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Regime shift dynamics, tipping 
points and the success of fisheries 
management
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Recovery of depleted fish stocks is an important goal for fisheries management and crucial to sustain 
important ecosystem functions as well as global food security. Successful recovery requires adjusting 
fishing mortality to stock productivity but can be prevented or inhibited by additional anthropogenic 
impacts such as climate change. Despite management measures to recover fish stocks being in place in 
legislations such as the European Union´s Common Fisheries Policy (CFP), recovery can be hindered by 
the occurrence of regime shift dynamics. Such non-linear discontinuous dynamics imply tipping points 
and bear the characteristics of abrupt change, hysteresis and non-stationary functional relationships. 
We here used the recent reform of the CFP as a natural experiment to investigate the existence of 
regime shift dynamics and its potential effects on the recovery potential on six strongly fished or 
even depleted commercial fish stocks in the North Sea. Using a set of statistical approaches we show 
that regime shift dynamics exist in all six fish stocks as a response to changes in fishing pressure and 
temperature. Our results furthermore demonstrate the context-dependence of such dynamics and 
hence the ability of management measures to rebuild depleted fish stocks, leading to either failed 
recovery or positive tipping.

Recovery of depleted fish stocks is an important goal for fisheries management and crucial to sustain important 
ecosystem functions as well as global food  security1. Successful recovery requires adjusting fishing mortality 
to stock productivity but can be prevented or inhibited by additional anthropogenic impacts such as climate 
change, e.g. through temperature  increase2. In the European Union (EU), fisheries management aims at fish stock 
recovery through regulations embedded in the so called common fisheries policy (CFP), first implemented in 
1983, to enhance the management of fisheries and fish stocks. The CFP underwent several successive reforms 
(the latest in 2014) and aims for a fishery that is environmentally, economically and socially  sustainable1. One 
of the main features of the CFP is the introduction of the Maximum Sustainable Yield (MSY) concept, where 
MSY is defined as “the highest theoretical equilibrium yield that can be continuously taken from a stock under 
existing average environmental conditions without significantly affecting the reproduction process”1. In EU 
fisheries management MSY is implemented through a target fishing mortality  FMSY (fishing mortality level aiming 
at Maximum Sustainable Yield)3 and MSY  Btrigger, a limit reference value below which  FMSY is  adjusted4. Annual 
stock assessments advising EU fisheries management are provided by the International Council for the Explora-
tion of the Sea (ICES) that, among others, provides reconstructed time-series of fishing mortality (F), spawning 
stock biomass (SSB, the parent biomass) and recruitment of the stock (R, size at the incoming new year-class)3.

Within the EU, the North Sea is among the most heavily impacted areas of the world´s oceans suffering from 
diverse anthropogenic  activities5. It was a hotspot of overfishing with several fish stocks suffering from unsustain-
able fishing pressure, and the collapse of the Atlantic cod being a prominent  example2,5. Fishing pressure was 
reduced strongly to prevent further depletion of fish stocks, but as with cod, recovery was not successful for all 
 species2. In addition, the North Sea is currently considered a hot spot of climate change experiencing rapid warm-
ing and acidification, affecting the distribution of the North Sea fish  community5. Cold water species experience 
a shift northwards, whereas subtropical species like sardine and anchovy appear more  likely6–8. Hence, as many 
commercially important fish stocks in the North Sea experienced overexploitation and climate change effects 
are increasing continuously, the effective implementation of the EU fisheries management to achieve sustainable 
reference levels is crucial for stock  recovery2.
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Despite management measures to recover fish stocks being in place, recovery can be hindered by the occur-
rence of non-linear discontinuous dynamics of ecological  systems2,9,10. Such dynamics imply tipping points, 
where, e.g., a fish stock’s biomass crosses a critical threshold at which two dynamic regimes can be separated, 
the so-called alternative states; a high biomass state above MSY and an unsustainable low biomass state. Hence, 
a tipping point is defined as an abrupt change in the dynamics in response to changes in internal or external 
 pressures11. The concept of tipping points usually implies discontinuous regime shifts of systems and includes 
three characteristics: (1) abrupt change, (2) hysteresis, and (3) non-stationary functional  relationships11–13. Abrupt 
change is the first-order indicator of regime shifts. According to regime shift theory such changes occur when 
an external pressure, e.g. fishing mortality, exceeds a threshold or through the interaction of drivers like fishing 
pressure and temperature, where changes in one pressure can modify the interaction between the driver and 
the state variable and induce the shift towards an alternative  state11–13. Abrupt changes do not necessarily imply 
discontinuous dynamics and additional analyses to detect underlying drivers are  required14. If an external pres-
sure is reduced and the return path from the new alternative to the original state is different from the path that 
led to the new state, hysteresis is present. If hysteresis or even irreversibility occurs, often two drivers interact in 
causing non-stationary functional  relationships11–13. A non-stationary relationship implies e.g. shifts in the so-
called stock-recruitment relationship (SRR). SRR is the most important relationship in fish stock dynamics and 
relates the SSB to R; both being essential to determine allowable  catches15. Non-stationarity in the SRR changes 
the relationship between SSB and R, where, in the worst case, R is no longer determined by  SSB16. Hence, know-
ing the stock’s SRR is crucial for a sustainable fisheries  management15.

We here used the recent reform of the CFP as a natural experiment to investigate the existence of non-linear 
discontinuous dynamics and its potential effects on the recovery potential of strongly fished or even depleted 
commercial fish stocks in the North Sea. We focused on a selection of important North Sea fish stocks since this 
region has experienced several regime shifts, and is a focus area of marine regime shift  science17. Therefore we 
assessed the effectiveness of reducing fishing mortality to sustainable reference levels and potential recovery pat-
terns of European plaice (Pleuronectes platessa), European hake (Merluccius merluccius), Atlantic herring (Clupea 
harengus), haddock (Melanogrammus aeglefinus), saithe (Pollachius virens), and Atlantic cod (Gadus morhua). 
These species are commercially relevant and cover a range of life-history strategies and taxonomic groups, i.e. 
pelagic and demersal as well as round and flat fishes. Here, we used fish stock (SSB, R) and fishing mortality (F) 
data from the International Council for the Exploration of the Sea (ICES) in the ICES Stock Assessment Database 
(data extracted in 2021)18.

Our study revealed regime shift characteristics to exist in all six North Sea fish stocks investigated, suggesting 
the prevalence of discontinuous dynamics in exploited living marine resources. Our results furthermore dem-
onstrate the context-dependence of such dynamics and hence the ability of management measures to rebuild 
depleted fish stocks, leading to either failed recovery or positive tipping.

Results
Temporal dynamics and abrupt changes. We first analysed time-series of fishing mortality (F), spawn-
ing stock biomass (SSB) and recruitment (R) to compare stock development and status among the target fish 
stocks of our study and to identify potential abrupt changes. For the six North Sea fish stocks, F was periodically 
excessively high (even > 1.0), i.e. far above the present  FMSY target (Fig. 1—left column). This high fishing mortal-
ity lasted until the beginning of the 2000s (and partly longer) for plaice, hake, haddock and cod. During the early 
2000s EU fisheries management succeeded to reduce F for all species, except for cod, to levels at or close to  FMSY. 
Plaice and hake responded immediately with strong increases to unprecedented levels in SSB, far above the limit 
reference level (MSY  Btrigger; the threshold SSB triggering a reduction in  FMSY

3) (Fig. 1—middle column). How-
ever, low responses in SSB to decreasing fishing mortalities are observed for the remaining species, in haddock 
only noticeable with a peak year. Importantly, cod remains exclusively below MSY  Btrigger.

Statistical change point analyses (see Methods) revealed several abrupt changes, the first flag indicating 
regime shift dynamics in SSB (Table 1; Fig. 1—middle column, all change points in Supplementary Table S1). For 
plaice and herring, three abrupt changes separating four periods were found, whereas only one abrupt change 
was found for haddock. For plaice, the former three abrupt changes were only detected by the BinSeg algorithm 
embedded in the changepoint package. The strong increase in SSB in the last period might mask these smaller 
changes for the Bayesian approach calculating the posterior probabilities of changes, embedded in the bcp pack-
age. The identified periods for plaice and herring overlap strongly (decades: 1950s–60s, 1970s–80s, 1980s–2000s, 
2000s–2010s) and change points only differ by 8 years in maximum. Also, the periods of saithe and cod were 
almost in synchrony, except for the last period where the change occurred 11 years earlier for cod (decades: 
1960s–70s, 1970s–2000s, 2000s–2010s). These abrupt changes preceded collapses for saithe and cod, while plaice 
and hake showed a positive stock development following the last abrupt change.

Apart from SSB, R is an important determinant of a population’s success and a major determinant of the 
dynamics of commercially important fish. The number of juveniles potentially joining the parent’s biomass 
eventually determines the size of SSB, whereas the size of SSB affects the size of recruitment (SRR)19,20. Whether 
the influence of SSB on R is greater or vice versa, depends on the stock status; depleted stocks like North Sea cod 
experience a higher influence of SSB on R, with R following SSB  patterns19. Hence, we inspected the recruitment 
dynamics relating them to changes in SSB (Fig. 1—right column). R was relatively stable over time in plaice and 
increased only slightly towards the end of the time series, which is likely a response to increased SSB. For her-
ring, recruitment development appears to follow SSB patterns, with high R at high SSB levels and vice versa. R 
in hake remained largely unchanged regardless of SSB development. For the remaining stocks (saithe and cod), 
recruitment decreased strongly simultaneously with SSB decrease. Small occasional increases in SSB in these 
stocks did not lead to any improvement in R.
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Figure 1.  Abrupt changes in North Sea fish stocks. Time series of fishing mortality (F), spawning stock biomass 
(SSB) and recruitment (R). Black vertical lines in SSB indicate abrupt changes detected by both statistical 
change point analyses. Grey ranges and vertical lines in SSB for plaice indicate abrupt changes detected by the 
BinSeg algorithm only. Coloured ranges show identified SSB periods (see also Table 1); horizontal lines indicate 
management reference points; left column—F level aiming at Maximum Sustainable Yield  (FMSY), precautionary 
level of F  (Fpa), limit reference point of F  (Flim); middle column—Level of SSB triggering specific action in 
management (MSY  Btrigger), precautionary level of SSB  (Bpa), limit reference point of SSB  (Blim)3.



4

Vol:.(1234567890)

Scientific Reports |          (2023) 13:289  | https://doi.org/10.1038/s41598-022-27104-y

www.nature.com/scientificreports/

Hysteresis. To determine whether previously identified abrupt changes in SSB and related R patterns do 
reflect regime shift like dynamics, we studied the existence of hysteresis in the selected North Sea fish stocks, i.e. 
if the return path in population size (spawning stock biomass—SSB) is different after reduction of the pressure 
(fishing mortality—F) compared to the preceding path to depletion (the second regime-shift flag)11–13. Hence, 
by relating SSB to F we can identify hysteresis given two different paths of SSB towards and away from deple-
tion. The cross-correlation function revealed that plaice, saithe and cod require time lags  (Ft−n) of 3, 4, and 
5 years, respectively. Breakpoints were found in all F-SSB relationships (Fig. 2, all break points in Supplementary 
Table S1), and closely align with the periods found in the SSB time series (Fig. 1). We observed similar patterns 
in all species, except for haddock. For plaice, saithe and cod a positive relationship is observed during the first 
time periods. As F increased in the following periods, the F-SSB relationship became negative, as observed for 
hake and herring in their first periods. When F was reduced to  FMSY, a negative relationship at a lower SSB close 
to MSY  Btrigger is seen for hake, saithe and cod. Here, herring showed a decoupling from F (blue period). Whereas 
saithe and cod each experience negative relationships at the end of the time series, plaice and hake show again 
positive relationships with further decreases in F. These observed changes in the F-SSB relationships for plaice, 
hake, herring, saithe and cod clearly indicate hysteresis dynamics.

Non-stationary functional relationships. An important mechanistic criterium for regime shifts dynam-
ics is non-stationarity in important functional relationships governing a dynamic system (the third regime-shift 
flag)16. SSB and R are the two most important interacting attributes of fish  stocks15. Still, the links between these 
two are not yet fully understood and can be disrupted by external factors, such as  temperature16. Therefore, we 
here studied the stock-recruitment relationships (SRR) to determine the potential existence of non-stationarity. 
We compared traditional and continuous SRR models (i.e. Ricker and Beverton and Holt models) to a linear 
model and models incorporating a sudden structural change in the effect of SSB on R (see Methods). In all cases 
the discontinuous models provided better fits than the traditional and the linear models (comparison of models 
in Supplementary Table S2) indicating non-stationarity for all stocks.

We found for all SRRs an abrupt break point (for saithe two break points), at which the SRR between SSB 
and R changed (Fig. 3, all break points in Supplementary Table S1) and cover overlapping SSB values. Especially 
hake, herring and haddock show contrasting relationships, with hake following the typical density-dependence 
at which the SRR was positive before and negative after break point. Usually, the SRR is dome-shaped and show 
low R levels at high SSB levels as in the Beverton–Holt and Ricker  curves19. Especially cod still shows very low 
SSB values, below  Blim, and low R values in recent years and despite a slight increase in the past 5 years in SSB, R 
did not increase. This break point in the late 1990s has also been found in our change point analyses.

Knowing that the North Sea is a climate change hot spot with increasing water  temperatures5, we explored 
whether warming has an effect on the SRR. We used Generalized Additive Models (tGAMs; see Methods) that 
are able to identify a threshold of a pressure like sea surface temperature (SST) at which the relationship between 
SSB and R is affected. A significant threshold indicates that certain levels of SST can change the SRR shown by 
differences in the  slope21.

Our Leave-One-Out Cross-Validation (LOOCV) analysis revealed only one tGAM model with a significant 
temperature threshold for saithe (Supplementary Table S3, Supplementary Fig. 1), indicating that SST causes a 
slightly different effect in the SRR before and after the threshold (10.2 °C). SSB has a strong positive effect on R 
before the threshold, which is less strong after the threshold.

Discussion
In our study we used the recent reform of the European Union´s Common Fisheries Policy (CFP) as a natural 
experiment to investigate the existence of regime shift dynamics in North Sea fish stocks, and their implications 
for achieving management and especially rebuilding targets. We found in all investigated fish species abrupt 
changes in SSB indicating regime shift dynamics. Abrupt changes were mostly responses to changes in fishing 
 pressure22–28 interacting with environmental changes such as resulting from climate change and the positive 
effects of reduced eutrophication of the North  Sea23,29,30. In all fish species, except haddock, we additionally 
identified hysteresis effects, differing in strength. With the exception of cod, all investigated North Sea fish 
species responded to reduced fishing mortality as a result of implementing the MSY concept in the CFP. Hence 
sustainable stock sizes were achieved, but the recovery occurred slower than the initial depletion. Only the cod 
stock failed to recover, still showing SSB values below MSY  Btrigger. Eventually, we also observed non-stationarity 

Table 1.  Abrupt changes in North Sea fish stocks. Periods of quasi-stability in spawning stock biomass (SSB) 
identified by statistical change point analyses.

Species Period 1 Period 2 Period 3 Period 4

Plaice 1957–1969 1970–1991 1992–2007 2008–2021

Hake 1978–1985 1986–2010 2011–2021

Herring 1947–1966 1967–1983 1984–2000 2001–2021

Haddock 1965–2001 2002–2021

Saithe 1967–1975 1976–2010 2011–2021

Cod 1963–1972 1973–1999 2000–2021
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5

Figure 2.  Hysteresis in North Sea fish stocks. Vertical and horizontal lines show sustainable fishing pressure 
 (FMSY) and the level of spawning stock biomass (SSB) triggering specific action in management (MSY  Btrigger), 
respectively. Coloured points show SSB periods identified by break point analyses (see also Table 1). Time lags 
 (Ft−n) of 3, 4, and 5 years were used for plaice, saithe and cod, respectively.
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Figure 3.  Non-stationary functional relationships in North Sea fish stocks. Break points in non-linear stock-
recruitment relationships. Vertical dashed line represents biomass reference level  Blim. Colours represent linear 
models per periods identified by breakpoint analyses.
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in the important stock-recruitment relationship (SRR) in all species. In total, our study delivers further support 
for non-linear population dynamics to prevail in commercially exploited fish  species2,10. A consequence of this 
results is that fisheries management cannot rely on common linear dynamic assumptions, but rather has to deal 
with delayed or failed recovery after implementing measures to reduced exploitation pressure as well as surpris-
ing developments such positive tipping.

We found positive tipping dynamics in the North sea stocks of plaice and hake. These stocks recovered the 
fastest in response to reduced fishing mortality after the reform of the CFP and increased to record high stock 
sizes recently. Such dynamics can be interpreted as positive tipping, where the pressure is reduced to a point (here 
below  FMSY) that positive runaway dynamics in the population is induced. Positive tipping is in contrast to the 
general connotation of tipping points that are mainly seen as negative transitions in dynamic systems implying 
a shift from a positive to a negative  state2,10. However, it should be noted that the increases in both stocks are 
spatially-explicit phenomena. The increase in North Sea plaice as a whole is due to a strong increase in stock 
components north of Scotland as well as the offshore areas of the Netherlands, Germany and  Denmark31. The 
increase of hake in the North Sea is the result of stronger influx of individuals from the western distribution area 
of the northern stock  component32. Nevertheless, both stocks increased due to reduced exploitation pressure 
and are important examples of the effectiveness of the MSY approach of the CFP. Such unprecedented stock sizes 
may however induce new management challenges such as shown for  hake32.

In strong cases, regime shift dynamics with strong hysteresis and non-stationary SRR can lead to a failure to 
achieve management measures with cod as the best  example2,10. The North Sea cod stock appears to be locked 
in a low SSB state as indicated by an open hysteresis loop. Our results suggest that cod crossed a tipping point 
(in this case a negative one) after which recovery is difficult. Cod recovery is hindered by the detrimental effects 
of climate change and especially  warming2,9. However, it remains clear that cod recovery in the North Sea is also 
limited by fishing mortalities still above the  FMSY target.

In addition, our tGAM analyses revealed a significant thermal threshold in the SRR of saithe. The mean SST 
for the North Sea over the past 20 years was at 10.8°C33, exceeding the tGAM threshold identified (10.2 °C). The 
region records a temperature increase especially since the 1980s and mainly in the south-east34. Even though 
our analyses suggested no tGAM and therefore no temperature threshold for cod, increasing temperature effects 
are known for causing discontinuity in North Sea cod stock  dynamics2,9. As temperature is expected to increase 
further due to climate change, it is assumed that effects on temperature vulnerable species’ SRR will remain 
or become even more  severe35. No significant thermal thresholds were found for plaice and hake, indicating 
that these species likely can better cope with increasing temperatures as also reflected in their positive tipping 
dynamics.

We based our analyses on fisheries stock assessment data that have known limitations, while it is widely 
recognized that analysing these data provides new relevant understandings about fish stock  dynamics2,9,10. With 
this database at hand we explored recovery patterns of fish stocks in the North Sea after the recent reform of 
EU’s CFP, implementing MSY  principles1. Our study revealed all three regime shift characteristics to exist in all 
six North Sea fish stocks investigated, suggesting the prevalence of discontinuous dynamics in exploited living 
marine resources. Our results furthermore demonstrate the dependence of such dynamics on the environmental 
context and hence the ability of management measures to rebuild depleted fish stocks.

Methods
Data. We based our analyses on stock assessment data for six North Sea fish species (plaice, hake, herring, 
haddock, saithe and cod) provided by the International Council for the Exploration of the Sea (ICES) in the ICES 
Stock Assessment Database (data extracted in 2021, see Supplementary Table S4)18. Data for plaice comprised 
the years 1957–2021, for hake 1978–2021, for herring 1947–2021, for haddock 1972–2021, for saithe 1967–2021, 
and for cod 1963–2021. ICES stock assessment data include, among others, yearly data on spawning stock bio-
mass (SSB), recruitment (R), and fishing mortality (F). R is represented by the population numbers at a certain 
age, i.e. for plaice at age 1, hake at age 0, herring at age 0, haddock at age 0, saithe at age 3, and cod at age 1.

Yearly mean sea surface temperature (SST) data for the North Sea region were derived for the tGAM analysis 
(see below) from the National Center for Environmental Information (NCEI)33.

Approach. We here used three characteristics (flags) of regime shift dynamics in analysing the recovery of 
North Sea fish species: (1) abrupt shifts, (2) hysteresis, and (3) and non-stationary functional  relationships11–13. 
We first identified abrupt changes in time-series of SSB using statistical change point analysis. Since regime 
shifts theoretically imply alternative stable states and these can be empirically assessed by exploring hysteretic 
dynamics, we assessed hysteresis in fish stocks by in inspecting the temporal evolution of the relationship of F to 
SSB. If hysteresis exists usually important functional relationships in a system are non-stationary and multiple 
drivers interact. We therefore analysed the most important functional relationship in a fish stock, the so-called 
stock-recruitment relationship (SRR) using multiple statistical techniques.

Statistical change point analysis for detecting abrupt shifts. We identified abrupt changes in time 
series of SSB for each fish stock using statistical change point  approaches10 provided by the R packages bcp36 and 
changepoint37. bcp calculates posterior probabilities of changes at any given point of the time series using a Bayes-
ian  approach36. We furthermore used the BinSeg algorithm in changepoint, that conducts binary segmentation 
based on a multiple change point  search37. We determined years of abrupt changes when both methods detected 
approximately the same change point year (± 1 year). We allowed for at least five consecutive years between 
change points to potentially reflect quasi-stable periods in SSB.
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Hysteresis. We inspected hysteresis patterns in plots of F versus SSB for each North Sea stock analysed. As 
the effect of fishing pressure does not necessarily affect SSB instantaneously, we first used a cross-correlation to 
account for possible time lags  (Ft−n), using the ‘ccf ’ function from the stats  package38 in R. A first indication of 
hysteresis is visible by a loop-like shape appearing when the recovery path of SSB in response to reduced F differs 
from the initial path to a more depleted SSB state. This loop-like shape indicates that for the same level of the 
driver alternative stable states exist in the state variable. To statistically test these different paths for the indica-
tion of hysteresis, we applied breakpoint analyses using the R package strucchange (function ‘breakpoint’)10,39. 
In the strucchange approach, no a priori break points need to be determined. Deviations from linear regression 
models are tested for stability. Further, m breakpoints are assumed to exist and coefficients can shift between 
stable regression relationships, where m + 1 segments have constant coefficients. Minimizing the residual sum of 
squares (RSS) leads to the optimal number of  breakpoints39.

Non-stationary functional relationships. We investigated non-stationarity in the so-called stock-
recruitment relationship (SRR) that relates the number of new offspring in a year (i.e. the recruitment; shifted 
to the year of origin) to the size of the parent spawning stock biomass (SSB). For each of the six North Sea fish 
stocks analysed we conducted a model selection exercise comparing traditional continuous Beverton–Holt and 
Ricker functions to alternative breakpoint approaches as well as a linear model. Beverton–Holt and Ricker mod-
els were fitted using the R package FSA40.

The Beverton–Holt and Ricker functions are given as followed:
Beverton–Holt41:

Ricker42:

where R is the recruitment, SSB the spawning stock biomass, α and β parameters of the  models40.
Discontinuous models incorporating breakpoints between different linear "sub-models" were fitted with algo-

rithms provided by the R packages segmented43 (function ‘segmented’) and strucchange39 (function ‘breakpoint’). 
In segmented, ‘segmented’ linear models (LM) or generalized linear models (GLMs) are fitted to portions of the 
data points separated by breakpoints that need to be determined a priori. New linear relationships are estimated 
at each break point based on breakpoint and slope parameters. If these regressions are significantly different, a 
break point is  found43. We compared the fits of a simple linear model, a linear model with logarithmic transfor-
mation of both variables (SSB and R) and a number of GLMs assuming Gaussian, Poisson, quasi-Poisson and 
negative binomial residual distributions. The best performing GLM was chosen based on model diagnostics and 
on over- or underdispersion patterns in the residuals. We here assumed only one breakpoint and used the mean 
of SSB as a starting value. We compared the best breakpoint models with the Beverton–Holt and Ricker as well 
as a simple linear model performing a leave-one-out cross-validation and calculating the root mean square errors 
(RMSE) for the test and the training data  set44, where lowest RMSE for the training data set indicates the best 
fitting stock-recruitment model. As we were looking for break points in the past and therefore existing data, we 
focused on the training data set, since the test data set evaluated the performance for predictions.

Temperature influence on stock-recruitment relationships. To assess whether abrupt changes in 
the relationship between SSB and R are affected by changes in sea surface temperature (SST), we used the thresh-
old generalized additive modelling (tGAM) approach provided by the R package ‘INDperform’21. tGAMs are 
based on the following generalized additive model (gam):

where k is the dimension of the basis functions for representing the smooth term defined by s().
The SST threshold is identified by fitting the GAM with the ‘thresh_gam’ function, which uses the following 

 formula21:

The model estimates a threshold value for temperature from the input data by minimizing generalized cross-
validation (GCV) values over an interval between lower and upper quantiles of the threshold variable. The quan-
tile values are per default 0.2 for the lower and 0.8 for the upper  quantile21. Using the ‘thresh_gam’ function, a 
sequence of evenly distributed threshold values between the defined lower and upper quantile is created. Along 
the sequence, a threshold GAM is implemented for every value at which a new splitting of threshold variables 
occurs.

For all observations where the threshold variable is below the threshold value at a certain time step (year), a 
smoothing function is applied. Another smoothing function is applied to the observations where the variable is 
higher than the threshold value. From several computed models, the tGAM with the least GCV is selected and 
its threshold value  returned21. In the next step, we applied the ‘loocv_thresh_gam’ function  (INDperform21) for 
the Leave-One-Out Cross-Validation (LOOCV) procedure to compare the fit of the returned tGAM with its 
corresponding GAM. In this way, the choice for or against a tGAM model was made. If the LOOCV revealed 
a tGAM, the choice for or against a true temperature threshold was based on three model outputs: (1) the 

(1)R =
(α ∗ SSB)

(1+ β ∗ SSB)

(2)R = SSB ∗ eα−β∗SSB

(3)gam(SSB ∼ s(R, k = 3))

(4)y ∼ 1+s
(

SSB, by = I(1 ∗ (R ≤ threshold)), k = 4
)

+s
(

SSB, by = I(1 ∗ (R > threshold)), k = 4
)
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effective degrees of freedom (edf) before and after the threshold had to differ (edf are a proxy for the degree of 
non-linearity; edf = 1 represent a linear relationship, edf > 1 and ≤ 2 show a weakly non-linear relationship, edf > 2 
indicate a strongly non-linear  relationship45), (2) at least one of the slopes needed to be significant (significance 
level p < 0.05), (3) the GCVV plot displaying GCV values of fitted tGAMs (y-axis) had to show a deep valley at 
the proposed threshold temperature (x-axis). Temporal autocorrelation was assessed using ACF plots. To see a 
possible difference of the SRR before and after the threshold, the SRR was predicted using the respective tGAM, 
predicted data were plotted and divided into red (high temperature) and blue (low temperature)21.

R environment and packages. All analyses were conducted within the R programming and statistical 
 environment38. For graphics the packages ‘ggplot2’46 and ‘patchwork’47 were used. An overview of packages and 
functions used in the analyses described above can be found in Table 2.

Data availability
The stock assessment data we used are from the International Council for the Exploration of the Sea (ICES), 
and are freely downloadable from the ICES Stock Assessment Database, available at https:// stand ardgr aphs. 
ices. dk/ stock List. aspx. The temperature data are freely available from NOAA/ESRL PSD at https:// psl. noaa. gov/ 
data/ gridd ed/ data. noaa. ersst. v4. html. All data and codes are freely available from github.com/HeleneGutte/
tipping_northsea_fish.
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