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Significance of thermal radiation 
and bioconvection for Williamson 
nanofluid transportation owing 
to cone rotation
Sohaib Abdal 1,2, Imran Siddique 3*, Sayed M. Eldin 4, Muhammad Bilal 1 & Sajjad Hussain 5

Numerical investigation for enhancement in thermal distribution of unsteady dynamics of Williamson 
nanofluids and ordinary nanofluids flow across extending surface of a rotating cone is represented 
in this communication. Bio-convection of gyrotactic micro-organisms and thermal radiative fluxes 
with magnetic fields are significant physical aspects of the study. The velocity slip conditions are 
considered along x and y directions. The leading formulation is transmuted into ordinary differential 
form via similarity functions. Five coupled equations with non-linear terms are resolved numerically 
through the utilization of Matlab code for the Runge–Kutta procedure. The parameters of buoyancy 
ratio and bio-convection Rayleigh number decrease the x-direction velocity. The slip parameter 
being proportional to viscosity reduces the speed of flow and hence rise in temperature. Also, the 
temperature rises with the rising values of magnetic field strength, radiative heat transportation, 
Brownian motion and thermophorsis.

Latin symbols
u, v, w  Velocity components (m/s)
x, y, z  Cartesian coordinates (m)
Bo  Magnetic field strength (T)
C  Concentration of nanoparticles
T  Temperature of nanoparticles (K)
n  Micro-organisms distribution
g  Gravity (m/s2)
k∗  Mean absorption co-efficient (1/m)
k  Thermal conductivity (W/m K)
ρpCp  Effective heat capacity (J/K)
DB  Brownian diffusion coefficient (m2/s)
DT  Thermophoresis diffusion coefficient (m2/s)
Dm  Diffusivity of microrganisms (m2/s)
T∞  Ambient temperature (K)
C∞  Ambient concentration of nanoparticles
n∞  Ambient micro-organisms distribution
cb  Chemotaxis constant (m)
Wc  Speed of gyrotactic cell (m/s)
qw  Heat tranfer rate (W/m2)
M  Magnetic parameter
Nr  Buoyancy ratio parameter
Rb  Rayleigh number
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Rd  Radiation parameter
Pr  Prandtl number
Nb  Brownian motion parameter
Nt  Thermophoresis parameter
Lb  Bio-convection Lewis number
Pe  Peclet number

Greek symbols
α∗  Semi vertical angle
β  Williamson fluid parameter
βc  Concentration coefficient
βt  Thermal coefficient
ν0  Kinematic viscosity (m2/s)
σ  Electrical conductivity (S/m)
σ ∗  Stefan–Boltzmann constant (W m−2 K−4)
ρ  Density (kg/m3)
η  Similarity variable
θ  Similarity temperature
φ  Similarity concentration of nanoparticles
χ  Similarity density of micro-organisms
δ  Microorganisms concentration difference

Nanofluids play vital role in the current era because of its enormous diversity and complexity. They are being used 
in various applications such as in the petroleum industry, medical applications, food processing and many more. 
Firstly, the concept of nanofluid was given by Choi and  Eastman1. They discussed the role of thermal conductivity 
of nano particles in base fluids. Abbas et al.2 scrutinized the 2nd-Grade nanofluid flow for unsteady case hav-
ing thermal radiation and mixed convection. Wang et al.3 investigated the effects of nanoparticle accumulation 
and radiation on the flow of nanofluid. Gowda et al.4 computationally studied the effects of Stefan blowing on 
2nd grade fluid. Kumar et al.5 investigated the influence of activation energy over Darcy-Forchheimer flow of 
Casson fluid in a porous media. Gowda et al.6 studied sedimentation of thermophoretic particles in unsteady 
hybrid nanofluid. Jyothi et al.7 elaborated the effects of thermal radiation on casson fluid for non linear case 
using Buongiorno’s nanofluid model. Li et al.8 analysed thehybrid nanofluid in nonlinear mixed convective flow 
along with entropy. Yusuf et al.9 investigated MHD Williamson nanofluid along with gyrotactic organisms. 
 Prasannakumara10 numerically studied transport of heat in Maxwell nanofluid flow. Benos et al.11 examined 
the MHD convection of CNT-Water nanofluid using Hamilton-Crosser model. Sarris et al.12 studied the large-
eddy simulations (LES) of turbulent and transitional channel flows of a conductive fluid under the effect of a 
uniform magnetic field. Sarris et al.13 presented a study of the flow field and residence times in the anode flow 
bed of a pilot direct ethanol fuel cell (DEFC) using 3-D numerical flow modelling. Karvelas et al.14 studied the 
micromixing efficiency of particles in heavy metal removal processes. Gowda et al.15–19 studied the nanofluid 
flow for different geometries.

An English mathematician Williamson developed the Williamson fluid  model20 in 1929 and numerous 
researchers considered it. Williamson fluid is a non-Newtonian fluid model which has a shear thinning property. 
Srinivas et al.21 explored the importance of lubrication of surfaces and convective boundary conditions in the 
flow of non-Newtonian Williamson fluid. Abdal et al.22 investigated MHD Williamson Maxwell nanofluid over a 
sheet. Qayyum et al.23 studied the Williamson nanofluid flow for radiation and velocity slip. Waqas et al.24 studied 
the Fick’s and Fourier’s concept for heat production in nonlinear convective Williamson nanofluid flow. Chu 
et al.25 studied about the thermal energy of hybrid nanoparticles by engaging chemical reaction and activation 
energy. Chu et al.26 elaborated the properties of thermal radiation, heat generation and the effect of convective 
boundary conditions. Similar work was done by many  researchers22,27–29

Bio-convection can be termed as hydrodynamic instability and designs in suspensions of biased swaying 
microorganisms. Bioconvection has several uses in the field of natural systems and biotechnology. Various 
researchers uses bio-convection of living microorganisms to explore the behavior of fluid. Ramesh et al.30 inves-
tigated Maxwell nanofluid having gyrotactic organisms along with nonlinear thermal radiation. Song et al.31 dis-
cussed the micropolar nanofluid for nonlinear thermal radiation having gyrotactic organisms flow and moreover 
Applications of modified Darcy law. Farooq et al.32 studied the bioconvection in Carreau nanofluid flow having 
numerous thermal consequences. Song et al.33 explored the gyrotactic analysis of Sutterby nanofluid having many 
thermal features. Chu et al.34 Collective effect of Cattaneo-Christov double diffusion and radiative heat flux on 
gyrotacyic organisms flow of Maxwell liquid. Yahya et al.29 scrutinized the thermal characteristics of Williamson 
Sutterby nanofluid through sponge medium.

This survey of past studies convinced that bioconvection of microorganisms immersed in Williamson nano-
fluid flow across a rotating cone is rarely discussed. The nanofluid flow across the slip surface of the cone in the 
presence of magnetic field and thermal radiation adds to the physical aspects of this work. There seems a gap 
to explore:

(1) The impact of nano particle distribution on flow across a rotating cone.
(2) How does the bioconvection, magnetic field and thermal radiation affect the Williamson nanofluid slip 

transportation?
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The motivation of this work pertains to enhancement of thermal distribution to increase thermal conductiv-
ity of base fluid with inclusion of nano-entities. The apprehension of the possible settling of nano-material is 
dismantled through density gradients of microorganisms. Thus bioconvection is considered along with nano-
fluid transportation across the cone. These physical aspects with heat and mass flow across cone geometry are 
practicable in rotational dynamical systems. The results can find applications in the efficient working of heat 
exchangers, cooling of microelectronics and transfer engines.

Flow assumption and mathematical formulation
Considered the unsteady and incompressible Williamson nanofluid with thermal radiation and microorgan-
isms flowing past a rotating cone. Assuming cone rotation velocity as a function of time causes unsteadiness in 
the flow field. The mass, temperature and microorganisms’ difference in the flow field induce the existence of 
buoyancy forces. Velocity components u, v and w are along x, y and z directions. Cone rotation is represented 
by � (see Fig. 1). The flow velocity slips are considered in x and y directions. A magnetic field of strength Bo acts 
perpendicular to the x-axis. The cone half angle is α∗ . The self motile micro-organisms are dilutely mixed with 
base fluid. The motion of micro-organisms does not depend on the transport of nano particles and vise versa. 
The temperature, nano particle concentration and micro-organisms have constant wall conditions. Hall effect is 
taken in to consideration. The formulation of the leading equations is presented  as35–40.
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Figure 1.  Flow chart.
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with suitable boundary conditions

Using similarity transformations

The transformed ordinary differential equations are:

with transformed boundary conditions are:

Where the non-dimensional parameters are β = Ŵx
√

1
2ν0

(�sinα∗
1−qt∗ )

3 Williamson fluid parameter, M = σB2o(1−qt∗)
ρ�sinα∗  

is magnetic parameter, Nr = (ρp−ρ)(C−C∞)

βM (1−C∞)ρ(T−T∞)
 represents buoyancy ratio parameter, Rb = γ (ρm−ρ)(n−n∞)

βM (1−C∞)ρ(T−T∞)
 

is Rayleigh number, � = Gr
Re2
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 , bioconvection Lewis number is Lb = ν
Dm
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 and thermophoresis parameter is Nt = τDT (T−T∞)�sinα∗
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.

Physical quantities
Skin friction coefficient. The coefficient of surface drag is represented by:

where, τxz is a shear stress detector and is defined as:

Applying Eq. (8), the dimensionless formulation of the preceding equation is:
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also

where, τyz is a shear stress detector and is defined as:

Applying Eq. (8) the dimensionless formulation of the preceding equation is:

Local Nusselt number. The mathematical solution for the heat transfer efficiency relationship is as 
described in the following:

The external heat transfer is:

Using Eq. (8), the preceding solution is reduced as follows:

Sherwood number. It is defined as:

where qm stands for surface mass flow and is denoted as::

Using Eq. (8), the above equation’s non-dimensional version is:

Density of micro-organisms. It is defined as:

where qn identifies the flux of motile microorganisms and is delineated as:

Using Eq. (8), the non-dimensional form of equation is:

Numerical procedure
This section describes numerical procedure for the leading ordinary differential Eqs. (9)–(13) with boundary 
conditions (14). Such type of boundary value problems is difficult to solve analytically. Although various numeri-
cal approaches are being used for this purpose, yet Range–Kutta (R–K) fourth order method is frequently utilized 
 (see41–45). We also hired R-K method for the solution of the problem. To carry out this strategy, the governing 
Eqs. (9)–(14) are converted into a first-order differential form as shown below:
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along with the boundary conditions:

This system of first order differential equations is coded in Matlab script.

Results and discussion
The computations are continued for suitable ranges of the influential parameters; 0.5 ≤ M ≤ 2.5 , 0.1 ≤ β ≤ 2.5 , 
0.1 ≤ m ≤ 0.5 , 0.1 ≤ � ≤ 0.5 , 0.5 ≤ Nr ≤ 2.5 , 0.5 ≤ Rb ≤ 2.5 , 0.1 ≤ �u ≤ 0.5 , 1.0 ≤ Br ≤ 3.0 , 0.1 ≤ Nb ≤ 0.5 , 
0.01 ≤ Nt ≤ 0.05 , 6.0 ≤ Pr ≤ 8.0 , 0.1 ≤ Rd ≤ 0.5 , 1.0 ≤ Sc ≤ 5.0 , 1.0 ≤ Lb ≤ 5.0 , 1.0 ≤ Pe ≤ 5.0 , 1.0 ≤ � ≤ 5.0 . 
The fixed values for the parameters are chosen arbitrarily M = 2.0 , β = 0.5 , m = 1.0 , � = 0.1 , Nr = 0.1 , Rb = 0.1 , 
�u = 1.0 , Br = 1.0 , Nb = 0.1 , Nt = 0.1 , Pr = 7.0 , Rd = 0.1 , Sc = 4.0 , Lb = 1.0 , Pe = 1.0 and � = 0.3 . Tables 1 
and 2 show the comparison of the current numerical study with already published research work (Chamka et al.35 
and Deebani et al.36). There seems a good correlation among the results. Thus numerical approach is validated 
and the computational procedure is continued.

It is to mention that throughout the graphs, green solid lines represent the steady case while red dotted lines 
represent unsteady case. Figure 2a shows the behavior of magnetic parameter M on velocity profile. It is seen that 
velocity decreases when M takes larger values. From the figure, it is seen that velocity decreases more rapidly for 
unsteady case than that of steady case. Physically, the basic reason behind this retardation is the Lorentz force 
produces resistance to the motion of fluid. Due to this resistance, velocity decreases. Figure 2b shows the effect 
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f (0) = 0, f ′(0) = �uf
′′(0), −�ug

′(0)+ g(0) = 1, θ(0) = 1,φ(0) = 1, χ(0) = 1, at η = 0,

f ′(∞) → 0, g(∞) → 0, θ(∞) → 0,φ(∞) → 0,χ(∞) → 0, as η → ∞.

Table 1.  The comparative outputs with respect to x.

Pr � Chamka et al.35 Deebani et al.36 Present Results

0.7 0.0 1.0255 1.022543 1.022535

0.7 1.0 2.2015 2.201024 2.201036

0.7 10.0 8.5041 8.504256 8.504233

10.0 0.0 1.0256 1.025543 1.025561

10.0 1.0 1.5636 1.563001 1.563422

10.0 10.0 2.0201 2.082000 2.024200

Table 2.  The comparative outputs with respect to y.

Pr � Chamka et al.35 Deebani et al.36 Present Results

0.7 0.0 0.6158 0.615430 0.615545

0.7 1.0 0.8494 0.849312 0.849462

0.7 10.0 1.3995 1.399221 1.399365

10.0 0.0 0.6158 0.615831 0.615442

10.0 1.0 0.6837 0.683534 0.683664

10.0 10.0 0.9840 0.984555 0.986325
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of β on velocity profile. Decreasing behavior is observed in velocity profile when the value of β increases. The 
Williamson fluid parameter β is directly related to Ŵ , the time relaxation variable and hence retardation of flow is 
resulted. Opposite behavior for m is seen in Fig. 2c. Figure 2d shows the behavior of mixed convection parameter 
� on velocity profile. It is clearly seen that for both cases steady and unsteady, velocity increases when � increases. 
This incremented mixed convection causes, the faster flow due to buoyancy forces. The basic phenomenon of this 
increment in the velocity profile is that when � takes larger values, velocity of the fluid is enhanced. Figure 3a,b,c 
show the decreasing behavior in velocity profile when buoyancy ratio parameter Nr, Rayleigh number Rb and �u 
increase respectively. The basic phenomenon of this retardation in velocity profile is that there occurs more resist-
ance in horizontal direction of fluid flow with larger values of these parameters. The effect of M, β , m and �u on 
velocity g(η) is observed in Fig. 4. It is clear from the figure that velocity decreases when values of above said non-
dimensional parameters increase. Figure 5 shows the impact of M, Br, Nb, Nt, Pr and Rd on temperature profile. 
It is observed from Fig. 5a,b that temperature increases with the rising values of M and Br. As mentioned earlier, 
the fluid velocity decreases against m, the kinetic energy is converted in heat energy and hence temperature of 
fluid is risen. Physically, Brinkman number increase the thermal field of the fluid flow for higher estimations. Due 
to this, a smaller amount of thermal conduction to the fluid occur. Figure 5c,d show the behavior of Nb and Nt 
on temperature profile. From the figure, it is seen that temperature rises with the rising values of Nb and Nt. The 
basic concept for increase in temperature due to Brownian motion is that the nanoparticles are directly related 
with temperature, which means kinetic energy of these particles increases when temperature is enhanced. Also, 
for thermophoresis parameter, particles move from hotter surface to colder surface, thus temperature of fluid 
increases. Figure 5e shows the temperature decreases with rising values of Pr (Prandtl number). Physically Pr is 
inversely proportional to thermal diffusivity which causes reduction in temperature. Figure 5f shows the effect 
of radiation parameter Rd on temperature profile. It is noted that temperature increases with rising values of 
Rd. The basic reason behind is that a large amount of heat is produced in radiation process. Figure 6 shows the 
effect of Nb, Nt and Sc on concentration profile. For rising values of Nt, the concentration increases rapidly while 
it goes down for Nb and Sc. Figure 7 shows the effect of Lb, Pe and δ on motile density profile. It is clearly seen 
that the motile microorganisms profile goes down when the values of Lb, Pe and δ are uplifted. The basic reason 
behind this retardation of Pe is that the diffusivity of living microorganisms decreases down when Peclet number 
takes larger values. The effect of skin friction factor due to different parameters like M, β , m, � , Nr, Rb and �u for 
both steady and unsteady cases can be seen in Table 3. With the rising values of M, skin friction factor increases 

Figure 2.  Fluctuation in x-direction velocity f ′(η) with (a) M, (b) β , (c) m and (d) �.
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more for steady case than that of unsteady case values. When β value increases, steady case decrease more than 
unsteady case. As m increases, steady case shows more gain in values than unsteady case. When � increases, steady 
case values increase more than unsteady case values. However, an increase in Nr results in decrease in the values 
of steady case and unsteady case too, but there is more decrease in steady case. For increase in the values of Rb, 
there is an equal amount of decrease in values for both cases. For �u values, both case values increase equally 
as �u increases. Table 4 shows the results of g ′(0) for M, β , m and �u for both steady and unsteady cases. It is 
clearly seen that as M increases, the values of steady case increase more than the values of unsteady case. On the 
other hand, increase in the values of β , m and �u causes more decrease in the values of steady case than that of 
unsteady case. Table 5 displays the results for θ ′(0) when Rd, Nb, Nt and Br are in action for bothcases. It is seen 
that Rd increases more for unsteady case than that of steady case. Contrary the values of Nb, Nt and Br decrease 
more for unsteady cases than steady cases. In Table 6, the effect of Sherwood number for different parameters Sc, 
Nb, Nt and Ŵ are shown. As the values of Sc and Nb increase, Sherwood number increase. As Nt value increase, 
there occur more increase for unsteady case than steady case. For Ŵ values, there is more increase in steady case 
than unsteady case as Ŵ increases. Table 7 shows Lb, Pe and δ results for χ ′(0) . As Lb, Pe and δ values increase, 
there is more increase in the values for unsteady cases than that for steady cases.

Conclusions
Numerical application is made for magnetohydrodynamic flow of Williamson nanofluid transport across a 
rotating cone. Bioconvection of microorganisms and radiative heat transfer mode are incorporated. The salient 
findings are summarized as below:

Figure 3.  Fluctuation in x-direction velocity f ′(η) with (a) Nr, (b) Rb and (c) �u.
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• It is observed that velocity f ′(η) decreases when M, β , Nr, Rb, and �u uplifts. Opposite behavior is seen for 
m and �.

• it can also be seen that velocity g ′(η) decreases when M, β , m and �u take larger values.
• When M, Br, Nb, Nt and Rd takes larger values temperature profile θ ′(η) decreases. While θ ′(η) increases 

when Pr uplifts.
• It is seen clearly seen that concentration profile φ′(η) decreases when Nb, Sc, Ŵ take larger values. Concentra-

tion profile φ′(η) increases when Nt uplift.
• Motile density profile χ ′(η) decreases when Lb, Pe and � take larger values.
• Skin friction factor f ′′(0) increases when M, m and � take larger values While decreases when β , Nr, Rb and 

�u uplifted.
• Skin friction factor g ′(0) increases when M take larger value while decreases for β , m and �u.
• Nusselt number θ ′(0) decreases when Nb, Nt and Br take larger values but rises when Rd upsurge.
• Sherwood number φ′(0) increases when Sc, Nb and Nt uplifted.
• Motile density number χ ′(0) increases when Lb, Pe and δ take larger values.

Future work
This work can be further studied for hybrid nanofluid flow across stretching and rotating cone.

Figure 4.  Fluctuation in y-direction velocity g(η) with (a) M, (b) β , (c) m and (d) �u.
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Figure 5.  Fluctuation in temperature θ(η) with (a) M, (b) Br, (c) Nb, (d) Nt, (e) Pr and (f) Rd.
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Figure 6.  Fluctuation in concentration φ(η) with (a) Nb, (b) Nt and (c) Sc.
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Figure 7.  Fluctuation in motile density χ(η) with (a) Lb, (b) Pe and (c) δ.

Table 3.  Results of skin friction factor – f ′′(0) in x-direction for various parameters.

M β m � Nr Rb �u Steady Case Unsteady Case

1.0 0.5 1.0 0.1 0.1 0.1 1.0 0.3660 0.3254

1.5 0.4156 0.4007

2.0 0.4724 0.4511

2.0 0.5 0.4724 0.4511

1.0 0.3178 0.3026

1.5 0.2648 0.2516

0.5 0.5 0.3500 0.3308

1.0 0.4724 0.4511

1.5 0.5542 0.5297

1.0 0.1 0.4724 0.4511

0.2 0.5152 0.4889

0.3 0.5556 0.5251

0.1 0.1 0.4724 0.4511

0.3 0.4636 0.4419

0.5 0.4549 0.4326

0.1 0.1 0.4724 0.4724

0.3 0.4584 0.4584

0.5 0.4443 0.4443

0.1 0.1 1.4834 1.4834

0.5 0.8209 0.8209

1.0 0.4724 0.4724
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Table 4.  Results of skin friction factor g ′(0) in y-direction for various parameters.

M β m �u Steady Case Unsteady Case

1.0 0.5 1.0 1.0 1.1121 1.1260

1.5 1.2176 1.2279

2.0 1.3022 1.3100

2.0 0.5 1.3022 1.3100

1.0 0.9735 0.9779

1.5 0.8130 0.8546

0.5 0.5 1.3612 1.3695

1.0 1.3022 1.3100

1.5 1.2349 1.2429

1.0 0.1 2.0165 2.0468

0.5 1.6381 1.6536

1.0 1.3022 1.3100

Table 5.  Results of Nusselt number – θ ′(0) for various parameters.

Rd Nb Nt Br Steady Case Unsteady Case

0.1 0.1 0.1 1.0 0.5787 1.0386

0.2 0.6186 1.0946

0.3 0.6571 1.1485

0.1 0.1 0.5787 1.0386

0.2 0.5392 0.9919

0.3 0.5013 0.9469

0.1 0.01 0.6031 1.0656

0.05 0.5922 1.0535

0.1 0.5787 1.0386

0.1 0.1 1.0168 1.4133

0.5 0.8219 1.2468

1.0 0.5787 1.0386

Table 6.  Results of Sherwood number – φ′(0) for various parameters.

Sc Nb Nt Steady Case Unsteady Case

4.0 0.1 0.1 1.6753 1.4135

5.0 1.8858 1.6290

6.0 2.0729 1.8215

4.0 0.1 1.6753 1.4135

0.2 1.6796 1.5722

0.3 1.6807 1.6248

0.1 0.01 1.6568 1.6667

0.05 1.6620 1.5503

0.1 1.6753 1.4135
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