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Bifurcation analysis of hepatitis 
B virus with non‑cytolytic cure 
process on infected liver and blood 
cells
Tesfaye Tefera Mamo 

The phenomenon of bifurcation in disease transmission models has been observed in a number of 
epidemiological models. The consequence of bifurcation is that the classical requirement of the 
reproduction number being less than unity becomes only a necessary, but not sufficient, for disease 
elimination. This paper addresses the problem of finding the causes of bifurcation in standard 
deterministic models for the spread of HBV diseases with non-Cytolytic cure processes on infected 
liver and blood cells. The model contains logistic growth of healthy liver and blood cells and non 
-Cytolytic cure processes of infected cells. I have got that the model exhibits back ward and forward 
bifurcations with some conditions. The existence of a backward bifurcation is an interesting artifact 
since this means that the disease cannot be eradicated by simply reducing the value of the basic 
reproduction number R

0
 below 1.This can have important implications on drug therapy protocols, 

since it sheds light on possible control mechanisms for disease eradication.

Epidemic models have considerably aided in enhancing awareness into infectious disease transmission patterns 
in host populations, as well as how an infectious disease might be controlled, reduced, and possibly eradicated1–4. 
The functional form of the force of infection, namely the function characterizing the mechanism of disease 
transmission; and the description of the intervention policy to counter the disease spread are two of the most 
important components of modeling an infectious disease5.

Mathematical modeling of phenomena in applied disciplines results in equations based on one or more factors 
that can change over a set of values (the parameter space or set).These parameters describe how the environment 
influences a system, and thus, a well-designed system should be robust. This means that small fluctuations in the 
parameters do not change its qualitative behavior. However, if the fluctuations become larger, the behavior of a 
system might change in the sense that the number or stability property of particular solution varies6.

Bifurcation occurs if a topologically non-equivalent phase portrait appears when parameters are changed, 
and the parameter values are called bifurcation values. If one phase portrait is a distorted version of the other, 
they are topologically equivalent. Bifurcation theory is the mathematical study of changes in the qualitative or 
topological structure of a given family, such as the integral curves of a family of vector fields, and the solutions of 
a family of differential equations7–9. The biological factors for a specific model are described by system parameters. 
These parameters determine the eigenvalues that govern the stability of an equilibrium point. As the parameters 
change to reflect changes in biological conditions, the eigenvalues change along with them. Some of eigenvalues 
may move from the left to right half of the complex plane. The point at which at least one eigenvalue has zero 
real-part is called the bifurcation point10.

One of the most important aspects of epidemiological modeling is describing how changes in biological 
processes affect the parameters of infection dynamics at the population level. The " R0 dogma" is an important 
early outcome of this work that was obtained from simple models1. The spectral radius of the next generation 
matrix is R0 , the fundamental reproductive ratio. If R0 > 1 , the disease is likely to spread and persist in the host 
population. Small initial introductions are not sufficiently transmissible to start an epidemic if R0 < 1 , therefore 
an endemic illness will eventually go away. Thus, many control policies like vaccination have focused on reaching 
coverage levels sufficient to reduce R0 below 1. However, one of the key problems with epidemiological modeling 
has been figuring out why and when the R0 rules can breakdown. In particular, some epidemic models can be 
bi-stable (stable endemic equilibrium point co-exists with a stable disease free equilibrium point for R0 < 1). 
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R0 < 1 is a sufficient condition for avoiding an epidemic caused by the introduction of a small number of initial 
cases, but R0 < 1 is not a sufficient condition for eradication of the disease once it is endemic. This phenomenon 
is known as a ‘backward’ bifurcation.

The bifurcation curve, which is the graph of the force of infection in a population as a function of the basic 
reproductive number R0 , can graphically depict the behavior at a bifurcation. It has been noted11 that in epidemic 
models with multiple groups, it is possible to have a very different bifurcation behavior at R0 = 1 . There may be 
multiple positive endemic equilibria for values of R0 < 1 , and a backward bifurcation at R0=1. The qualitative 
behavior of a system with a backward bifurcation differs from that of a system with a forward bifurcation and the 
nature of these changes has been described in7. Since these behavior differences are important in planning how 
to control a disease, it is important to determine whether a system can have a backward bifurcation.

Simulations of systems of nonlinear differential equations can be performed with numerical methods. When 
the numerical results are shown, several options are available: time waveforms, phase diagrams or bifurcation 
diagrams12.

As one varies a parameter, fixed points can coalesce with other fixed points, appear, disappear and change 
their stability. Values of (x;µ); x ∈ R

nandµissetofparametres ; at which such things occur are called bifurcation 
points. There are of course many ways which these things can happen and they all depend on the definition of 
f (x;µ); but there are three generic types of bifurcations: Saddle node, Trans critical and Pitchfork. Each of these 
types of bifurcations has a generic system which exemplifies their salient features.

In this study, healthy liver and blood cells, infected liver and blood cells and free hepatitis B virus are consid-
ered. Using non-cytolytic cure processes of infected liver and blood cells, even by transplantation of hyper toxic 
infected liver of a patient, sometime reinfection is occurring. The insight of this work is why this reinfection 
is occurring. For this, I considered bifurcation analysis of hepatitis B virus with non-cytolytic cure process on 
infected liver and blood cells.

Materials and methods
Basic concepts of bifurcation analysis.  A bifurcation in dynamical systems happens when a minor, 
gradual change in a system’s parameter values results in an unexpected "qualitative" or topological change in the 
behavior of the system. It has two types:

A.	 Local bifurcations—which can be analyzed entirely through changes in the local stability properties of equi-
libria, periodic orbits or other invariant sets as parameters cross through critical thresholds.

B.	 Global bifurcation—which often occur when larger invariant sets of the system ”collide” with each other, or 
with equilibria of the system. They cannot be detected purely by a stability analysis of the equilibria (fixed 
or equilibrium points).

Saddle node bifurcation.  A saddle-node bifurcation, tangential bifurcation, turning point bifurcation, or 
fold bifurcation is a local bifurcation in the field of mathematics known as bifurcation theory. A saddle-node 
bifurcation is a collision and disappearance of two equilibria in dynamical systems. In autonomous systems, 
this occurs when the critical equilibrium has one zero eigenvalue. This phenomenon is also called fold or limit 
point bifurcation. The term ’saddle-node bifurcation’ is most often used in reference to continuous dynamical 
systems. Another name is blue sky bifurcation in reference to the sudden creation of two fixed points6. Saddle 
node bifurcation is illustrated in Fig. 1.

Trans‑critical bifurcation.  A trans-critical bifurcation is a distinct type of local bifurcation in the math-
ematical field of bifurcation theory, and it is distinguished by an equilibrium whose real portion goes through 
zero. A trans-critical bifurcation is one in which a fixed point exists for all values of a parameter and is never 
destroyed. However, such a fixed point interchanges its stability with another fixed point as the parameter is 
varied (see Fig. 2). In other words, both before and after the bifurcation, there is one unstable and one stable 

Figure 1.   Saddle node bifurcation.
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fixed point. However, their stability is exchanged when they collide. So the unstable fixed point becomes stable 
and vice versa5,6.

Pitchfork bifurcation.  A specific kind of local bifurcation known as a "pitchfork bifurcation" occurs when 
the system changes from having one fixed point to having three fixed points (it is described in Fig. 3). Pitchfork 
bifurcations are two types – supercritical and subcritical11.

Forward bifurcation.  Epidemiologically, when reproduction number  R0 is less than unity, a small influx 
of infected individuals will not generate large outbreaks, and the disease dies out in time (in this case, the cor-
responding disease free equilibrium point is asymptotically-stable). On the other hand, the disease will persists 
if R0 exceeds unity, where a stable endemic equilibrium exists. This phenomenon, illustrated in Fig. 4, where the 
disease-free equilibrium loses its stability and a stable endemic equilibrium appears as R0 increases through one, 
is known as forward bifurcation13. Some of the main characteristics of forward bifurcation are11:

1.	 the absence of positive (endemic) equilibria near the DFE when R0 < 1 (in this setting, the DFE is often the 
only equilibrium when R0 < 1)

2.	 a low level of endemicity when R0 is slightly above unity.

The forward bifurcation phenomenon has been observed in numerous disease transmission models4,11. 
For models that exhibit forward bifurcation, the requirement R0 < 1 is necessary and sufficient for disease 
elimination.

Backward bifurcation.  When forward bifurcation occurs, the condition R0 < 1 is usually a necessary and 
sufficient condition for disease eradication. Backward bifurcation is a bifurcation where the locally-asymptoti-
cally stable DFE co-exists with a locally-asymptotically endemic equilibrium when R0 < 1 (see Fig. 5). The epide-
miological implication of backward bifurcation is that the requirement R0 < 1 , while necessary, is not sufficient 
for effective disease control. In a backward bifurcation setting, once R0 crosses unity, the disease can invade to a 

Figure 2.   Trans-critical bifurcation.

Figure 3.   Pitchfork bifurcation.
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relatively high endemic level. In this case, decreasing R0 to its former level will not necessarily make the disease 
disappear11.

Methods of identifying types of bifurcation.  To know the qualitative behavior of the solution of the 
given n-dimensional dynamical system:

near the non-hyperbolic equilibrium points, changes as the vector field f  passes through a point in the bifurcation 
set or as the parameter µ varies through a bifurcation value µ0 ; we use the following criteria.

Theorem 1  (Sotomayor’s theorem). Suppose that f (x0,µ0) = 0 and that the n× n matrix A = Df (x0,µ0) has 
a simple eigenvalue � = 0 with eigenvector v and that AT has an eigenvector w corresponding to the eigenvalue 
� = 0 . Furthermore, suppose that A has k eigenvalues with negative real part and (n− k − 1) eigenvalues with 
positive real part and that the following conditions are satisfied.

(1)ẋ =
dx

dt
= f (x,µ), x ∈ R

n and µ ∈ R
m

Figure 4.   Forward bifurcation.

Figure 5.   Backward bifurcation.
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1.	 If   wTfµ(x0,µ0)  = 0,wT
[

D2f (x0,µ0)(v, v)
]

 = 0, the system (1) experiences a saddle-node bifurcation at 
the equilibrium point x0 as the parameter µ passes through the bifurcation value µ = µ0.

2.	 If wTfµ(x0,µ0) = 0,wT
[

Df (x0,µ0)v
]

 = 0 and wT
[

D2f (x0,µ0)(v, v)
]

 = 0,then system7 (1) experiences a 
trans-critical bifurcation at the equilibrium point x0 as the parameter µ varies through the bifurcation value 
µ = µ0

3.	 If wTfµ(x0,µ0) = 0,wT [Dfµ(x0,µ0)v] �= 0 , wT
[

D2f (x0,µ0)(v, v)
]

= 0 and wT [D3f (x0,µ0)(v, v, v)] �= 0 , 
then system (1) experiences a pitchfork bifurcation at the equilibrium point x0 as the parameter µ varies 
through the bifurcation value µ = µ0.

Theorem 2  14. Consider the following general system of ordinary differential equations with a parameter µ

where 0 is an equilibrium point of the system (that is, f (0,µ) = 0 for all µ ) and assume.

A1 : A = Dxf (0, 0) = (
∂fi
∂xj

(0, 0)) is the linearization matrix of the system8 around the equilibrium 0 with µ 
evaluated at 0 . Zero is a simple eigenvalue of A  and other eigenvalues of A  have negative real parts;

A2 : Matrix  A has a right eigenvector w and a left eigenvector v(each corresponding to the zero eigenvalue).
Let fk be the kth component of f   and

The local dynamics of the system around 0 is totally determined by the signs of a and b

1.	 Let a > 0, b > 0 . When µ < 0 with |µ| ≪ 1 , 0 is locally asymptotically stable and there exists a positive 
unstable equilibrium; when 0 < µ ≪ 1 , 0 is unstable and there exists a negative, locally asymptotically stable 
equilibrium;

2.	 Let a < 0, b < 0 . When µ < 0 with |µ| ≪ 1 , 0 is unstable; when 0 < µ ≪ 1 , 0 is locally asymptotically stable 
equilibrium, and there exists a positive unstable equilibrium;

3.	 Let a > 0, b < 0 . When µ < 0 with |µ| ≪ 1 , 0 is unstable, and there exists a locally asymptotically stable 
negative equilibrium; when 0 < µ ≪ 1 , 0 is stable, and a positive unstable equilibrium appears;

4.	 Let a < 0, b > 0 . When µ changes from negative to positive, 0 changes its stability from stable to unstable. 
Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

5.	 When a > 0 and b > 0 , the bifurcation at µ = 0 is subcritical (backward bifurcation).
6.	 If a < 0 and b > 0 , then the bifurcation at µ = 0 is supercritical (forward bifurcation).

Dynamics of hepatitis B virus in the host.  Hepatitis is inflammation of the liver, usually producing 
swelling and, in many cases, permanent damage to liver tissues (cirrhosis). A number of agents can cause hepa-
titis, including infectious diseases, chemical poisons, drugs, and alcohol. Hepatitis B virus (HBV) interferes with 
the function of the liver by replicating in the liver cells called hepatocytes. HBV is spread through contact with 
infected bodily fluids such as blood, semen, and cervical fluid. Although the virus is found in every bodily secre-
tion, it is not transferred through casual contact.

Infections of HBV occur only if the virus is able to enter the blood stream and reach the liver. Once in the 
liver, the virus reproduces and releases large numbers of new viruses into the blood stream15, HBV can be either 
acute or chronic stage. The acute form is a short-term illness that occurs within the first 6 months after a person 
is exposed to HBV. The diseases can become chronic stage when the HBV occurs more than 6 months after a 
person is exposed, although this does not always happen and, particularly in the case of hepatitis B, the likeli-
hood of chronicity depends on a person’s age at the time of infection. Chronic hepatitis B infection is a silent 
killer. Without screening for infection, many acutely and chronically infected persons are not aware that they 
have been infected until symptoms of advanced liver disease appear16.

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus. It is a major global 
health problem. It can cause chronic liver disease and chronic infection and puts people at high risk of death 
from cirrhosis of the liver and hepatocellular carcinoma (liver cancer)17. Infections of hepatitis B occur only if 
the virus is able to enter the blood stream and reach the liver. Once in the liver, the virus reproduces and releases 
large numbers of new viruses into the blood stream18.

Treatment strategies include drug therapy for HBV and liver transplantation incases of end-stage liver disease. 
However, these treatments are expensive and can produce significant side effects6. Entecavir is off-patent, but 
availability and costs vary widely. Tenofovir is protected by a patent until 2018 in most upper-middle- and high-
income countries, where the cost ranged from US$ 400 to US$ 1,500 for a year of treatment in February 2017. 
Additionally, it is known that many patients with liver transplants have experienced HBV reinfection, illustrating 

(2)
dx

dt
= f (x,µ), f : Rn × R → R and f εC2

(

R
n × R

)

a =

n
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

b =

n
∑

k,i,j=1

vkwi
∂2fk

∂xi∂µ
(0, 0)



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7018  | https://doi.org/10.1038/s41598-023-27468-9

www.nature.com/scientificreports/

that treatments may not result in a permanent cure. Thus, in order to analyze the within-host dynamics of HBV, 
mathematical modeling is introduced.

Patients with liver transplants may not be fully cured from the viral infection. Because of this, speculation 
arises as to how individuals can become re-infected following medical and/or surgical treatment. Viral particles, 
present in the blood stream, may leads to the construction of an additional compartment in the model, the blood 
compartment. The presence of a weak and narrowly focused cellular immune response is unable to control HBV 
replication, leading to viral persistence and progressive liver injury19.

In this paper, we consider a model which includes a logistic growth term for infected liver and blood cells, a 
mass action term for infection of uninfected cells, a free virus term, a loss of free viruses on infection of a cell, 
and a non-Cytolytic cure process with specific CD8+ T cells that could inhibit HBV replication.

The mathematical model.  Assumptions.  Let Lh(t) is the number of healthy liver cell (hepatocyte), Li(t) 
is the number of infected liver cell, v(t) is the concentration of free viruses in the liver and blood, Bh(t) is the 
number of healthy blood cell and Bi(t) is the number of infected blood cell at a time t. The epidemiological fea-
ture of the dynamics of HBV within the host (see Fig. 6) has the following assumptions:

•	 HBV attacks both healthy liver cell and blood cells.
•	 Once the liver cell and blood cell are infected; they never infected again.
•	 Healthy liver cell and blood cell are replicate/proliferate because of stem cell by logistic growth σ

(

1− Lh+Li
k1

)

 

and ψ
(

1− Bh+Bi
k2

)

 respectively.
•	 The infected hepatocytes and blood cell do not proliferate.
•	 Healthy liver cell and blood cell are infected by the mass action low θLhvLh+v and πBhvBh+v respectively.
•	 Infected liver cell and blood cell are producing free additional viruses.
•	 Infected cells are cured by non-Cytolytic cure processes.
•	 Infected cells and viruses are naturally died.
•	 To decrease or eliminate HBV production and viral infection in the liver θLHvLH+v +

πBhv
Bh+v  must be reduced.

The flow chart of the model.  The parameters in the model are defined in Table 1.

The dynamics of the model. 

(3)
dLh

dt
= σ

[

1−
Lh + Li

k1

]

Lh + ωLi −
θLhv

Lh + v

(4)
dLi

dt
=

θLhv

Lh + v
− (δ + ω)Li

(5)
dv

dt
= pLi + qBi −

[

µ+
θLh

Lh + v
+

πBh

Bh + v

]

v

Figure 6.   The in-host dynamics of HBV.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7018  | https://doi.org/10.1038/s41598-023-27468-9

www.nature.com/scientificreports/

In this paper, I have discussed about bifurcation analysis of hepatitis B virus with non-Cytolytic cure process 
(without killing cells) on infected liver and blood cells. I consider the dynamics of HBV in the host, the way 
how one who live with chronic HBV can prolong his life expectancy by lysis of infected liver cell and infected 
blood cell.

The disease free equilibrium point E0 and reproduction number R0 of the model are:

Here let x = x(Lh, Li , v,Bh,Bi) . Let θ∗ = θ be a bifurcation parameter at R0 = 1; then,

⇔ θ∗ =
qπ
�+η

−(µ+π)

1−
p

δ+ω

 … (*). Then the Jacobean matrix of the dynamical system of (3–7) evaluated at disease 

free equilibrium point E0 = (k1, 0, 0, k2, 0) is given by:

The Jacobean matrix J(E0) evaluated at θ∗ i.e. J(E0)|θ∗ is given by:

L e t  z  b e  e i g e n v a l u e  o f  J(E0)|θ∗ .  T h e n , 
∣

∣

∣

∣

∣

∣

∣

∣

∣

−(σ + z)
0
0
0
0

ω − σ

−(δ + ω + z)
p
0
0

−θ∗

θ∗

−(µ+ θ∗ + π + z)
−π

π

0
0
0

−(ψ + z)
0

0
0
q

�− ψ

−(�+ η + z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

 is characteristic 

equation.

(6)
dBh

dt
= ψ

[

1−
Bh + Bi

k2

]

Bh + �Bi −
πBhv

Bh + v

(7)
dBi

dt
=

πBhv

Bh + v
− (�+ η)Bi

E0(Lh, Li , v,Bh,Bi) = (k1, 0, 0, k2, 0) and R0 =
pθ

(δ + ω)(µ+ π + θ)
+

qπ

(�+ η)(µ+ π + θ)
.

R0 =
pθ

(δ + ω)(µ+ π + θ)
+

qπ

(�+ η)(µ+ π + θ)
=

pθ∗

(δ + ω)(µ+ π + θ∗)
+

qπ

(�+ η)(µ+ π + θ∗)
= 1

J(k1, 0, 0, k2, 0) = J(E0) =











−σ

0
0
0
0

ω − σ

−(δ + ω)

p
0
0

−θ

θ

−(µ+ θ + π)

−π

π

0
0
0

−ψ

0

0
0
q

�− ψ

−(�+ η)











J(E0)|θ∗ =











−σ

0
0
0
0

ω − σ

−(δ + ω)

p
0
0

−θ∗

θ∗

−(µ+ θ∗ + π)

−π

π

0
0
0

−ψ

0

0
0
q

�− ψ

−(�+ η)











Table 1.   Meaning of parameters in the HBV model.

Parameters Meaning of parameters

σ Intrinsic growth rate of healthy liver cell

ψ Intrinsic growth rate of healthy blood cell

k1 Carrying capacity of the liver for liver cell

k2 Carrying capacity of the blood for blood cell

θ Rate of infection of liver cell by free virus

π Rate of infection of blood cell by free virus

ω Rate of cure of infected liver cells by non-Cytolytic cure process

� Rate of cure of infected blood cells by non-Cytolytic cure process

p Rate of release of free viruses by an infected liver cell

q Rate of release of free viruses by an infected blood cell

δ Death rate of infected liver cells

η Death rate of infected blood cells

µ Death rate of free virus
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Here, it is enough to show that (δ + ω)(�+ η)(µ+ π + θ∗)[1− R0] = 0 for at least one of zi = 0; i = 3, 4, 5. 
Now,

⇔ (δ + ω)(�+ η)(µ+ π + θ∗)[1− R0] = (δ + ω)(�+ η)

[

µ+ π +
(

1−
p

δ+ω

)

[
qπ
�+η

−(µ+π)

1−
p

δ+ω

] −
qπ

(�+η)

]

 by sub-

stitution of θ∗ =
qπ
�+η

−(µ+π)

1−
p

δ+ω

  from (*) above.

Thus

Hence, 0 is the simple eigenvalue of J(E0)|θ∗ .

Theorem 3  Assuming that R0 passes through the value R0 = 1; then model (3–7) near the disease-free equilib-
rium E0(Lh, Li , v,Bh,Bi) = (k1, 0, 0, k2, 0) has:

1.	 No saddle-node bifurcation;
2.	 A trans- critical bifurcation;
3.	 No pitchfork bifurcation

Proof  Let the eigenvalue of J(E0)|θ∗ is zero, and let.

Let x0 = E0(Lh, Li , v,Bh,Bi) = (k1, 0, 0, k2, 0) and µ0 = θ∗ =
qπ
�+η

−(µ+π)

1−
p

δ+ω

 . Then,

⇒ (σ + z)(ψ + z)
[

−(δ + ω + z)(�+ η + z)
(

µ+ θ∗ + π + z
)

−
[

−pθ∗(�+ η + z)− qπ(δ + ω + z)
]]

= 0

⇒ z1 = −σ or z2 = −ψ or (δ + ω + z)(�+ η + z)
(

µ+ θ∗ + π + z
)

+
[

−pθ∗(�+ η + z)− qπ(δ + ω + z)
]

= 0

⇒ z1 = −σ or z2 = −ψ or z3 +
(

δ + ω + �+ η + µ+ θ∗ + π
)

z2 + [(δ + ω)(�+ η)+ (δ + ω)
(

µ+ π + θ∗
)

+ (�+ η)
(

µ+ π + θ∗
)

− pθ∗ − qπ ]z + (δ + ω)(�+ η)
(

µ+ π + θ∗
)

[1− R0] = 0

(δ + ω)(�+ η)
(

µ+ π + θ∗
)

[1− R0] = (δ + ω)(�+ η)
(

µ+ π + θ∗
)

[

1−

(

pθ∗

(δ + ω)(µ+ π + θ∗)
+

qπ

(�+ η)(µ+ π + θ∗)

)]

⇔ (δ + ω)(�+ η)
(

µ+ π + θ∗
)

[1− R0] = (δ + ω)(�+ η)

[

(

µ+ π + θ∗
)

−
pθ∗

(δ + ω)
−

qπ

(�+ η)

]

⇔ (δ + ω)(�+ η)
(

µ+ π + θ∗
)

[1− R0] = (δ + ω)(�+ η)

[

µ+ π +

(

1−
p

δ + ω

)

θ∗ −
qπ

(�+ η)

]

⇔ (δ + ω)(�+ η)
(

µ+ π + θ∗
)

[1− R0] = (δ + ω)(�+ η)

[

(µ+ π)+
qπ

�+ η
− (µ+ π)−

qπ

�+ η

]

⇔ (δ + ω)(�+ η)
(

µ+ π + θ∗
)

[1− R0] = 0.

z1 = −σ or z2 = −ψ or z3 +
(

δ + ω + �+ η + µ+ θ∗ + π
)

z2

+
[

(δ + ω)(�+ η)+ (δ + ω)
(

µ+ π + θ∗
)

+ (�+ η)
(

µ+ π + θ∗
)

− pθ∗ − qπ
]

z = 0

⇒ z1 = −σorz2 = −ψorz3 = 0orz2 +
(

δ + ω + �+ η + µ+ θ∗ + π
)

z

+
[

(δ + ω)(�+ η)+ (δ + ω)
(

µ+ π + θ∗
)

+ (�+ η)
(

µ+ π + θ∗
)

− pθ∗ − qπ
]

= 0

dLh

dt
= σ

[

1−
Lh + Li

k1

]

Lh + ωLi −
θLhv

Lh + v
= f1

dLi

dt
=

θLhv

Lh + v
− (δ + ω)Li = f2

dv

dt
= pLi + qBi −

[

µ+
θLh

Lh + v
+

πBh

Bh + v

]

v = f3

dBh

dt
= ψ

[

1−
Bh + Bi

k2

]

Bh + �Bi −
πBhv

Bh + v
= f4

dBi

dt
=

πBhv

Bh + v
− (�+ η)Bi = f5
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where 

From (b), we have v3 = δ+ω
θ∗

v2. Substitution of v3 in (a), provides:

⇒ v1 = − (σ+δ)
σ

v2. From (e) and (c), we have v5 = π
�+η

v3 =
π(δ+ω)
θ∗(�+η)

v2 =

[

(µ+θ∗+π)(δ+ω)

θ∗
−p

]

q v2.
From (d) we have v4 = −

π(δ+ω)(ψ+η)
θ∗ψ(�+η)

v2 . Let v2 = 1

Thus, V =
(

− (σ+δ)
σ

, 1, δ+ω
θ∗

,−π(δ+ω)(ψ+η)
θ∗ψ(�+η)

, π(δ+ω)
θ∗(�+η)

)T
,

where: 

Df (x,µ) =











a1 a2 a3 0 0

b1 b2 b3 0 0

c1 p c2 c3 q
0 0 d1 d2 d3
0 0 e1 e2 e3











,

a1 =
σ

k1
[k1 − 2Lh − Li]−

θ∗v2

(Lh + v)2
, a2 = −

σ

k1
Lh + ω, a3 = −

θ∗Lh
2

(Lh + v)2
, b1 =

θ∗v2

(Lh + v)2
,

b2 = −(δ + ω), b3 =
θ∗Lh

2

(Lh + v)2
, c1 =

−θ∗v2

(Lh + v)2
, c2 = −

(

µ+
θ∗Lh

2

(Lh + v)2
+

πBh
2

(Bh + v)2

)

,

c3 =
−πv2

(Bh + v)2
, d1 = −

πBh
2

(Bh + v)2
, d2 =

ψ

k2
[k2 − 2Bh − Bi]−

πv2

(Bh + v)2
, d3 = −

ψ

k2
Bh + �,

e1 =
πBh

2

(Bh + v)2
, e2 =

πv2

(Bh + v)2
, e3 = −(�+ η)

⇒ Df (x0,µ0) =











−σ

0
0
0
0

ω − σ

−(δ + ω)

p
0
0

−θ∗

θ∗

−(µ+ θ∗ + π)

−π

π

0
0
0

−ψ

0

0
0
q

�− ψ

−(�+ η)











= A.

D2f (x0,µ0) =















− 2σ
k1

− σ
k1

0 0 0 − σ
k1

0 0 0 0 0 0 2θ∗

k1
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 − 2θ∗

k1
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2( θ
k1

+ π
k2
) 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2π
k2

0 0 0 0 0 −
2ψ
k2

−
ψ
k2

0 0 0 −
ψ
k2

0

0 0 0 0 0 0 0 0 0 0 0 0 − 2π
k2

0 0 0 0 0 0 0 0 0 0 0 0















⇒ AV = 0,Where V = (v1, v2, v3, v4, v5)
T and 0 = (00, 0, 0, 0, 0)T

⇒











−σ

0
0
0
0

ω − σ

−(δ + ω)

p
0
0

−θ∗

θ∗

−(µ+ θ∗ + π)

−π

π

0
0
0

−ψ

0

0
0
q

�− ψ

−(�+ η)





















v1
v2
v3
v4
v5











=











0
0
0
0
0











⇒



















−σv1 + (ω − σ)v2 − θ∗v3 = 0 . . . (a)
−(δ + ω)v2 + θ∗v3 = 0 . . . .(b)

pv2 − (µ+ θ∗ + π)v3 + qv5 = 0 . . . (c)
−πv3 − ψv4 + (�− ψ)v5 = 0 . . . (d)

πv3 − (�+ η)v5 = 0 . . . (e)

−σv1 + (ω − σ)v2 − θ∗
(

δ + ω

θ∗

)

v2 = 0

(V ,V) =





























− (σ+δ)
σ
1

δ+ω
θ∗

−
π(δ+ω)(ψ+η)
θ∗ψ(�+η)
π(δ+ω)
θ∗(�+η)















,















− (σ+δ)
σ
1

δ+ω
θ∗

−
π(δ+ω)(ψ+η)
θ∗ψ(�+η)
π(δ+ω)
θ∗(�+η)





























=













a1
a2
a3
...

a25













25×1
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 .
Now,

Let AT has an eigenvector W = (w1,w2,w3,w4,w5)
T corresponding to eigenvalue zero.

From (a) and (d), we have w1 = w4 = 0. Then, from (b), w3 =
δ+ω
p w2 and from (c) and (e), 

w5 =
q(δ+ω)

p(�+η)
w2 =

[

(µ+θ∗+π)(δ+ω)

p −θ∗
]

π
 . Then W =

(

0,w2,
δ+ω
p w2, 0,

q(δ+ω)

p(�+η)
w2

)T
 , fµ(x,µ) =













−
Lhv
Lh+v
Lhv
Lh+v

−
Lhv
Lh+v
0
0













 and 

fµ(x0,µ0) =











0
0
0
0
0











a1 =

[

(σ + δ)

σ

]2

, a2 = −
(σ + δ)

σ
, a3 = −

(σ + δ)(δ + ω)

σθ∗
, a4 =

π(δ + ω)(ψ + η)(σ + δ)

σψθ∗(�+ η)
,

a5 = −
π(σ + δ)(δ + ω)

σθ∗(�+ η)
, a6 = −

σ + δ

σ
, a7 = 1,

a8 =
δ + ω

θ∗
, a9 = −

π(δ + ω)(ψ + η)

θ∗ψ(�+ η)
, a10 =

π(δ + ω)

θ∗(�+ η)
, a11 = −

(σ + δ)(δ + ω)

σθ∗
, a12 =

δ + ω

θ∗
, a13 =

(

δ + ω

θ∗

)2

,

a14 = −
π(δ + ω)2(ψ + η)

θ∗2ψ(�+ η)
, a15 =

π(δ + ω)2

θ∗2(�+ η)
, a16 =

π(σ + δ)(δ + ω)(ψ + η)

σψθ∗(�+ η)
,

a17 = −
π(δ + ω)(ψ + η)

θ∗ψ(�+ η)
, a18 = −

π(δ + ω)2(ψ + η)

θ∗2ψ(�+ η)
,

a19 =

[

π(δ + ω)(ψ + η)

θ∗ψ(�+ η)

]2

, a20 =
−π2(δ + ω)2(ψ + η)

ψθ∗2(�+ η)2
, a21 = −

π(σ + δ)(δ + ω)

σθ∗(�+ η)
,

a22 =
π(δ + ω)

θ∗(�+ η)
, a23 =

π(δ + ω)2

θ∗2(�+ η)
,

a24 = −
π2(δ + ω)2(ψ + η)

ψθ∗2(�+ η)2
, a25 =

[

π(δ + ω)

θ∗(�+ η)

]2

AT =











−σ 0 0 0 0
ω − σ −(δ + ω) p 0 0
−θ∗ θ∗ −(µ+ π + θ∗) −π π

0 0 0 −ψ 0
0 0 q �− ψ −(�+ η)











⇒











−σ 0 0 0 0
ω − σ −(δ + ω) p 0 0
−θ∗ θ∗ −(µ+ π + θ∗) −π π

0 0 0 −ψ 0
0 0 q �− ψ −(�+ η)





















w1

w2

w3

w4

w5











=











0
0
0
0
0











⇒



















−θ∗w1 +

σw1 = 0 . . . (a)
(ω − σ)w1 − (δ + ω)w2 + pw3 = 0 . . . (b)

θ∗w2 − (µ+ π + θ∗)w3 − πw4 + πw5 = 0 . . . (c)
−ψw4 = 0 . . . (d)

qw3 + (�− ψ)w4 − (�+ η)w5 = 0 . . . (e)



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7018  | https://doi.org/10.1038/s41598-023-27468-9

www.nature.com/scientificreports/

Case 1: a)

b)

By Sotomayor theorem, this shows that the model (3–7) do not exhibit saddle-node bifurcation.
Case 2: a)

b)

c)

By Sotomayor theorem, this shows that model (3–7) exhibit trans-critical bifurcation.
Case 3: a)

Dfµ(x,µ) =



















−
�

Lh+v−1
Lh+v

�

v 0 −
�

Lh
Lh+v

�2
0 0

�

Lh+v−1
Lh+v

�

v 0
�

Lh
Lh+v

�2
0 0

�

Lh+v−1
Lh+v

�

v 0
�

Lh
Lh+v

�2
0 0

0 0 0 0 0
0 0 0 0 0



















Dfµ(x0,µ0) =











0 0 −1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0











WTfµ(x0,µ0) =

�

0,w2,
δ + ω

p
w2, 0,

q(δ + ω)

p(�+ η)
w2

�

·











0
0
0
0
0











= 0

wT
�

D2f (x0,µ0)(v, v)
�

=

�

0,w2,
δ + ω

p
w2, 0,

q(δ + ω)

p(�+ η)
w2

�

[





















−2[δϑ∗(σ−δ)−σ(δ+ω)2

σθ∗k1

− 2(δ+ω)2

θ∗k1
2(πk1+θ∗k2)(δ+ω)2

θ∗2k1k2
2π(δ+ω)2[ψ(�+η)2−π(ψ+η)2+ψ(�+η)]

k2ψθ∗2(�+η)2

− 2π(δ+ω)2

k2θ∗
2





















]

⇒ wT
[

D2f (x0,µ0)(v, v)
]

=
2(δ + ω)2[θ∗(πk1 + θ∗k2)(δ + ω)− pk2θ

∗(�+ η)− k1π(�+ η)(δ + ω)]

pk1k2θ∗
2(�+ η)

�= 0

WTfµ(x0,µ0) =

�

0,w2,
δ + ω

p
w2, 0,

q(δ + ω)

p(�+ η)
w2

�











0
0
0
0
0











= 0

WT [Df µ(x0,µ0)V ] =

�

0,w2,
δ + ω

p
w2, 0,

q(δ + ω)

p(�+ η)
w2

�

[











0 0 −1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

























− (σ+δ)
σ
1

δ+ω
θ∗

−
π(δ+ω)(ψ+η)
θ∗ψ(�+η)
π(δ+ω)
θ∗(�+η)















]

⇒ WT [Df µ(x0,µ0)V ] =
δ + ω

θ∗
(1+

δ + ω

p
) �= 0

wT
�

D2f (x0,µ0)(v, v)
�

=

�

0, 1,
δ + ω

p
, 0,

q(δ + ω)

p(�+ η)

�

[





















−2[δϑ∗(σ−δ)−σ(δ+ω)2

σθ∗k1

− 2(δ+ω)2

θ∗k1
2(πk1+θ∗k2)(δ+ω)2

θ∗2k1k2
2π(δ+ω)2[ψ(�+η)2−π(ψ+η)2+ψ(�+η)]

k2ψθ∗2(�+η)2

− 2π(δ+ω)2

k2θ∗
2





















]

⇒ wT
[

D2f (x0,µ0)(v, v)
]

=
2(δ + ω)2[θ∗(πk1 + θ∗k2)(δ + ω)− pk2θ

∗(�+ η)− k1π(�+ η)(δ + ω)]

pk1k2θ∗
2(�+ η)

�= 0
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b)

c)

d)

By Sotomayor theorem, this tells us that model (3–7) do not exhibit pitchfork bifurcation.

Theorem 4  Assume that R0 passes through the thresh hold value R0 = 1. Then model [1–5] near the disease-free 
equilibrium point  E0(Lh, Li , v,Bh,Bi) = (k1, 0, 0, k2, 0) has:

1.	 Back ward bifurcation if δ+ω
p − 1 < 0,

(�+η)3

qπ2 − 1 < 0 and v2 > 0

2.	 Forward bifurcation if δ+ω
p − 1 < 0,

(�+η)3

qπ2 − 1 > 0 and v2 > 0

Proof  For simplicity, let x1 = Lh, x2 = Li , x3 = v, x4 = Bh and x5 = Bi . Then model [1–5] is transformed to:

Now, Df (x0,µ0) =











−σ

0
0
0
0

ω − σ

−(δ + ω)

p
0
0

−θ∗

θ∗

−(µ+ θ∗ + π)

−π

π

0
0
0

−ψ

0

0
0
q

�− ψ

−(�+ η)











= A

Let W = (w1,w2,w3,w4,w5)
T be the right eigenvector of matrix A and V = (v1, v2, v3, v4, v5) be a left eigen-

vector of A which are corresponding to eigenvalue zero and V .WT = 1 . Then,

WTfµ(x0,µ0) =

�

0,w2,
δ + ω

p
w2, 0,

q(δ + ω)

p(�+ η)
w2

�











0
0
0
0
0











= 0

WT [Df µ(x0,µ0)V ] =

�

0,w2,
δ + ω

p
w2, 0,

q(δ + ω)

p(�+ η)
w2

�

[











0 0 −1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

























− (σ+δ)
σ
1

δ+ω
θ∗

−
π(δ+ω)(ψ+η)
θ∗ψ(�+η)
π(δ+ω)
θ∗(�+η)















]

⇒ WT [Df µ(x0,µ0)V ] =
δ + ω

θ∗
(1+

δ + ω

p
) �= 0

wT
[

D2f (x0,µ0)(v, v)
]

=
2(δ + ω)2[(πk1 + θ∗k2)(δ + ω)(�+ η)− pk2θ

∗(�+ η)− k1πq(δ + ω)]

pk1k2θ∗
2(�+ η)

�= 0

wT
[

D3f (x0,µ0)(v, v, v)
]

 = 0

dx1

dt
= σ

[

1−
x1 + x2

k1

]

x1 + ωx2 −
θx1x3

x1 + x3
= f1

dx2

dt
=

θx1x3

x1 + x3
− (δ + ω)x2 = f2

dx3

dt
= px2 + qx5 −

[

µ+
θx1

x1 + x3
+

πx4

x4 + x3

]

x3 = f3

dx4

dt
= ψ

[

1−
x4 + x5

k2

]

x4 + �x5 −
πx3x4

x4 + x3
= f4

dx5

dt
=

πx3x4

x4 + x3
− (�+ η)x5 = f5

(v1v2v3v4v5)











−σ

0
0
0
0

ω − σ

−(δ + ω)

p
0
0

−θ∗

θ∗

−(µ+ θ∗ + π)

−π

π

0
0
0

−ψ

0

0
0
q

�− ψ

−(�+ η)











=











0
0
0
0
0










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From (a) and (d), we have v1 = v4 = 0 . Also, from (b) we have v3 = δ+ω
p v2; letting v2  free. From (c) and (e) 

we have: v5 =
q(δ+ω)

p(�+η)
v2 =

(µ+θ∗+π)(δ+ω)−pθ∗

pπ v2.

⇒ V = (0, v2,
δ+ω
p v2, 0,

q(δ+ω)

p(�+η)
v2) . On the other hand AW = 0 and V .W = 1

L e t t i n g  w2  f r e e ,  w e  h av e  w1 = − (σ+δ)
σ

w2,
δ+ω
θ∗

w2,w4 = −
π(δ+ω)(ψ+η)
ψθ∗(�+η)

w2,w5 =
π(δ+ω)
θ∗(�+η)

w2 =

((µ+θ∗+π)(δ+ω)−pθ∗)
θ∗q w2

Now, we choose v2 and w2 such that V .WT = 1

Thus, we should choose v2 and w2  which have the same sign. That is, we can choose v2 < 0 and w2 < 0 or 
v2 > 0 and w2 > 0.

Now, a =
∑n

k,i,j=1 vkwiwj
∂2fk
∂xi∂xj

(x0,µ0) and b =
∑n

k,i,j=1 vkwi
∂2fk
∂xi∂µ

(x0,µ0)

(A)	 Calculation of  vkwiwj
∂2fk
∂xi∂xj

(x0,µ0) is as follows:

vkwiwj
∂2fk
∂xi∂xj

(x0,µ0) = 0 for k = 1andk = 4 , since v1 = v4 = 0.
For k = 2, we have:

⇒



















−σv1 = 0 . . . (a)
(ω − σ)v1 − (δ + ω)v2 + pv3 = 0 . . . (b)

−θ∗v1 + θ∗v2 − (µ+ θ∗ + π)v3 − πv4 + πv5 = 0 . . . (c)
−ψv4 = 0 . . . (d)

qv3 + (�− ψ)v4 − (�+ η)v5 = 0 . . . (e)

⇒











−σ

0
0
0
0

ω − σ

−(δ + ω)

p
0
0

−θ∗

θ∗

−(µ+ θ∗ + π)

−π

π

0
0
0

−ψ

0

0
0
q

�− ψ

−(�+ η)





















w1

w2

w3

w4

w5











=











0
0
0
0
0











⇒



















−σw1 + (ω − σ)w2 − θ∗w3 = 0 . . . (a)
−(δ + ω)w2 + θ∗w3 = 0 . . . (b)

pw2 − (µ+ π + θ∗)w3 + qw5 = 0 . . . (c)
−πw3 − ψw4 + (�− ψ)w5 = 0 . . . (d)

πw3 − (�+ η)w5 = 0 . . . (e)

⇒ WT = (−
(σ + δ)

σ
w2,w2,

δ + ω

θ∗
w2,−

π(δ + ω)(ψ + η)

ψθ∗(�+ η)
w2,

π(δ + ω)

θ∗(�+ η)
w2)

⇔

(

0, v2,
δ + ω

p
v2, 0,

q(δ + ω)

p(�+ η)
v2

)

.

(

−
(σ + δ)

σ
w2,w2,

δ + ω

θ∗
w2,−

π(δ + ω)(ψ + η)

ψθ∗(�+ η)
w2,

π(δ + ω)

θ∗(�+ η)
w2

)

= 1

⇔ 0+ v2w2 +
(δ + ω)2

pθ∗
v2w2 + 0+

qπ(δ + ω)2

pθ∗(�+ η)2
v2w2 = 1

⇔ [1+
(δ + ω)2

pθ∗
+

qπ(δ + ω)2

pθ∗(�+ η)2
]v2w2 = 1

⇔ v2w2 =
1

[

1+ (δ+ω)2

pθ∗ +
qπ(δ+ω)2

pθ∗(�+η)2

] > 0

v2w
2
1

∂2f2

∂x21
(x0,µ0) = 0, v2w1w2

∂2f2

∂x1∂x2
(x0,µ0) = 0, v2w1w3

∂2f2

∂x1∂x3
(x0,µ0) = 0

v2w1w4
∂2f2

∂x1∂x4
(x0,µ0) = 0, v2w1w5

∂2f2

∂x1∂x5
(x0,µ0) = 0, v2w

2
2

∂2f2

∂x22
(x0,µ0) = 0,

v2w2w3
∂2f2

∂x2∂x3
(x0,µ0) = 0, v2w2w4

∂2f2

∂x2∂x4
(x0,µ0) = 0, v2w2w5

∂2f2

∂x2∂x5
(x0,µ0) = 0,
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For k = 3, we have:

For k = 5, we get:

Thus, a =
∑n

k,i,j=1 vkwiwj
∂2fk
∂xi∂xj

(x0,µ0) =
{

− 2(δ+ω)2

k1θ∗
v2w2

2 + 2
[

θ∗

k1
+ π

k2

]

(δ+ω)3

pθ∗2
v2w

2
2 −

2qπ3(δ+ω)3

pk2θ∗
2(�+η)3

v2w
2
2

}

⇒ a = 2(δ+ω)2

pθ∗ [
δ+ω−p

k1
+

π(δ+ω)[(�+η)3−qπ2]

k2θ∗(�+η)3
]v2w2

2 . Here, the value of a is depending on the value of 

(δ + ω)− p, (�+ η)3 − qπ2 and v2; because for every w2  = o,w2
2 > 0.

Hence;

v2w
2
3

∂2f2

∂x23
(x0,µ0) = −

2(δ + ω)2

k1θ∗
v2w2

2, v2w3w4
∂2f2

∂x3∂x4
(x0,µ0) = 0,

v2w3w5
∂2f2

∂x3∂x5
(x0,µ0) = 0, v2w

2
4

∂2f2

∂x24
(x0,µ0) = 0, v2w4w5

∂2f2

∂x4∂x5
(x0,µ0) = 0,

v2w
2
5

∂2f2

∂x25
(x0,µ0) = 0.

v3w
2
1

∂2f3

∂x21
(x0,µ0) = 0, v3w1w2

∂2f3

∂x1∂x2
(x0,µ0) = 0, v3w1w3

∂23

∂x1∂x3
(x0,µ0) = 0,

v3w1w4
∂2f3

∂x1∂x4
(x0,µ0) = 0, v3w1w5

∂2f3

∂x1∂x5
(x0,µ0) = 0, v3w

2
2

∂2f3

∂x22
(x0,µ0) = 0,

v3w2w3
∂2f3

∂x2∂x3
(x0,µ0) = 0, v3w2w4

∂2f3

∂x2∂x4
(x0,µ0) = 0, v3w2w5

∂2f3

∂x2∂x5
(x0,µ0) = 0,

v3w
2
3

∂2f3

∂x23
(x0,µ0) = 2

[

θ∗

k1
+

π

k2

]

(δ + ω)3

pθ∗2
v2w

2
2 , v3w3w4

∂2f3

∂x3∂x4
(x0,µ0) = 0,

v3w3w5
∂2f3

∂x3∂x5
(x0,µ0) = 0, v3w3w5

∂2f3

∂x3∂x5
(x0,µ0) = 0, v3w

2
4

∂2f3

∂x24
(x0,µ0) = 0,

v3w4w5
∂2f3

∂x4∂x5
(x0,µ0) = 0, v3w

2
5

∂2f3

∂x25
(x0,µ0) = 0.

v5w
2
1

∂2f5

∂x21
(x0,µ0) = 0, v5w1w2

∂2f5

∂x1∂x2
(x0,µ0) = 0, v5w1w3

∂2f5

∂x1∂x3
(x0,µ0) = 0

v5w1w4
∂2f5

∂x1∂x4
(x0,µ0) = 0, v5w1w5

∂2f5

∂x1∂x5
(x0,µ0) = 0, v5w

2
2

∂2f5

∂x22
(x0,µ0) = 0,

v5w2w3
∂2f5

∂x2∂x3
(x0,µ0) = 0, v5w2w4

∂2f5

∂x2∂x4
(x0,µ0) = 0, v5w2w5

∂2f5

∂x2∂x5
(x0,µ0) = 0,

v5w
2
3

∂2f5

∂x23
(x0,µ0) = −

2qπ3(δ + ω)3

pk2θ∗
2(�+ η)3

v2w
2
2 , v5w3w4

∂2f5

∂x3∂x4
(x0,µ0) = 0,

v5w3w5
∂2f5

∂x3∂x5
(x0,µ0) = 0, v5w

2
4

∂2f5

∂x24
(x0,µ0) = 0, v5w4w5

∂2f5

∂x4∂x5
(x0,µ0) = 0,

v5w
2
5

∂2f5

∂x25
(x0,µ0) = 0.

⇒ a =
2(δ + ω)2

θ∗
[−

1

k1
+

[

θ∗

k1
+

π

k2

]

(δ + ω)

pθ∗
−

qπ3(δ + ω)

pk2θ∗(�+ η)3
]v2w2

2
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Case 1: If δ+ω
p − 1 > 0,

(�+η)3

qπ2 − 1 > 0 and v2 > 0, then a > 0

Case 2: If δ+ω
p − 1 < 0,

(�+η)3

qπ2 − 1 < 0 and v2 > 0, then a > 0

Case 3: If δ+ω
p − 1 > 0,

(�+η)3

qπ2 − 1 > 0 and v2 < 0, then a < 0

Case 4: If δ+ω
p − 1 < 0,

(�+η)3

qπ2 − 1 > 0 and v2 > 0, then a < 0

Case 5: If δ+ω
p − 1 > 0,

(�+η)3

qπ2 − 1 < 0 and v2 < 0, then a < 0

(B)	 From calculation of  vkwi
∂2fk

∂xi∂θ∗
(x0,µ0) , we have:

vkwi
∂2fk
∂xi∂µ

(x0,µ0) = 0 for k = 1andk = 4 , since v1 = v4 = 0.
For k = 2, we have:

For k = 3, we have:

For k = 5, we get:

Therefore, b =
∑n

k,i,j=1 vkwi
∂2fk
∂xi∂µ

(x0,µ0) =
δ+ω
θ∗

v2w2 −
(δ+ω)2

pθ∗ v2w2

⇒ b = (δ+ω)
θ∗

[

1− (δ+ω)
p

]

v2w2 . Here, the value of b depends on the value of 1− (δ+ω)
p because v2w2 > 0.

Case 1: If (δ+ω)
p − 1 > 0, then b < 0.

Case 2: If (δ+ω)
p − 1 < 0, then b > 0.

From (A) and (B), we found that a = 2(δ+ω)2

pθ∗ [
δ+ω−p

k1
+

π(δ+ω)[(�+η)2−qπ2]

k2θ∗(�+η)3
]v2w2

2 and b = (δ+ω)
θ∗

[

1− (δ+ω)
p

]

v2w2.

Thus, if δ+ω
p − 1 < 0,

(�+η)3

qπ2 − 1 < 0 and v2 > 0, then both a and b are greater than zero; and the model 

exhibits backward bifurcation; and if δ+ω
p − 1 < 0,

(�+η)3

qπ2 − 1 > 0 and v2 > 0 , then a is less than zero and b is 
greater than zero and the model exhibits forward bifurcation.

Discussion
From the dynamical model of bifurcation analysis with non-Cytolytic cure processes of HBV on infected liver and 
blood cells, we have seen that the model exhibits back ward bifurcation if δ + ω < p, (�+ η)3 < qπ2 and v2 > 0 . 
This means, whenever the sum of death rate of infected liver cells and rate of cure of infected liver cells by non-
Cytolytic cure process is less than rate of release of free viruses by an infected liver cell; the cube of sum of rate 
of cure of infected blood cells by non-Cytolytic cure process and death rate of infected blood cells is less than 
product of square of rate of infection of blood cell by free viruses by the rate of release of free viruses with an 
infected blood cell and v2 > 0; then there is backward bifurcation or relapse or reinfection of HBV occurs in the 
host. On the other hand, if δ + ω < p, (�+ η)3 > qπ2 and v2 > 0 , then the dynamical model exhibits forward 
bifurcation. This means, whenever the sum of death rate of infected liver cells and rate of cure of infected liver 
cells by non-Cytolytic cure process is less than rate of release of free viruses by an infected liver cell; the cube of 
sum of rate of cure of infected blood cells by non-Cytolytic cure process and death rate of infected blood cells is 
greater than product of square of rate of infection of blood cell by free viruses by the rate of release of free viruses 
with an infected blood cell and v2 > 0; then there is forward bifurcation or there is no relapse or reinfection of 
HBV occurs in the host.

Conclusion
In this paper, a mathematical model for HBV that explores the interaction of viral particles in both the liver and 
the blood is developed. I have found that the HBV with non-Cytolytic cure process on infected liver and blood 
cells model is well-posed and useful for the description of hepatitis infection dynamics. The model has both a 
disease-free equilibrium and endemic state, similar to the basic models. Assuming that R0 passes through the 
value R0 = 1; the model near the disease-free equilibrium E0(Lh, Li , v,Bh,Bi) = (k1, 0, 0, k2, 0) has a trans- critical 
bifurcation but has no saddle-node and pitchfork bifurcation. However, a backward bifurcation can take place 
if δ + ω < p, (�+ η)3 < qπ2 and v2 > 0 . The existence of a backward bifurcation is an interesting artifact since 

v2w1
∂2f2

∂x1∂θ∗
= 0, v2w2

∂2f2

∂x2∂θ∗
= 0, v2w3

∂2f2

∂x3∂θ∗
=

δ + ω

θ∗
v2w2, v2w4

∂2f2

∂x4∂θ∗
= 0, v2w5

∂2f2

∂x5∂θ∗
= 0

v2w4
∂2f2

∂x4∂θ∗
= 0, v2w5

∂2f2

∂x5∂θ∗
= 0.

v3w1
∂2f3

∂x1∂θ∗
= 0, v3w2

∂2f3

∂x2∂θ∗
= 0, v3w3

∂2f3

∂x3∂θ∗
= −

(δ + ω)2

pθ∗
v2w2, v3w4

∂2f3

∂x4∂θ∗
= 0, v3w5

∂2f3

∂x5∂θ∗
= 0

v5w1
∂2f5

∂x1∂θ∗
= 0, v5w2

∂2f5

∂x2∂θ∗
= 0, v5w3

∂2f5

∂x3∂θ∗
= 0, v5w4

∂2f5

∂x4∂θ∗
= 0, v5w5

∂2f5

∂x5∂θ∗
= 0.
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this means that the disease cannot be eradicated by simply reducing the value of the basic reproduction number 
R0 below 1.This can have important implications on drug therapy protocols, since it sheds light on possible 
control mechanisms for disease eradication. If δ + ω < p, (�+ η)3 > qπ2 and v2 > 0 , then the model exhibits 
forward bifurcation. This tell us that in the case of transplantation of HBV chronically infected liver, reinfection 
or relapse is not occur.

Data availability
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