation to enhance the process and enable efficient analysis cannot 
provide direct insights without the complete simulation. In this study, we present an ML‑based 
approach for predicting the solvent accessible surface area (SASA) of a nanoparticle (NP), denoting its 
efficacy, from a fraction of the MD simulations data. The proposed framework uses a time series model 
for simulating the MD, resulting in an intermediate state, and a second model to calculate the SASA in 
that state. Empirically, the solution can predict the SASA value 260 timesteps ahead 7.5 times faster 
with a very low average error of 1956.93. We also introduce the use of an explainability technique to 
validate the predictions. This work can reduce the computational expense of both processing and data 
size greatly while providing reliable solutions for the nanomedicine design process.

Cancer is a complicated disease caused by abnormal cell growth due to genetic reasons. The severity and societal 
impact of the disease, along with the fact that effective therapeutics do not exist for many types of cancer, have 
resulted in cancer therapy being a key area of research for decades. Traditionally, the treatment of cancer has 
been based on chemotherapy, combination therapy, and radiation therapy, which are effective in some cases, but 
the toxicity introduced to other normal cells limits the use of these treatments. In contrast, nanotherapeutics 
provide a more targeted and less invasive alternative. This use of controlled drug delivery has several advantages, 
including lower dose requirements, greater control over toxicity, and bioavailability of  doses1–3. The active tar-
geting of tissues is performed using special homing devices, called ligands, with functionalized drug molecules 
encapsulated within the particle. Apart from this, a large number of other components, such as the size, chemical 
structure, and delivery method, are involved in the design process of these nanodrug  carriers4.

A typical nanoparticle (NP) consists of two or three basic layers: the surface, the shell, and the core. Each 
layer can vary in physicochemical properties such as the shape, size, porosity, hydrophobic properties, or ele-
ment  combinations5. As cell-binding moieties, several agents, such as carbohydrates, vitamins, peptides, and 
proteins, have been shown to work well. Consequently, the process of designing an NP boils down to a rich set 
of chemical problems with a large number of parameters to explore. Moreover, the particle efficacy is intricately 
connected to the chosen design  specifications6–9. This therapeutic efficacy is characterized by the delivery of 
the drug molecules to their target destinations, as after exposure, they may quickly dissolve before reaching the 
 destination10. Often, different statistics derived from configurations such as the solvent accessible surface area 
(SASA) provide a good understanding of the efficacy and bioavailability of drugs in a certain  state11. The SASA 
is designated as the region of the molecule surface exposed enough to be able to interact with solvent molecules. 
Hence, the design of an NP must constitute the physicochemical properties that lead to a higher SASA value 
through their biological  interactions12. However, exploring the vast parameter space and identifying designs with 
target characteristics is a large limitation both in terms of time and cost.

A more efficient and reliable way to find a good design is to use molecular dynamics (MD) simulations. 
Through MD simulations, hundreds of atoms with biological relevance can be included in a design, such as 
entire proteins in a solution with explicit solvent representations, membrane-embedded proteins, or large mac-
romolecular complexes such as nucleosomes or ribosomes. MD simulations allow in silico modelling of the 
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cellular uptake and intracellular trafficking of NPs. In addition, these models provide data for monitoring NP 
interactions as they enter and exit a cell, which are difficult to calculate  otherwise13. Internally, simulations 
make use of the forces acting on every atom. This can be obtained by deriving complex equations and deducing 
the potential energy from the molecular structure. However, the complex equations of MD simulations create 
two principal  challenges14. The first challenge is to derive the potential energy for the system. There is a need 
for further refinement because the simulations are poorly suited to certain systems. The second challenge is the 
high computational demand of the simulations, which prohibits routine simulations with lengths greater than 
a microsecond. This leads to an inadequate sampling of conformational  states15.

One way of accelerating MD simulations to take advantage of advanced hardware technologies such as 
graphics processing units (GPUs)16–18. A GPU provides higher performance than a single CPU core in terms of 
increased speed and overall processor utilization. However, GPUs lack the flexibility in their hardware architec-
tures to implement all MD simulation algorithms. Extensive rework and optimization must be applied depending 
on the specific algorithm to enable it to work efficiently on these specialized pieces of hardware.

The limitations of hardware architecture can be resolved using machine learning (ML) during the devel-
opment of MD simulations and molecular modelling. Wang et al. reviewed the use of ML-based methods to 
analyse and enhance MD  simulations19. The first use of ML was to analyse the high-dimensional data produced 
by MD simulations through the use of artificial neural networks (ANNs). Different forms of ANNs can be used 
to produce latent vectors in a low-dimensional feature space from trajectory data. This enables an efficient way 
of evaluating the equilibrium and dynamic properties of  systems20–28. Another set of studies focuses on the 
active involvement of ML-based techniques during the simulation process to improve the sampling time and 
 capacity29–47. However, for both objectives, model interpretability or model transferability to new systems poses 
a challenge. Another recent work implemented distance-based ML algorithms to simulate the atomistic interac-
tions of a Au38(SCH3)24 nanocluster. The presented solution involves the use of transformation techniques to 
convert atomic coordinates into vectors of atomic interactions through descriptors that can be directly used with 
ML models. A Monte Carlo strategy was used to evaluate the energy landscape learned through the ML models 
and showed great results. However, the models were trained solely with Au38(SCH3)24 nanoclusters and focused 
mainly on a faster configuration space probing method. Hence, a study that can predict some target metrics for 
NP designs, such as the SASA value, without running MD simulations over a longer period and is generalizable 
to new systems holds much significance.

In this study, we propose a twofold approach. On the one hand, the issue of applicability of models to new 
NP designs is tackled, and on the other hand, using explainable AI provides a way to interpret the results. The 
proposed solution consists of three steps: transforming the data, using a hybrid ML network to predict the SASA 
value at a specified timestep, and using feature importance to explain and validate the results. Experimental 
atomic coordinate data for different NP designs are derived from MD simulations and are transformed using 
the many-body tensor representation (MBTR) descriptor, which reduces the data size and complexity, as well as 
reflecting interatomic interactions between pairs of elements. We present a combined ML system that consists 
of a time series model used to simulate the MD interactions over a specified period and a second deep neural 
network (DNN)-based model to calculate the SASA metric from the intermediate state. Feature importance is 
calculated using SHAP values to reflect the contribution of each element pair’s interactions. In this paper, we 
show that ML methods can be used to substantially reduce the cost of NP simulations and, consequently, provide 
an efficient assistive tool for exploring the NP design space. This work is a novel study of predicting the SASA 
as a representative example; however, the approach can be generalized to a wide range of other properties and 
different molecules as well. In addition, we introduce a way to provide explanations for the models that increases 
both the reliability of the model and can give insights into better NP designs.

Results
The data used in this study are snapshots from MD simulations involving NP designs functionalized with 9 
different drug types (see Table 3). These snapshots were taken over a range of variable periods at a rate of one 
snapshot per nanosecond. Specifically, 64 NP designs were recorded over 300 ns, 32 were recorded over 200 ns 
and 23 were recorded over 120 ns. These snapshots contain the Cartesian coordinates of the atoms in the systems 
along with other information and represent how the atom movements are dictated by the environment. We first 
transform these data into vector encoding by extracting design-specific global properties through MBTR descrip-
tors. As a result, the data become manageable and compressed with only ( nfeatures = ) 72 features representing 
each state. In order to apply ML models for the prediction of SASA values at future timesteps, the proposed 
solution combines two different models, each responsible for a part of the overall objective, as illustrated in the 
proposed workflow in Fig. 1. These are: 

1. Time series model: This model is used to learn the inherent properties from a fixed window of MBTR vectors 
that influence atomic interactions during the period. This learned pattern is used to forecast future MBTR 
vectors and used in a sliding window mechanism until the vector for the specified time is predicted. Hence, 
this model enables the approximation of the state of an NP at any given point in time in the future.

2. SASA model: To calculate the SASA value by exploiting the transitive property between the atomic coordi-
nates and the MBTR vectors, we use a second model. This model predicts the |SASA�t�| = P(θ |V �t�

MBTR) value 
for any particular timestep, t, where θ is the learned parameter.

The data are split into training and test sets with a ratio of 80:20, which translates to 107 designs in the train-
ing set and 12 in the test set. During the splitting, the order in time for the data of each design is preserved for 
the models to capture the sequential properties. The range of SASA values for different designs varies greatly; 
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hence, the test set is manually chosen to have representative samples from different ranges in the dataset. Each 
of the 12 designs in the test set along with the whole training data is depicted in Fig. 3a by taking the minimum 
and maximum SASA values over the whole period.

Time series prediction. As discussed in the “Methods” section, we experiment with two approaches for 
time series prediction. Both approaches process the input data based on a sliding window method, and the win-
dow size dictates how long the simulations run before a solution can be used. The first approach is a transformer 
model using multivariate MBTR vectors as input to predict the next timestep’s MBTR. The transformer model is 
used because the self-attention mechanism of the model is suitable for effectively approximating the interatomic 
interactions. The model achieves a mean absolute error (MAE) value of 40.16 on the test set for 3120 test samples 
for a fixed window size of 40. Here, we use the MAE as the error metric since it provides a linear score for devia-
tion from the original value in a compact scale. The final MAE values are much higher than expected, which 
can be attributed to the smaller size of the dataset for such a large model. Hence, we use the second approach to 
minimize the error values with the same amount of data.

As the next method, an ensemble approach is trained using 72 separate XGBoost  models48, with each model 
predicting the value for the next timestep of each feature. The outputs from each model are then concatenated 
to produce the final vector for that timestep. The results of how different values of window size influence the 

Figure 1.  ML-based hybrid solution for the prediction of SASA values (a) Atomic coordinates for different 
NP designs derived from MD simulations in an aqueous environment. These data are in Protein Data Bank 
(PDB) format with other information such as the respective residues. (b) ML usable MBTR representation of 
the data extracted through a geometric function of pairwise distances between elements. (c) Time series model 
to accomplish the task of simulation and SASA model for the calculation of the target label. (d) A predefined 
batch of data can be used to forecast changes in the SASA. An optimal value for the size of this predefined batch 
can be set with consideration to the simulation costs for generating them and the error threshold (see Table 1). 
Although both the input and output of the models are the MBTR vectors except the final output, the graph 
represents the input-output relationship only.
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outcome of the ensemble approach are presented in Table 1, and in all cases, the MAE value is comparatively 
much smaller and suitable for the solution. The best achieved MAE of 1.57 is for the smallest tested window 
size of 10.

Figure 2a shows the bar plot representation of the predictions using the ensemble approach and the trans-
former model for a randomly sampled test data, respectively. Figure 2b shows a detailed bar plot representation 
of the MAE for each model from the ensemble approach.

From the predictions, it can be seen that the XGBoost models provide better accuracy than the transformer 
model. From Fig. 2b, we can see that most of the features in the ensemble approach produce below average MAEs. 
There are 8 features that have above average MAEs, while only 4 features out of the 72 have an MAE above 10.

With these results, we used the ensemble approach as the time series predictor for the combined solution. 
Additionally, as this approach uses a classic ML algorithm, it is robust to smaller dataset sizes.

SASA prediction. To determine the best performing deep neural network model for this task, models with 
different architectures are evaluated. Keeping the number of layers and activation functions the same, we experi-
mented with different numbers of neurons in the feedforward network. The model with 512 neurons in each 
hidden layer had an MAE value of 6265.85, whereas the model with 128 neurons had a higher MAE value of 
6810.92. In contrast, the model with 256 neurons in each hidden layer had the best performance, with an MAE 
value of 936.42; hence, it is used as the base model.

Both the MBTR vectors and the SASA values of the NP designs for each timestep were stacked vertically 
for the training and testing datasets. Figure 3b illustrates the predicted and expected SASA values that change 
continuously for 300 iterations of different designs in sequential order.

(a) Sample predictions by ensemble approach and transformer model

(b) Ensemble approach MAE for each feature

Figure 2.  Time series model performance. (a) A scalar value predicted by each model from the ensemble 
approach and multivariate prediction by the transformer model for a sample data pair of the NCL11 NP design 
from the test set. The differences between the heights of the bars representing the predictions and the ground-
truth values indicate the prediction errors. (b) MAE for each XGBoost model from the ensemble approach over 
the whole test set. The dashed line represents the average error across all features.
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The model can learn the range of SASA values for each design and how the SASA values decrease over time. 
The model can generalize well to new or unseen data as well. As seen in Fig. 3b, after encountering a new design 
every 300 iterations, the model quickly adapts to changes in the SASA.

Combined inference. As the SASA value takes an uncertain amount of time to reach a stable range, the 
duration for MD simulations has to be predefined to a maximum value during which all NPs are expected to 

Figure 3.  (a) The distribution of NP designs in the training and the test set based on the minimum and 
maximum SASA values. Each dot represents test data for a particular NP design, with the letters of the 
design name referring to the drug type and the remainder being a unique identifier. The training samples are 
represented by triangles and grouped by their sizes. (b) Visualization comparing the real and predicted SASA 
values of different NP designs (separated by dashed lines) from the test set over 300 iterations each. The blue line 
represents the actual SASA value, and the grey line represents the predicted SASA value.

Table 1.  The impact of different window size values, ws.  The lowest values are in bold.

Window size, ws Training time for ensemble approach (s) Ensemble approach MAE errorSASA

10 44.60 1.5692 2128.62

20 46.46 1.6124 2172.40

40 49.63 1.7294 1956.93

60 59.97 1.7781 2399.88

80 63.48 1.7955 2298.94
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reach that state. Reflecting the same property, inferences in the proposed solution can be made for a given 
amount of time, which is achieved by running the time series model ssteps = t − ws − 1 times, where t is the target 
timestep. We start the combined inference with the MBTR vectors of the initial timesteps for a fixed window 
size and use the proposed workflow to predict the SASA value at the 300th timestep. Different window sizes, 
ws , are tested, the same as those for the time series model, and the results are evaluated by comparing the actual 
SASA value at the 300th timestep for the design and the predicted value using Eq. (1). The comparative results 
are demonstrated in Table 1.

where k refers to the number of NP designs in the test set, t is the final timestep for that design, yi is the ground-
truth and ŷi is the predicted value for the ith design.

From Table 1, it can be observed that although the MAE for the time series model is smallest in the case of a 
smaller window size, the best score for the combined inference is achieved with a window size of 40. Hence, we 
use this value for comparing the outputs for the test set designs with respect to ground-truth values acquired by 
MD simulations, and the results are presented in Table 2.

It can be observed from Table 2 that the predictions are very close to the SASA values achieved through 
running MD simulations for the whole duration. As a result, the potential of the model is large, especially con-
sidering the computing and resource expenditures of acquiring the values through MD simulations for a large 
number of NP designs.

Explainable AI prospects. To establish the reliability of the results, we use SHapley Additive exPlanations 
(SHAP)49. It is applied to our model to obtain the importance of the atomic interactions that greatly affect the 
model’s output, i.e., the SASA value. From the results of the proposed approach, we can observe a strong cor-
relation between the MBTR descriptors and the corresponding SASA values. This indicates that the interatomic 
distances can impact how the NP evolves.

Since the same structure from different residues may have different effects on solubility, the whole drug-carrier 
system is not suitable for determining feature importance . For example, Panobinostat-based and Quinolinol-
based NPs have opposing properties: Panobinostat is a hydrophilic (attracted by water) drug, whereas Quinolinol 
is hydrophobic (repels water), which have different impacts on the resulting SASA  value7. As the drugs have the 
same groups consisting of the same elements, using the relation between interatomic distances created by the 
MBTR and their SASA values is insufficient for explanations. For this reason, we generated MBTRs and built a 
separate model for each residue. In our approach, we focus on explanations for each residue to provide the pair of 
elements within them, which can result in a higher SASA value, as opposed to elements that are less significant.

For example, for the drug residue from Panobinostat-based NPs (Fig. 4), it can be observed that pairs of 
hydrogen atoms and carbon atoms are very important in terms of how steady the molecules on the surface are. 
The graph shows both positively and negatively affecting element-pairs. Positive interactions can lead to an 
increase in the SASA value, whereas negative interactions can lead to a decrease. The phenomenon of hydrogen 
atom pairs having such a large impact may be because the more spread the hydrogen atoms are, the greater they 
can create hydrogen bonds with the solvent molecules. In contrast, as the carbons exist mainly in long chains, a 
relatively higher distance may indicate folding, which reduces solubility.

(1)errorSASA = 1

k
×

k
∑

i=1

|ŷ�t�i − y
�t�
i |

Table 2.  Comparison between the predictions for the test set and the ground-truth values. Both the 
predictions and the actual values are for the 300th timestep of the test set designs. aThe change is the ratio 
between the SASA value at the target timestep ( t = 300 ) and the initial SASA value ( t = 0 ) for the design.

Design name Predicted SASA Predicted changea  (%) Actual SASA Actual changea  (%)

GEM11 78,390.13 86 74,784.69 82

GEM41 83,150.56 86 80,337.07 83

NCL11 62,458.61 86 63,675.28 88

NHQ51 59,342.53 80 60,745.86 82

OQL113 67,595.29 92 66,567.95 91

OQL13v23 71,308.36 93 75,432.52 98

PAN11v23b 77,509.73 82 74,523.94 79

PAN14v23 75,104.65 90 76,080.15 91

PAN313 83,197.91 78 82,504.89 77

S1_11R23 67,374.14 95 68,690.32 97

S1_11R43 67,374.28 95 64,980.52 91

S1_153 74,141.72 99 75,070.26 101



7

Vol.:(0123456789)

Scientific Reports |          (2023) 13:547  | https://doi.org/10.1038/s41598-023-27729-7

www.nature.com/scientificreports/

Discussion
Due to the wide range of biochemical and physicochemical properties of NPs and the expensive in vivo testing 
process, computational solutions (often MD simulations) are more feasible and precise for the study of NPs in 
anti-cancer  treatment50. This work has been developed within an application scenario defined in the H2020 
project EVO-NANO. The overall project scenario was to perform in silico NP design evaluations (MD simula-
tions) before the synthesis of selected NPs, the evaluation of the designs via in vitro experiments using vascular 
microchips, and finally in vivo experiments using mouse cancer xenografts in which biodistribution, efficacy, 
and toxicity of the designs can be validated. Although computational methods provide a faster way to transition 
from the laboratories to the clinical field, they have the bottleneck of high computational resource and time 
requirements that limit the experimental possibilities. The work presented in this paper focuses on the in silico 
step and proposes an approach to accelerate the evaluation of NP designs by predicting the stable state without 
the need to execute complete MD simulations.

The most significant contribution of this work is that it addresses the limitations of MD simulations and pro-
vides a scalable solution. It presents the opportunity of eliminating NP designs that do not possess the expected 
properties from the large pool of designs. As a result, a selective number of drug-carrier systems can be chosen 
with the largest efficacy values for further assessment. It takes several days to complete an NP simulation over 
300 ns using high-performance computing resources, while the approach discussed in this research takes less 
than ten minutes to complete, starting from the input batch. Hence, if ws = 40 is used, the time gain is approxi-
mately 7.5 times (300ns simulation time / 40ns simulation time) for a simulation period of 300ns. The cost of 
the computation can also be solved since the trained model can be used to predict the stable state of the NP 
design within a very short amount of time, while the simulation steps are adjustable. Real case studies on the use 
of automated learning method-based prescreening processes have already shown to be feasible and  accurate51, 
whereas the target variable, SASA, has been observed to be effective for comparative analysis between different 
configurations of  NPs7. In addition, this approach can be adapted to other related applications where certain 
properties must be monitored, such as hydrophobic/hydrophilic  properties52.

In drug discovery, explaining decisions made through ML models is crucial, especially based on the impact. 
Some of the most important properties of such explanations are transparency—to understand the rationale behind 
the predictions, justification—the reasoning behind the acceptance of the outcomes, and  informativeness53. An 
explainable outcome not only establishes the credibility of the results through validation of what is expected 
but can also be used in the reverse way to find any association between the molecular structure and the phys-
icochemical properties. We use local explainability techniques and demonstrate feature importance for a subset 
of the problem to achieve transparency. The effect on the target property for relative interatomic distances may 
not be directly applicable in the design process, but it can be used to establish new insights into the relationship 
between molecular structure and the target property. Moreover, information can be expanded by breaking down 
the problem into finer pieces and observing the model’s behaviour from every perspective.

A limitation of this work is the limited availability of the training data. Having varied data with different 
SASA ranges can enhance the model performance. Currently, the model has been trained with 107 different 
designs, and having exposure to new designs can help the model generalize more. Another limitation is the 
use of the MBTR descriptor, which encodes the whole NP structure into a simpler form at the cost of informa-
tion loss. In the future, instead of working with a single descriptor, implementing a combination of different 
descriptors can help summarize the complex structure in a concise form without losing any properties of the 

Figure 4.  Feature importance graph for the Panobinostat residue from 14 NP designs that carry the drug. The 
element pairs are put in decreasing order by importance starting with the most influential one. The red and blue 
colours indicate positive or negative impacts on the resulting SASA value, respectively.
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NPs. Additionally, we have explored explainability in this work in a limited scope and demonstrated that the 
potential of such techniques in this area is very large. However, the relative distances between atoms are not 
configurable; hence, they cannot be translated to design decisions. As a future recommendation, explanations 
can be expanded in a way that every structure from an NP design can be thoroughly assessed and can directly 
influence the design decisions. This can be achieved by extracting a hierarchy of properties, for instance, the ratio 
of drug to background molecules, the number of residues, and the size of the NP and the core, and evaluating 
the target characteristics against those.

Methods
In this section, we discuss the data used for this study, the transformation technique, and the proposed models 
in detail. This study did not require ethical approval.

Data description. The data we use in the project are derived from MD simulations which are generated 
using AMBER19  software54. In these simulations, the initial energy of the systems was minimized, and then the 
temperature was increased to 300 K. The MD simulations were run for one NP design at a time and stored in 
PDB format, which is a standard for files containing atomic coordinates. A PDB file contains information about 
elements used in the system, atomic coordinates in (x, y, z) format, and residue names. A simulation was run for 
some predefined time, which in this case was 300, 200, and 120 ns. When the MD simulations for a particular 
NP design were being run, the PDB files were extracted at 1 ns intervals. An example of simulation states in the 

beginning, middle, and end of the simulation is shown for a Panobinostat drug-based NP design in Fig. 5.
A gold (Au) core is used in each of the systems, as it provides a low toxicity level and inertness and is easy to 

produce. The systems are designed with one of 9 different drug types, which can be classified either as hydropho-
bic or hydrophilic with respect to each other. These NPs are functionalized through ligands such as polyethylene 
glycol, dimethylamino, and amino groups. The systems contain 6 or 7 unique elements, including Au, S, H, C, O, 
and N, and can additionally contain F or Cl. Apart from the drug molecules, other residues are used in combina-
tions of 5–7 different types per NP. The drug-forming residues are described in Table 3.

A comprehensive discussion on how the NPs were designed for this experiment along with how the simula-
tions were conducted is presented in the study by Kovacevic et al.50 For calculating the ground-truth total SASA 

(a) Beginning (1st NS)  (b) Middle (151st NS)  (c) End (300th NS)

Figure 5.  Simulation figure for a design containing the drug Panobinostat, generated using  ChimeraX55. The 
purple portion depicts the drug molecules around the surface.

Table 3.  Description of the drug-forming residues. aThis property is not absolute; hence, it is determined 
based on whether the molecules are more hydrophobic or hydrophilic.

Residue Chemical identity Hydrophobicitya Elements

CY5 CY5 Hydrophilic O, C, H, N

DOX Doxorubicine Hydrophilic O, C, H, N

GEM Gemcitabine Hydrophilic O, C, H, N, F

NCL Niclosamide Hydrophobic O, C, H, Cl, N

NHQ Quinolinol Hydrophobic O, C, H, N

PAN Panobinostat Hydrophilic O, C, H, N

WYC Wyc-215 Hydrophilic N, H, C, O, S

ZIL Zileuton Hydrophobic O, C, N, H, S

ZOR Zorac Hydrophobic N, H, C, O, S
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values of the corresponding timesteps for each of the NP states represented by the PDB files, Visual Molecular 
Dynamics (VMD) program was  used56.

Transforming the data using descriptors. To make the data suitable for application to an ML algo-
rithm while keeping the representations computationally inexpensive and robust to rotations, permutations, 
and translations, we use MBTR descriptors. An MBTR is a global descriptor that provides a unique representa-
tion for any single  configuration57. Each system is divided into contributions from different element pairs and 
described using relative structural attributes. In this work, to extract a single value conforming to a particular 
configuration of k atoms, we use an inverse distance-based geometric function, g2 , as in Eq. (2). The structure is 
then represented by constructing a distribution, P2 , of the scalar values using kernel density estimation with a 
Gaussian kernel. The theoretical underpinnings of the descriptor are expressed in Eq. (3).

where Rl and Rm , refer to the Cartesian coordinates of atoms l and m, respectively, and g2 is derived from the 
reciprocal of their Euclidean distances. As the distributions are calculated for a set of predefined values of x and 
standard deviation σ2 , each possible pair of the k-species present has multiple such values. These are combined 
into a singular value by taking the weighted average for each of these pairs, as expressed in Eq. (4).

where Z1 and Z2 are the atomic numbers for atoms l and m, respectively, and w2 is the weighting function.
We use the DScribe implementation of the originally proposed  method58. The exponential weighting function 

(w2 = e−sx) is used to keep the distributions tightly limited to atoms that reside in the neighbourhood. For that, 
a cut-off threshold of 1× 10−2 and a scaling parameter of 0.75 are  used8. A key parameter of the implementa-
tion, ngrid , refers to the number of discretization points and, in turn, determines the total number of features in 
the resulting vectors through Eq. (5). To determine its optimal value, we observe the correlation between the 
resulting vectors, MBTRngrid , for different ngrid and the corresponding SASA values according to Eq. (6). These 
correlation scores are presented in Table 4.

where nelements is the number of total elements encountered throughout the descriptor generation process; here, 
nelements = 8.

where, k is the number of features and n is the number of samples used for the evaluation of C2.
From Table 4, we can observe that the correlation scores do not vary much for different values of ngrid . How-

ever, as the lowest possible value of 2 for the parameter achieves the highest score while producing the smallest 
representation, it is chosen for this work.

Time series model. For the time series model, we use two approaches: the first is based on a transformer 
model, while the second approach implements an ensemble of XGBoost models.

Transformer model. A transformer is a model architecture whose structure combines an encoder and decoder. 
For this work, we use the encoder part of the model taking a batch of data with a fixed window size as input 

(2)g2(Rl ,Rm) =
1

|Rl − Rm|

(3)P2
l,m(x) = 1

σ2
√
2π

e

(x−g2(Rl ,Rm))2

2σ22

(4)MBTRZ1,Z2
2 (x) =
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∑

l

|Z2|
∑

m

wl,m
2 × P2

l,m(x)

(5)nfeatures =
nelements × (nelements + 1)

2
× ngrid
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∑
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∣

∣

∣

∣

∣

k
∑
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∣
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∣
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Table 4.  Correlation to SASA for different values of ngrid.  The maximum value is in bold.

ngrid value Number of features, nfeatures Correlation score, C2 (%)

2 72 45.22

3 108 42.17

4 144 43.85

5 180 44.39

6 216 43.73
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and outputting the multivariate vector of the MBTR corresponding to the next timestep. The architecture of the 
model is illustrated in Fig. 6a.

In this work, a multi-head attention mechanism is used with 12 heads, the size of each attention head is 
256, and the dropout probability is 0.25. The normalization layer uses ε = 1× 10−6 to normalize the input. 
The feedforward layer consists of a normalization layer, a 1-D convolutional layer, a dropout layer and another 
1-D convolutional layer. The normalization layer and the dropout layer inside the feedforward layer use the 
same 1× 10−6 and 0.25 for the ε and dropout probability, respectively. The first convolutional layer uses a ReLU 
activation layer with a kernel size of 1 and filters it into 4 outputs. The second convolutional layer also uses a 
kernel size of 1 and provides 1 output.

Input

Multi-head Attention

...

Add & Norm

Feed Forward

Add & Norm

Feed Forward

...

Dropout

Dropout

Outputs

(N, Ws, nfeatures)

(nfeatures)

Transformer
encoder

x72

x1

x2

n1

n2

n3

n256

m1

m2

m3

m256

Linear
Predicted

SASAk

MBTRk of one

timestep

p1

p2

p3

p256

Input layer Hidden layer 1 Hidden layer 2 Activation

function

Input Feedforward Neural Network Output

i1

i2

i72

Hidden layer 3

(c)

(a) (b)

Figure 6.  (a) Block diagram of the transformer model. Four different layers are used in the transformer 
 model59. Multi-head attention allows the model to jointly attend to information from different representation 
subspaces at different positions. The dropout layer prevents overfitting, the normalization layer improves the 
training speed for various neural network models, and after normalization, the results are added to the input. 
The feedforward layer is a nonlinear mapping from an input pattern x to an output vector y. (b) Block diagram 
of the ensemble approach. The MBTR vector batches are split for each of the features, and all 72 subsets of data 
are used with an XGBoost regression model. The predictions from each model are then combined to produce 
the nfeatures-length output. (c) Block diagram of the SASA model. The 72 MBTR features at timestep k are 
passed to the i nodes of the input layer. The information in the input layer nodes is then passed to all the nodes 
of the hidden layers with p, n and m nodes interconnected in such a way that each node in the current layer is 
connected to every other node in the previous layer. The output is a single scalar value representing the SASA at 
timestep k.
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The model is trained by taking a window, ws , and all the features, nfeatures , from each design in the training set 
and then combining them to predict the next nfeatures-length vector at the next timestep. For instance, providing 
the MBTR representing the first 40 timesteps of the MBTR as input will produce the MBTR for the 41st timestep 
by evaluating the learned pattern from the training dataset. This model takes 1378.5 s for training on a Tesla P100 
PCIe 16 GB GPU with 28 2.4 GHz Intel Broadwell CPU cores and 230 GB of RAM.

Ensemble model. The second approach is described as an ensemble approach with an XGBoost regressor, by 
creating one model for each feature. The model works by training a window, ws , of each feature to predict the 
next timestep’s value for the respective feature. The difference from the previous approach is that one feature of 
each design is taken to learn the pattern from it instead of taking the whole nfeatures as input. As a result, it pro-
vides better predictability of the MBTR. Moreover, on the same hardware as the transformer model, the training 
time of this approach is 20.73 times faster. The architecture of this model is shown in Fig. 6b.

For instance, providing the MBTRs representing the first 40 timesteps as input, the first model of the ensemble 
approach only predicts the value for the first feature. The function then iterates through the other features, and 
for each feature, the corresponding model predicts the value for the next timestep. Finally, all predicted results 
are combined into one MBTR vector for the target timestep.

SASA model. A limitation of using the MBTR is that the encoded data cannot be reverted to atomic coor-
dinates. Therefore, it is not possible to calculate SASA values from the MBTR directly. However, as ML has the 
potential to identify and understand hidden relationships, we use a feedforward neural network to predict the 
continuous values of the SASA from the encoded data. The MBTR as the input data represents the state of the NP 
at one timestep. The training and testing datasets are divided in the same way as the time series model.

The proposed network consists of 4 dense layers: (i) an input layer with 256 neurons and ReLU as the activa-
tion function, accepts 72 MBTR features; (ii) 3 hidden layers, each with 256 neurons and ReLU as the activation 
function; and (iii) an output layer using a linear activation function on a single neuron suitable for the regression 
task. For training, the model iteratively passes over the whole training set 500 times, with a batch size of 32, and 
optimizes using the Adam algorithm at a learning rate of 0.0001. The resulting value represents the predicted 
SASA. The performance of this regression model is evaluated using the MAE error metric to evaluate how close 
the predictions are to the expected values in either direction. The architecture of the model is shown in Fig. 6c.

Data availability
The transformed data, MBTRs for all the NP designs used in this experiment are available at: https:// github. com/ 
Evona no- Team/ evona no- ml/ tree/ master/ data/ proce ssed. PDB files of the NP designs can be provided from the 
authors on reasonable request.

Code availability
Code used in this project is available at: https:// github. com/ Evona no- Team/ evona no- ml.
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