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Double‑branch feature fusion 
transformer for hyperspectral 
image classification
Lanxue Dang 1,2,3, Libo Weng 1, Yane Hou 1*, Xianyu Zuo 1 & Yang Liu 1,2

Deep learning methods, particularly Convolutional Neural Network (CNN), have been widely used 
in hyperspectral image (HSI) classification. CNN can achieve outstanding performance in the field of 
HSI classification due to its advantages of fully extracting local contextual features of HSI. However, 
CNN is not good at learning the long‑distance dependency relation and dealing with the sequence 
properties of HSI. Thus, it is difficult to continuously improve the performance of CNN‑based models 
because they cannot take full advantage of the rich and continuous spectral information of HSI. This 
paper proposes a new Double‑Branch Feature Fusion Transformer model for HSI classification. We 
introduce Transformer into the process of HSI on account of HSI with sequence characteristics. The 
two branches of the model extract the global spectral features and global spatial features of HSI 
respectively, and fuse both spectral and spatial features through a feature fusion layer. Furthermore, 
we design two attention modules to adaptively adjust the importance of spectral bands and pixels 
for classification in HSI. Experiments and comparisons are carried out on four public datasets, and 
the results demonstrate that our model outperforms any compared CNN‑Based models in terms of 
accuracy.

Due to the advancement of current imaging spectrometry techniques, hyperspectral image (HSI) contains 
rich spectral and spatial information with high spectral and spatial  resolution1, so pixel-level classification 
can be  achieved2,3. HSI are widely used in many fields, such as atmospheric environment  research4, precision 
 agriculture5–7, and ocean  research8. However, there is a lot of redundant information in the spectral bands of 
HSI and the difficulty in obtaining samples of  HSI9 brings difficulties to the classification of HSI. In early studies 
of HSI classification, some machine learning-based approaches, such as  SVM10, k-NN11, and multilayer percep-
tron (MLP)12, were used for HSI classification. However, most of them focus on the spectral information of HSI 
without taking full advantage of the spatial information of HSI. Although some methods based on morphological 
 profiles13 and Gabor  feature14 are presented to extract spatial features, the classification accuracy is still unsatisfac-
tory. This is because these methods can only extract low-level features and the limited training samples of HSI.

The rapid development of deep learning techniques has brought the more diversified effective approaches for 
HSI classification. Deep learning follows an “end-to-end” design philosophy and can automatically extract linear 
and nonlinear features. Compared with traditional methods, which require a large amount of domain expert 
knowledge, deep learning methods can avoid designing manual features and improve the generalization ability of 
the model. Some deep learning-based models, such as Stacked Autoencoder (SAE)15, Recurrent Neural Network 
(RNN)16,17, and deep belief network (DBN)18, have been merged and successfully applied to HSI classification. 
Hang et al.17 proposed a model consisting of two RNN layers that can extract complementary information from 
non-adjacent spectral bands of HSI. RNN-based models can extract spectral features by considering the spectral 
dimension of HSI as a sequence, but they are prone to gradient vanishing, and difficult to learn long-distance 
dependency  relations19.

Convolutional Neural Network (CNN) can effectively extract the spatial features of HSI, due to its powerful 
ability to extract local contextual information. A lot of CNN-based models have appeared in recent years. Hu 
et al.20 firstly used CNN for HSI classification and proposed a 1DCNN-based model, which includes multiple 
1DCNNs and only considers the spectral features of HSI. Although the performance of 1DCNN-based model 
is poor, it has promoted the development of CNN-based models in HSI classification. Subsequently, a series of 
CNN-based models taking account of spectral and spatial features of HSI has been developed. Zhong et al.21 
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presented a 3DCNN-based model through a 3D convolution kernel to extract spectral-spatial features of HSI. 
Paoletti et al.22 designed a 2DCNN-based model based on deep pyramid  network23, which can improve the clas-
sification performance by stacking a large number of convolution kernels. Li et al.24 proposed a 3DCNN-based 
Double-Branch model, where the two branches extract spectral and spatial features of HSI respectively. Gao 
et al.25 proposed a small convolution and feature reuse (SC-FR) module by combining cascaded 1 × 1 convolu-
tional layers and cross-layer connections. There is only one 3 × 3 convolution in the model to extract spatial fea-
tures of hyperspectral images. Dang et al.26 proposed a dual-path and small-convolution-based module (DPSC) 
for the extraction of spatial and spectral features from hyperspectral images. Both of these models are based 
on small convolutions to build lightweight models. Chang et al.27 proposed a method based on a consolidated 
convolutional neural network (C-CNN) composed of 2DCNN and 3DCNN to learn the spatial-spectral features 
and abstract spatial features of hyperspectral images. Shi et al.28 proposed a model based on multi-scale feature 
fusion and double attention mechanism to extract features from hyperspectral images. Although the CNN-based 
models have made some progress in HSI classification, the performance of them is still insufficient. First, HSI 
usually contains hundreds of bands and the spectral characteristics of some ground objects are extremely similar. 
CNN is not good at learning long-distance dependency relations of spectral  bands29, and cannot accurately clas-
sify such objects. Secondly, the size of the convolution kernel in the CNN-Based model is usually small, and it 
is easy to extract the local features rather than the global features of the entire neighborhood pixel blocks. These 
problems cause the bottleneck of the CNN-based model in the classification of HSI. Improving the performance 
of CNN-based model in HSI classification becomes very important and meaningful.

The development of  Transformer30 techniques brings a new idea to HSI classification, which was originally 
used in the field of Nature Language Processing (NLP). Transformer is very effective at processing sequence 
 data30, which can extract global features of input data through a self-attention mechanism, and can better learn 
long-distance dependency relations of input  data31,32. Dosovitskiy et al.32 proposed the first Transformer-based 
model for computer vision, Vision Transformer(ViT), and achieved good results. This model extracts global 
features by segmenting the image into patches. We can apply Transformer to extract features of HSI by regarding 
HSI as a sequence. HSI can be regarded as sequences in two ways. One is that the spectral bands of HSI are rich 
and continuous, so the entire spectral bands can be treated as a sequence. The other is that the spectral vector 
of each pixel can be considered as a word vector in the NLP  field31, because of each pixel representing a ground 
object. However, simply applying the Transformer model, for example, vision transformer (ViT)32, into HSI 
classification still has many problems. First of all, segmenting the neighborhood pixel blocks with a fixed size 
like ViT makes it difficult to extract the low-level features of the input  data33. Next, segmenting neighborhood 
patches only in the spatial dimension still fails to learn long-range dependency relations for the spectral features 
of HSI.In view of this, this paper proposes a Double-Branch Feature Fusion Transformer (denotedas DBFFT) 
model for HSI classification. The proposed model adopts two branches to extract spectral and spatial features 
of HSI respectively. The spectral branch consists of a spectral attention module and Transformer encoder block. 
The spatial branch is made up of a spatial attention module and Transformer encoder block. In addition, a feature 
fusion layer is designed between these two branches to fuse spectral and spatial features. The outputs obtained 
by the two branches are fused by addition operation, and finally used for classification. The main contributions 
of this paper can be described as follows:

• The proposed model extracts the spectral features and spatial features of HSI respectively through a Double-
Branch structure. In the two branches, according to the sequence characteristics of hyperspectral images, 
Pixel-wise embedding and Band-wise embedding are adopted to effectively extract the long-distance depend-
ency relations of spectral dimension of HSI and the global spatial feature of HSI.

• We design a CNN-based spectral attention module and a spatial attention module, which can adaptively 
adjust the importance of spectral and spatial features of the input data, and extract rich spectral and spatial 
features.

• Our proposed model adopts label smooth techniques to alleviate the overfitting phenomenon of the model 
when the number of samples is small. In addition, we design a feature fusion layer to fuse the features 
extracted by the two branches to improve the performance of the model.

The remainder of this paper is organized as follows. In Sect. “Methodology”, we describe the details of our 
proposed model. In Sect. “Experiments results and analysis”, we present and analyze the experimental results, in 
addition to analyzing the factors that affect the performance of the model. In Sect. “Conclusion”, we give conclu-
sions and present directions for future work.

Methodology
Overview of the proposed model. We set the HSI to be a data cube with length S, width M, and number 
of bands C. We take each labeled pixel as the center and segment a 3D cube of size H ×H × C called the neigh-
borhood pixel block, where H is the length and width of the neighborhood pixel block, C represents the number 
of spectral bands of the HSI. We take neighborhood pixel blocks as input to the model to fully utilize the spectral 
and spatial information of HSI.

Figure 1 shows the overall structure of our proposed model. The model contains two branches to extract 
spectral features and spatial features of HSI respectively. We take the upper branch as the spectral branch and 
the lower branch as the spatial branch. The spectral branch consists of the spectral attention module and the 
Transformer encoder block. The spatial branch is made up of a spatial attention module and a Transformer 
encoder block. Inspired by  CrossViT34, we add a feature fusion layer between the two branches to fuse the spatial 
features and the spectral features.
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The spectral branch first uses the spectral attention module to extract the rich spectral features of the neigh-
borhood pixel blocks of size H ×H × C . Then the dimension of the spectral dimension is reduced from C to k 
to remove redundant information, and a new feature map of size H ×H × k will be gotten. We set k = 32. After 
that, the feature map is segmented according to the spectral dimension to obtain k patches of size H ×H , which 
are flattened and processed by linear projection to generate a sequence of shape (batch size, k + 1 , M ), where 
M represents the length of the vector in the sequence. This sequence will be used as input to the Transformer 
encoder block of the spectral branch. The spectral branch of our proposed model can utilize self-attention to 
extract global features, capturing the long-distance dependency relations of the spectral dimension.

The spatial branch first uses the spatial attention module to extract the rich spatial features of the neigh-
borhood pixel blocks of size H ×H × C to obtain a new feature map of size H ×H × C . The feature map is 
segmented by pixel, and H ×H vectors of length C are obtained and processed by linear projection to generate 
a sequence of shape (batch size, H ×H , M). Use this sequence as the input to the Transformer encoder block. 
The spatial branch can extract the global spatial features of HSI.

Finally, the outputs of the two branches are fused to fuse spectral features and spatial features. We will describe 
the abovementioned parts in detail in the following sections.

Depth‑wise separable convolution. As shown in Fig. 2, the depth-wise separable convolution consists 
of a depth-wise convolution layer and a 1 × 1 convolution layer. Depth-wise separable convolution can extract 
rich low-level features from HSI at the beginning of the entire attention module. Each convolution kernel in the 
depth-wise convolution only extracts spatial features in one spectral dimension. The 1 × 1 convolution fuses the 
features of different spectral bands to obtain a feature map. Since the spectral information of HSI is rich and 
redundant, the use of depth-wise separable convolution can reduce the redundant information of the extracted 
spectral dimension and the interference of redundant bands on feature extraction.

Figure 1.  The structure of the DBFFT. This model consists of two branches. The upper branch consists of a 
spectral attention module and Transformer encoder block to extract spectral features of HSI. The lower branch 
consists of spatial attention module and Transformer encoder block to extract spatial features of HSI.

Figure 2.  The depth-wise separable convolution consists of two parts: (a) depth-wise convolution. (b) 1 × 1 
convolution.
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Spectral attention module. The redundant spectral information of raw HSI data will interfere with the 
recognition of the model. Therefore, by processing the HSI with the spectral attention module, the influence of 
noise information on the model is reduced, and the redundant information of HSI is reduced. The framework of 
the module is shown in Fig. 3. We extract the pixel-centered neighborhood pixel block of shape H ×H × C as 
input, where H represents the size of the neighborhood pixel block and C represents the spectral dimension of 
the HSI. First, the low-level features of the neighborhood pixel blocks are extracted through two layers of depth-
wise separable convolution layers. Second, the spectral attention se ∈ R

1×1×C is generated by spectral attention 
to adjust the importance of each spectral band, and then the obtained feature map is fused with the original data 
to retain the original spectral and spatial features. Finally, the spectral features of the spectral dimension are 
fused through two 1 × 1 convolution layers with GeLU. The above process does not change the size of the neigh-
borhood pixel blocks, but it can reduce the spectral dimension and redundant spectral features.

The spectral attention mechanism can automatically adjust the importance of different spectral bands for 
classification and reduce the interference of useless bands to the model. Figure 4 shows the whole process of 
generating spectral attention. Inspired by SE-block35, our computational process for generating spectral atten-
tion se is defined as follows:

where E represents the obtained feature map after the neighborhood pixel block is processed by two depth-wise 
separable convolution layers, E

(

k, i, j
)

 represents the value of the position (i, j) of the k-th channel of the feature 
map E, havg represents the result of global average pooling, havg

(k)  represents the value of the kth channel of havg , 
and σ1 and σ2 represent ReLU and sigmoid activation functions, respectively. FC1 and FC2 are two fully connected 
layers. The first layer reduces the dimension from M to M/r, and the second layer increases the dimension from 
M/r to M. We set r to be 16.

After spectral attention se and feature map F1 are multiplied by band, the importance of different bands can 
be automatically adjusted.
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Figure 3.  The structure of the attention module. The input of this model is the neighborhood pixel patch of the 
original hyperspectral image, and the output is the feature map.

Figure 4.  Generate spectral attention. This module contains a global average pooling and a multilayer 
perceptron (MLP) consisting of two fully connected layers.
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Spatial attention module. Since we use the neighborhood pixel block as the input of the model, we usu-
ally regard the labels of all pixels of the neighborhood pixel block as the label of the center pixel. It will lead to 
the interference of the information of the pixels with different labels of the original center pixel to the  model36. 
Therefore, we use a spatial attention module to enhance the information of pixels that are helpful for classifica-
tion and weaken the information of pixels that interfere with classification. The framework of the spatial atten-
tion module is the same as Fig. 3, the difference lies in the part that generates the attention, which will generate 
a spatial attention. And this module does not change the spectral dimension of the input data.

Figure 5 shows the whole process of generating spatial attention. Inspired by  CBAM37, we first perform global 
average pooling and global max pooling in the spectral dimension to generate savg and smax of shape H ×H × 1 . 
The calculation process of this part is described in Eqs. (3) and (4).

where F represents the feature map obtained after the neighborhood pixel block is processed by two depth-wise 
separable convolution layers in the spatial branch, F(κ,i,j) represents the value of the position (i,j) of the feature 
map F on the kth channel, savg represents the result of global average pooling, Savg

(i,j)
 represents the value of the 

position (i, j) of savg , Max(F) represents the maximum value of all channels of each pixel in the feature map F..
Then, we concatenate savg and smax . After processing through a convolutional layer and a sigmoid activation 

function, the spatial attention sa ∈ R
H×H×1 is obtained.

After the spatial attention sa and the feature map F2 are multiplied by pixels, the importance of different pixels 
for classification can be automatically adjusted.

Pixel‑wise embedding and Band‑wise embedding. The classic ViT structure segments the image 
into patches according to a fixed size. When ViT has simply been applied to segment the image, it is not suit-
able for the characteristics of HSI because each pixel on the HSI represents a ground object. Meanwhile, such 
a segmentation method cannot learn the long-distance dependency relations of the spectral bands of HSI. To 
better combine the characteristics of HSI, we adopt Pixel-wise embedding and Band-wise embedding in the two 
branches to better learn the global features of HSI. In the spatial branch, we perform Pixel-wise embedding on 
the feature maps of the spatial attention module. We segment the feature map of shape H ×H × C by pixel to 
generate H ×H vectors of length C . Finally, the length of the vector is adjusted to M by the full connection layer 
processing, and M is set to 64. We did not add position embedding to the vectors because the CNN can encode 
the absolute position of the  image38.

Considering that the spectral dimension information of the feature map is rich and continuous, we use Band-
wise embedding to segment the HSI according to the spectral dimension, and then flatten the two-dimensional 
patch of each band. After that, the vector of output length M is processed through the fully connected layer as 
the input of the Transformer. This can learn long-distance dependency relations in the spectral dimension of 
HSI. Lastly, the generated sequence is used as the input of the transformer, after adding the positional embed-
ding and the learnable embedding. Figure 6 illustrates how Pixel-wise embedding and Band-wise embedding 
process feature maps into sequences. Although the linear projection methods of the two branches are different 
for the characteristics of HSI, the length of the vector after linear projection is the same, which is to facilitate the 
fusion of features at the feature fusion layer.

(3)S
avg

(i,j)
=

1

c

c
∑

k=1

F
(

κ , i, j
)
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Figure 5.  Generate spatial attention. This module concatenates the outputs of global average pooling and global 
max pooling through a convolutional layer.
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Transformer encoder block. Each branch of our proposed model contains two Transformer encoder 
blocks respectively to extract global features of HSI. As shown in the Fig. 7a, each transformer encoder block 
consists of a multi-head self-attention mechanism sublayer and a Feedforward network sublayer, and each sub-
layer has LayerNormalization and residual connections. Figure 7b shows the processing of the self-attention 
mechanism in Transformer. The self-attention mechanism can extract the global features of the input sequence, 
and its calculation process is described in Eq. (7).

where K , Q , V  are obtained by multiplying the input sequence with wQ , wK and wV respectively. dk represents 
the dimension of the vector in K, whose role is to obtain a stable gradient by  scaling19. Multi-head self-attention 
mechanism is to concatenate the outputs obtained by multiple self-attentions. Multiple heads are computed 
independently and each head has a different focus on the sequence. The formula is defined as follows:

where Wo is a matrix and h represents the number of heads.

(7)z = Attention(Q,K, V)softmax

(

QkT
√
dk

)

V

(8)Mulit−Head attention(K ,Q,V) = concat(z1, z2, . . . , zh)W
o

Figure 6.  Two ways of linear projection methods. (a) Band-wise embedding (b) Pixel-wise embedding.

Figure 7.  Structure of the Transformer encoder block and the illustration of the self-attention mechanism. (a) 
Transformer encoder block. (b) self-attention mechanism.
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The Feedforward network consists of two fully connected layers and a GeLU activation function, which can 
further transform the features learned in self-attention mechanism. Equation (9) gives its calculation process.

where σ denotes GeLU activation function.

Feature fusion layer. Our proposed model extracts spatial and spectral features of HSI on two branches 
separately. Inspired by  CrossViT34, we add a feature fusion layer between the two branches to fuse the features 
extracted by the two branches. Specifically, we consider exchanging the class tokens (i.e. the Learnable Embed-
ding illustrated in Fig. 6) of the output sequence of the Transformer encoder block of the spectral branch and 
the first vector of the output sequence of the Transformer encoder block of the spatial branch. It is because the 
Transformer-based model uses the first vector of the output sequence to classify. Thus, we can think of this vector 
as a summary of the entire  sequence34. Therefore, the class token of the output sequence of the spectral branch 
contains rich spectral features, and the first vector of the output sequence of the spatial branch contains rich 
spatial features. By exchanging these two vectors, the fusion of spectral and spatial features can be facilitated.

Label smooth. When the training samples that are used to train the model are insufficient, the generaliza-
tion ability of the model will be reduced, which will lead to overfitting of the model. In practical applications, this 
problem of insufficient HSI samples is also very common. In order to decrease the influence of the overfitting 
phenomenon on the model, we introduce a regularization technique label smooth to alleviate it.

First, we change each label to use a one-shot representation. The vector yn represents the one-shot representa-
tion of each label y, its dimension is S dimension, where S represents the number of classes, and the value on the 
vector is 1 when n = y, otherwise it is 0. Then, we add noise ε to the label as follows:

where y′n is the new label obtained after label smooth, ε is the noise.
The model tends to become more "confident" during the training process, but the lack of training set samples 

and mislabeling of the dataset will cause the model to generate more misclassifications in the test set. By adding 
noise to each label, the model becomes "unconfident", the generalization ability of the model is improved, and 
the overfitting of the model is alleviated.

Experiments results and analysis
Data sets description. We adopt four public datasets: Kennedy Space Center (KSC), Salinas (SA), Univer-
sity of Pavia (PU), and Houston 2013(HU) to evaluate the performance of the proposed model.

Kennedy Space Center (KSC): This dataset was collected by AVIRIS sensors over the Kennedy Space Center 
(KSC) in Florida, USA. This dataset contains 512 × 614 pixels, and after removing the noise-affected bands, a total 
of 176 bands are available for experiments. It has a spatial resolution of 18 m and a wavelength range of 400 to 
2500 nm. It contains a total of 13 land cover categories with a total of 5211 labeled pixels. The training samples, 
validation samples and test samples for each category are shown in the Table 1.

Salinas (SA): This dataset was collected by AVIRIS sensors over the Salinas Valley in California. This dataset 
contains 512 × 217 pixels, and after removing the noise-affected bands, a total of 204 bands are available for 
experiments. It has a spatial resolution of 3.7 m and a wavelength range of 400 to 2500 nm. It contains a total of 
16 land cover categories with a total of 54,129 labeled pixels. The training samples, validation samples and test 
samples for each category are shown in the Table 2.

(9)Feedforward network
(

input
)

= FC
(

σ
(

FC
(

input
)))

(10)y
′

n = (1− ε)yn +
ε

S

Table 1.  Number of training, validation, and test samples for KSC dataset.

NO Class Train Val Test

1 Scrub 39 38 684

2 Willow swamp 12 13 218

3 CP hammock 13 13 230

4 Slash pine 13 13 226

5 Oak/broadleaf 8 9 144

6 Hardwood 12 11 206

7 Swamp 6 5 94

8 Graminoid marsh 22 22 387

9 Spartina marsh 26 26 468

10 Cattail marsh 20 21 363

11 Salt marsh 21 21 377

12 Mud flats 26 25 452

13 Water 46 47 834

Total 264 264 4683
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University of Pavia (PU): This dataset was collected by ROSIS sensors over the University of Pavia in northern 
Italy. This dataset contains 610 × 340 pixels, and after removing noise-affected bands, a total of 103 bands are 
available for experiments. It has a spatial resolution of 1.3 m and a wavelength range of 430 to 860 nm. It contains 
a total of 9 land cover categories with a total of 42,776 labeled pixels. The training samples, validation samples 
and test samples for each category are shown in the Table 3.

Houston 2013 (HU): This dataset was collected by the ITRES CASI-1500 sensor over the University of Houston 
campus, which is provided by the 2013 IEEE GRSS Data Fusion Competition 39. This dataset contains 349 × 1905 
pixels. This dataset has 144 spectral bands for experiments. It contains a total of 15 land cover categories with 
a total of 15,029 labeled pixels. The training samples, validation samples, and test samples for each category are 
shown in Table 4.

For deep learning methods, the more samples are used for training, the better the performance of the model 
will be gotten. It means that the training of the model will be more time-consuming as well as requiring more 
labeled pixels. Our proposed model can still maintain the optimal performance in the case of small samples. 
Therefore, for KSC, we consider 5% of the samples for training, 5% for validation, and the rest for testing. For 
PU, SA, and HU, we consider 1% of samples for training, 1% for validation, and the rest for testing.

Experimental setup. The software environment for our experiments is Python version 3.7.0 and the deep 
learning framework in PyTorch version 1.2.0. The hardware environment for our experiments is RTX2060 GPU 
with 6 GB RAM and AMD CPU R7-4800 at 2.9 GHz with 16 GB RAM. We choose SGD  optimizer40 to optimize 
the training parameters of the model, and the loss function chooses the cross-entropy loss function. The learn-
ing rate is set to 0.001, 0.001, 0.01, and 0.001 on KSC, SA, PU, and HU respectively. The epoch on four datasets 
is set to 200.

Table 2.  Number of training, validation, and test samples for SA dataset.

NO Class Train Val Test

1 Brocoli_green_weeds_1 21 20 1968

2 Brocoli_green_weeds_2 37 38 3651

3 Fallow 20 20 1936

4 Fallow_rough_plow 14 14 1366

5 Fallow_smooth 27 27 2624

6 Stubble 40 40 3879

7 Celery 36 36 3507

8 Grapes_untrained 113 113 11,045

9 Soil_vinyard_develop 62 63 6078

10 Corn_senesced_green_weeds 33 33 3212

11 Lettuce_romaine_4wk 11 11 1046

12 Lettuce_romaine_5wk 20 19 1888

13 Lettuce_romaine_6wk 10 9 897

14 Lettuce_romaine_7wk 11 11 1048

15 Vinyard_untrained 73 73 7122

16 Vinyard_vertical_trellis 18 19 1770

Total 546 546 53,037

Table 3.  Number of training, validation, and test samples for PU dataset.

NO Class Train Val Test

1 Asphalt 67 66 6498

2 Meadows 186 187 18,276

3 Gravel 21 21 2057

4 Trees 31 31 3002

5 Sheets 13 14 1318

6 Bare soils 51 50 4928

7 Bitumen 14 13 1303

8 Bricks 37 37 3608

9 Shadows 9 10 928

Total 429 429 41,918
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In order to quantitatively evaluate the classification performance of the model, we choose OA (overall accu-
racy), AA (average accuracy), and kappa coefficient (κ) as the evaluation indicators of the model.

Parameters setting. We analyze some factors that affect the training and performance of the model, which 
are batch size, learning rate, number of head and input size. To be fair, each of our subsequent experiments was 
repeated ten times, and the metrics used were the average of 10 experiments. We chose 10 different random 
seeds for 10 experiments to exclude variability due to random factors in the experiments.

(1) Batch size: Batch size is important for model training, which affects the convergence of the model. We 
consider the sets of {16, 32, 64} for experiments. The results are shown in the Fig. 8, we can see that choos-
ing the appropriate batch size for training is very important for the final performance of the model, so we 
chose to use 16 on KSC, 64 on SA, 64 on PU, and 32 on HU.

(2) Learning rate: The learning rate affects the convergence speed of the model during training, and it plays an 
important role in the performance of the model. We choose a learning rate sets of {0.01, 0.001, 0.0001} for 
experiments. As shown in the Fig. 9, choosing different learning rates to train the model has a great impact 
on the final performance of the model. Based on the above results, we choose to use 0.001 on KSC, 0.001 
on SA, 0.01 on PU, and 0.001 on HU, respectively.

Table 4.  Number of training, validation, and test samples for the HU dataset.

NO Class Train Val Test

1 Healthy grass 13 13 1225

2 Stressed grass 13 13 1228

3 Synthetic grass 7 7 683

4 Trees 13 12 1219

5 Soil 12 13 1217

6 Water 3 4 318

7 Residential 13 13 1242

8 Commercial 13 12 1219

9 Road 13 13 1226

10 Highway 13 12 1202

11 Railway 12 13 1210

12 Parking lot1 13 12 1208

13 Parking lot2 5 5 459

14 Tennis court 4 5 419

15 Running Track 7 7 646

Total 154 154 14,721

Figure 8.  OA (%) of DBFFT with different batch size in the four datasets.
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(3) Number of heads: Transformer’s multi-head self-attention can extract the global relationship between vec-
tors in the sequence. Different heads can extract different relationships between vectors and other vectors. 
We select a set of head numbers {4, 6, 8} to evaluate the effect of head count on the model. As shown in 
the Fig. 10, different head counts affect the performance of the model. We use 4 on KSC, 4 on SA, 6 on PU, 
and 4 on HU respectively, according to the experimental results.

(4) Input size: The input size determines the spatial information that the model can use for classification. To 
better evaluate the effect of size on the model, we choose a set of sizes {3, 5, 7, 9, 11}. As shown in the Fig. 11, 
as the size increases, the OA of the model continues to increase.  In the HU dataset, the OA of size 11×11 is 
lower than the OA of size 9×9, but its value is still higher than that of sizes 3×3, 5×5, and 7×7. This indicates 
that the increase of spatial information can improve the information that can be mined by the model. We 
choose the size of 11× 11 as the input size of the model on the PU, KSC, SA datasets, and 9× 9 as the input 
size of the model on the HU dataset.

Figure 9.  OA (%) of DBFFT with different learning rate in the four datasets.

Figure 10.  OA (%) of DBFFT with different number of heads in the four datasets.
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Comparison results of different methods. In this section, our proposed model is compared with the 
traditional method MLP as well as five deep learning models, such as 1D-CNN20, M3D-DCNN41,  pResNet22, 
 SSRN21,  DBDA24,  SCFR25 and  DPSCN26. Among these methods, except for MLP and 1D-CNN, the neighbor-
hood pixel patch is used as the input of the model. The hyperparameters (such as input size, learning rate) and 
training skills (such as early stopping, learning rate dynamic adjustment) of all the models are set according to 
their original paper to ensure fairness. We repeat each group of experiments in the four datasets 10 times with 
randomly selected training samples to ensure the fairness of the experiments. Meanwhile, we will also report 
the mean and standard deviation for all the metrics. Now, we briefly introduce the methods mentioned above 
in the following.

(1) MLP: It is a multilayer perceptron that consists of two fully connected layers and a ReLU.
(2) 1D-CNN: It consists of 1D convolutional layers and fully connected layers.
(3) M3D-DCNN: This model extracts multi-scale information by combining multiple 3D convolution kernels 

of different sizes, and the size of the neighborhood pixel block is 7 × 7.
(4) pResNet: This model is based on 2DCNN. By introducing a deep pyramid  network23, the depth of the model 

is improved to extract rich spectral and spatial information. The size of the neighborhood pixel block is 
11 × 11.

(5) SSRN: This model consists of multiple spectral residual blocks and spatial residual blocks. The two residual 
blocks are based on ResNet and 3DCNN. The size of the neighborhood pixel block is 7 × 7.

(6) DBDA: A 3DCNN-based Double-Branch model, each branch consists of DenseNet and attention mecha-
nism. The size of the neighborhood pixel block is 9 × 9.

(7) SCFR: This model is completely composed of 1 × 1 convolutions except that the first layer is composed of 
3 × 3 convolution. The size of the neighborhood pixel block is 7 × 7.

(8) DPSCN: This model is constructed by the dual-path small convolution (DPSC) module. DPSC module 
consists of 1 × 1 convolution and with a residual path and a density path. The size of the neighborhood pixel 
block is 9 × 9.

The classification results of different models on the four datasets are shown in Tables 5, 6, 7 and 8, and the 
best classification results are shown in bold. It can be seen that the performance of our proposed model is the 
best on all four datasets. MLP and 1D-CNN, which only utilize the spectral information of HSI, have the lowest 
performance on all four datasets. The accuracy of the model using spatial information is higher than the MLP and 
1D-CNN, which proves the importance of spatial information for HSI classification. It is worth noting that the 
performance of M3D-DCNN is much lower than pResNet, SSRN, DBDA, and DBFFT on the Four datasets. The 
reason is that the depth of M3D-DCNN is shallow and it is difficult to extract deep features of HSI. Furthermore, 
in the case of small samples, M3D-DCNN overfits the training data. The pResNet model performs poorly on 
PU, KSC, and HU, and its OA on PU, KSC and HU is 4.23%, 2.76%,8.81% lower than DBFFT, respectively. The 
reason is that pResNet stacks a large number of convolution kernels, which leads to too many training parameters 
of the model, resulting in overfitting of the model in the case of a small sample. In addition, the over-reliance of 
the 2DCNN-based model on the spatial features of HSI also leads to the poor performance of the model. SCFR 
and DPSCN are mainly composed of 1 × 1 convolutions, and these two models utilize a small amount of 3 × 3 
convolutions to extract spatial information. SCFR performed poorly on all four datasets, suggesting that SCFR did 
not extract enough spatial features. The performance of DPSCN on PU is close to DBFFT, and OA is only 0.08% 
lower than DBFFT, but on KSC, SA, and HU, OA is 2.28%, 4.9%, and 2.2% lower than DBFFT, respectively. This 
indicates the poor generalization ability of DPSCN. Both SSRN and DBDA are 3D-CNN based models, but their 
performance on all four datasets is much lower than that of our proposed model. DBDA, which is the same as our 

Figure 11.  OA (%) of DBFFT with different input size in the four datasets.
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proposed model, is also a Double-Branch structure, but the OA on KSC, SA, PU, and HU is 1.35%, 1.01%, 0.16%, 
0.9% lower than DBFFT, respectively. This illustrates the importance of global features for HSI classification. 
Our model is not only optimal on OA, but also on AA and κ, which proves that our model has better stability.

Figures 12, 13, 14 and 15 show the original false-color image of the HSI, the ground truth map, the classifica-
tion maps of DBFFT, and all the compared methods. We can find that there is a lot of salt and pepper noise on 
the classification maps of MLP and 1DCNN that only use spectral information for classification. The classifica-
tion map of the CNN-Based model based on spectral and spatial information and the classification map of our 
proposed model are more smooth. However, M3D-DCNN has worse classification results than pResNet, SSRN, 
DBDA, SCFR, DPSCN, and DBFFT due to its severe overfitting. Our proposed model extracts global spectral 
features and global spatial features by introducing a self-attention mechanism, and fuses spectral and spatial 
features through a feature fusion layer to obtain a very smooth and ideal classification map. Compared with all 

Table 5.  Classification results of 5% samples of KSC dataset. Significant values are in bold.

Class MLP 1D-CNN
M3D-
DCNN SSRN pResNet DBDA SCFR DPSCN Proposed

1 91.39 91.14 96.74 99.33 99.63 99.97 98.42 99.66 99.97

2 82.75 85.23 82.57 98.53 95.64 98.21 90.09 96.24 98.72

3 84.48 88.48 77.17 97.65 88.13 87.04 89.65 96.00 95.52

4 50.18 58.58 46.42 90.22 72.04 86.46 58.67 86.15 95.62

5 45.14 54.03 45.90 86.18 78.06 78.33 64.17 81.18 85.42

6 44.17 46.65 64.27 96.50 86.80 95.68 79.56 87.48 97.62

7 78.30 71.17 76.49 91.49 92.87 89.47 85.43 93.72 91.49

8 83.15 85.48 81.09 99.30 97.47 99.30 95.06 98.84 99.90

9 91.24 93.72 93.08 99.51 99.70 100.0 98.42 90.00 100.0

10 87.16 88.65 85.76 100.0 98.04 99.97 97.85 99.45 100.0

11 94.96 93.87 99.05 99.39 98.89 98.17 99.02 99.23 98.81

12 86.02 88.81 91.88 99.47 99.49 99.38 92.72 98.98 99.65

13 99.96 99.80 100.0 100.0 100.0 100.0 99.72 100.0 100.0

OA(%) 85.17 ± 0.92 86.80 ± 0.87 87.08 ± 1.46 98.29 ± 0.59 95.88 ± 0.60 97.29 ± 1.44 92.95 ± 0.80 96.36 ± 3.16 98.64 ± 0.40

AA(%) 78.38 ± 1.31 80.43 ± 1.18 80.03 ± 2.29 96.74 ± 1.31 92.83 ± 1.24 94.77 ± 2.60 88.37 ± 1.41 94.38 ± 2.88 97.13 ± 0.87

κ × 100 83.48 ± 1.03 85.29 ± 0.97 85.59 ± 1.63 98.10 ± 0.66 95.42 ± 0.67 96.98 ± 1.60 92.15 ± 0.89 95.94 ± 3.52 98.49 ± 0.44

Table 6.  Classification results of 1% samples of SA dataset. Significant values are in bold.

Class MLP 1D-CNN
M3D-
DCNN SSRN pResNet DBDA SCFR DPSCN Proposed

1 96.45 94.14 98.26 99.97 98.10 100.0 94.01 98.92 99.96

2 98.73 98.88 99.74 99.91 99.73 100.0 98.29 98.95 100.0

3 94.98 95.90 99.47 98.97 99.27 98.92 93.99 100.0 99.44

4 99.53 99.03 99.17 99.88 99.48 99.36 78.97 99.84 99.73

5 96.27 96.79 94.76 97.98 98.28 96.00 98.62 97.76 99.08

6 99.78 99.64 99.54 100.0 99.99 100.0 100.0 100.0 100.0

7 99.42 99.46 99.16 99.99 99.54 99.93 99.22 99.92 99.98

8 80.08 84.45 83.31 94.02 92.75 95.73 84.77 92.70 96.48

9 99.37 99.11 98.86 99.89 99.54 100.0 99.83 80.00 100.0

10 86.26 88.04 90.38 96.77 96.07 96.75 86.86 96.41 97.36

11 90.61 92.93 95.69 99.21 96.91 99.53 81.00 99.00 99.80

12 98.83 99.25 99.73 99.98 99.47 99.94 99.22 80.00 99.94

13 97.06 96.35 98.29 99.43 99.71 99.05 99.45 99.65 99.89

14 91.80 92.82 95.59 97.73 99.49 99.67 98.35 89.48 99.60

15 57.42 58.74 67.79 90.51 93.16 91.80 80.63 92.64 96.35

16 92.15 91.73 88.19 97.81 96.48 99.14 93.25 98.13 99.31

OA(%) 87.88 ± 0.56 89.06 ± 0.57 90.41 ± 1.35 96.98 ± 0.42 96.82 ± 0.51 97.49 ± 0.78 91.52 ± 1.82 93.74 ± 5.24 98.50 ± 0.41

AA(%) 92.42 ± 0.41 92.95 ± 0.58 94.25 ± 0.83 98.25 ± 0.33 98.00 ± 0.42 98.49 ± 0.48 92.90 ± 3.13 95.21 ± 4.85 99.18 ± 0.21

κ × 100 86.48 ± 0.63 87.80 ± 0.64 89.31 ± 1.51 96.64 ± 0.47 96.46 ± 0.57 97.21 ± 0.87 90.56 ± 2.04 93.06 ± 5.78 98.33 ± 0.45
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Table 7.  Classification results of 1% samples of PU dataset. Significant values are in bold.

Class MLP 1D-CNN
M3D-
DCNN SSRN pResNet DBDA SCFR DPSCN Proposed

1 85.56 92.00 94.43 98.68 93.38 98.81 95.72 98.97 99.17

2 95.31 96.23 97.33 99.66 99.32 99.84 98.57 99.85 99.82

3 60.24 75.85 70.20 87.37 65.62 89.81 84.64 96.07 93.91

4 81.44 89.49 93.53 97.27 95.59 96.09 93.75 97.46 95.53

5 99.59 99.83 98.10 99.99 98.86 99.80 89.80 99.98 99.79

6 75.57 86.87 83.31 99.01 95.79 99.76 94.26 98.70 99.74

7 73.45 77.67 78.91 97.78 80.04 99.03 88.68 96.26 97.71

8 77.46 79.55 87.73 95.50 88.76 97.12 94.95 97.37 97.41

9 99.57 99.79 96.65 99.89 98.73 97.74 99.47 89.77 96.31

OA(%) 86.78 ± 1.07 91.17 ± 0.47 92.24 ± 0.98 98.26 ± 0.23 94.53 ± 0.74 98.60 ± 0.33 95.72 ± 0.89 98.68 ± 0.63 98.76 ± 0.29

AA(%) 83.13 ± 1.59 88.59 ± 0.71 88.91 ± 1.37 97.24 ± 0.32 90.68 ± 1.26 97.56 ± 0.67 93.32 ± 2.87 97.97 ± 3.19 97.71 ± 0.62

κ × 100 82.33 ± 1.45 88.27 ± 0.61 89.66 ± 1.33 97.69 ± 0.30 92.73 ± 0.98 98.15 ± 0.44 94.31 ± 1.19 98.240.84 ± 98.36 ± 0.39

other models, our classification map generates the least noise on the four datasets, and the classification map is 
the most accurate and smooth.

Figure 16 shows a part of the SA classification map, and we can see that in the case of small training set sam-
ples, class 8 and class 15 are extremely prone to misclassification on both our proposed model and the comparison 
model. MLP, 1D-CNN and M3D-DCNN misclassify a lot of these two classes. Our proposed model has the least 
number of misclassifications on class 8 and class 15 compared to other models, which is the performance of our 
proposed model in the face of overfitting.

Table 9 reports the training time and test time of the proposed model and 5 models with similar performance. 
It can be seen that our model outperforms DBDA and SSRN in both training time. On the SA dataset, the train-
ing time of SSRN is 3 times that of ours, and the training time of DBDA is 2 times that of us. Compared with 
DPSCN and SCFR, our model requires more training time and testing time, but DPSCN and SCFR can only 
achieve similar performance to our proposed model on some datasets, and perform poorly on other datasets. For 
example on the SA dataset, the OA of DPSCN and SC-FR is 4.76% and 6.98% lower than our proposed model, 
respectively. We thought it was worth the extra time to get better performance.

Investigation of training sample. The excellent performance of deep learning methods relies on a large 
number of labeled datasets, but it is usually difficult to obtain enough labeled data for HSI. Therefore, we test the 
performance of our proposed model and all compared models under different numbers of training set samples. 

Table 8.  Classification results of 1% samples of HU dataset. Significant values are in bold.

Class MLP 1D-CNN
M3D-
DCNN SSRN pResNet DBDA SC-FR DPSCN Proposed

1 92.74 93.74 90.40 95.98 91.20 93.19 90.35 94.52 93.19

2 87.24 88.15 80.04 95.33 92.39 92.98 89.24 90.91 95.98

3 97.28 98.13 85.07 99.78 91.67 99.30 83.57 99.68 98.77

4 91.79 89.65 85.91 95.18 92.36 95.41 91.55 95.65 96.20

5 96.42 94.85 91.50 99.35 94.76 99.65 98.81 99.51 98.72

6 84.65 83.52 41.35 77.61 51.01 84.40 80.57 84.40 82.04

7 73.41 75.91 64.54 88.05 75.97 89.04 76.90 84.75 88.91

8 61.81 52.99 57.38 68.70 65.31 71.20 63.15 68.56 72.03

9 62.75 66.38 61.66 81.94 74.79 86.43 74.43 81.64 84.28

10 56.02 54.58 54.46 87.05 77.59 90.82 75.57 90.26 92.06

11 61.79 65.74 59.06 82.22 72.33 82.92 68.61 81.35 83.47

12 56.38 53.42 54.72 78.49 76.99 79.41 72.01 80.50 85.69

13 12.16 13.16 35.38 79.54 71.70 80.54 78.76 84.47 88.50

14 87.37 80.31 52.89 98.97 86.80 100.0 98.47 89.86 98.88

15 97.99 97.65 90.70 99.91 86.25 99.97 99.74 99.30 99.47

OA(%) 74.89 ± 1.96 74.32 ± 1.40 69.43 ± 5.50 88.27 ± 1.61 81.27 ± 2.28 89.18 ± 2.55 81.60 ± 2.56 87.88 ± 1.57 90.08 ± 1.43

AA(%) 74.65 ± 1.76 73.88 ± 1.37 67.00 ± 6.38 88.54 ± 2.03 80.08 ± 2.70 89.68 ± 2.01 82.78 ± 2.65 88.36 ± 2.06 90.55 ± 1.14

κ × 100 72.83 ± 2.12 72.21 ± 1.52 66.89 ± 5.97 87.32 ± 1.75 79.74 ± 2.47 88.30 ± 2.75 80.10 ± 2.77 86.90 ± 1.70 89.27 ± 1.54
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For KSC, we take 1%, 3%, 5%, 10%, and 20% of labeled pixels as training samples. For PU, we choose 0.8%, 
1%, 5%, 10%, and 20% of labeled pixels as training samples. For SA, we consider 0.5%, 1%, 3%, 5%, and 10% of 
labeled pixels as training samples. For HU, we consider 0.5%, 1%, 5%, 15%, and 20% of labeled pixels as train-
ing samples. As shown in Fig. 17, as the training samples increase, the OA of all models also increases. In the 
case of large training samples, all performances of SSRN, DBDA, pResNet and our proposed model are close to 
perfect. But when the training samples are reduced, our proposed model consistently outperforms other models. 
It should be mentioned that our proposed model has the highest accuracy on all sample proportions of SA, and 
it only performs suboptimally at 20% sample proportion on PU and KSC datasets. Considering the difficulty of 
sample acquisition of HSI, our proposed model is more suitable for the actual situation.

Effect of label smooth. To verify the effect of label smooth on model training, we retrain the models with 
label smooth removed and compare their performance. The results are shown in Fig. 18. On the four datasets, 
the performance of the model will be improved by adding label smooth during training. It proves that the model 
combined with label smooth has stronger generalization ability.

Effect of feature fusion layer. In this section, we will compare the performance of the proposed model 
with that model not having feature fusion layer. The results are shown in Fig. 19. We can see that feature fusion 

Figure 12.  Classification maps of different models on the KSC dataset. (a) False-color image (b) Ground-truth 
map. (c) MLP. (d) 1D-CNN. (e) M3D-DCNN. (f) SSRN. (g) pResNet. (h) DBDA. (i) SCFR. (j) DPSCN. (k) 
DBFFT.
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significantly improves the performance of the model on all four datasets, which proves that feature fusion layer 
improves the performance of the model by fusing the spectral and spatial features of HSI.

Effect of attention mechanism. We verify the effectiveness of the attention mechanism by removing 
the spectral attention module, spatial attention module, and removing both attention modules from the model 
respectively. The experimental results are shown in Fig. 20. We can see that the performance of the model on 
all four datasets decreases significantly when both modules are removed, and the performance of the model is 
reduced by 0.91%, 1.04%, 1.26%, and 3.61% on KSC, PU, SA, and HU, respectively. After only removing the 
spatial attention module, the performance of the model is reduced by 0.88%, 0.95%, 1.2%, and 3.44% on KSC, 
PU, SA, and HU, respectively. It is revealing that the spatial attention module plays a major role in improving the 
performance of the model. When we remove the spectral attention module, the results show that it has a certain 
but non-significant impact on the performance of the model. Therefore, we can conclude that the model can 
improve the performance of the model after adding the attention mechanism.

Conclusion
In this paper, we propose a Double-Branch feature fusion Transformer (DBFFT) model for HSI classification. 
The proposed model can overcome the shortcomings of CNN-based models, which are not good at learning the 
long-distance dependency relations of spectral bands and extracting global spatial features of HSI. We firstly 
present two attention mechanism modules to extract spectral and spatial features separately. According to the 
characteristics of HSI, we adopt Pixel-wise embedding and Band-wise embedding on the spectral branch and 
spatial branch to process the feature maps to better utilize the self-attention mechanism to extract the global 

Figure 13.  Classification maps of different models on the SA dataset. (a) False-color image. (b) Ground-truth 
map. (c) MLP. (d) 1D-CNN. (e) M3D-DCNN. (f) SSRN. (g) pResNet. (h) DBDA. (i) SCFR. (j) DPSCN. (k) 
DBFFT.
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Figure 14.  Classification maps of different models on the PU dataset. (a) False-color image. (b) Ground-truth 
map. (c) MLP. (d) 1D-CNN. (e) M3D-DCNN. (f) SSRN. (g) pResNet. (h) DBDA. (i) SCFR. (j) DPSCN. (k) 
DBFFT.
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Figure 15.  Classification maps of different models on the HU dataset. (a) False-color image. (b) Ground-truth 
map. (c) MLP. (d) 1D-CNN. (e) M3D-DCNN. (f) SSRN. (g) pResNet. (h) DBDA. (i) SCFR. (j) DPSCN. (k) 
DBFFT.



18

Vol:.(1234567890)

Scientific Reports |          (2023) 13:272  | https://doi.org/10.1038/s41598-023-27472-z

www.nature.com/scientificreports/

Figure 16.  Part of the classification map for different models on the SA dataset. (a) Ground-truth map. (b) 
MLP. (c)1D-CNN. (d) M3D-DCNN. (e) SSRN. (f) pResNet. (g) DBDA. (h) SCFR. (i) DPSCN. (j) DBFFT.

Table 9.  Training time, and test time for different models on the four data sets.

SSRN pResNet DBDA SC-FR DPSCN Proposed

PU

Training time (s) 194.83 61.52 170.67 8.60 37.74 117.35

Test time (s) 10.41 7.84 21.78 3.14 4.65 13.09

KSC

Training time (s) 218.54 38.85 199.82 5.81 26.11 187.97

Test time (s) 1.59 0.93 3.46 0.41 0.52 3.23

SA

Training time (s) 566.60 82.41 342.82 10.92 50.51 165.67

Test time (s) 19.73 12.68 44.84 5.10 7.18 21.61

HU

Training time (s) 98.39 24.60 103.03 3.79 15.53 62.09

Test time (s) 4.37 2.70 9.16 0.99 1.57 5.71

Figure 17.  OA (%) of DBFFT with different number of training samples in the four datasets. (a) KSC dataset. 
(b) SA dataset. (c) PU dataset. (d) HU dataset.
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spatial and global spectral features of HSI. Then, we design a feature fusion layer to fuse the spectral and spatial 
features of the two branches. In view of the limited number of training samples of HSI, our model can outperform 
the CNN-based model in the case of small samples. In addition, we also employ the label smooth technique to 
improve the generalization ability of the model in small sample scenarios.

In the future, we will do more works to improve the proposed model to achieve more effectiveness and 
performance. The first work is to improve the structure of the proposed model to enhance its ability to extract 
global features and generalization. Another is to improve the fusion ability of the spectral and spatial features 

Figure 18.  The effect of label smooth on the performance of the model.

Figure 19.  The effect of feature fusion on the performance of the model.
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with a more effective feature fusion layer. Finally, more hyperspectral image datasets could be considered, not 
just these few public datasets.

Data availability
The data that support the findings of this study are available from the Grupo de Inteligencia Computacional 
(GIC) website (http:// www. ehu. eus/ ccwin tco/ index. php/ Hyper spect ral_ Remote_ Sensi ng_ Scenes).
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