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One step surgical scene restoration 
for robot assisted minimally 
invasive surgery
Shahnewaz Ali 1, Yaqub Jonmohamadi 1, Davide Fontanarosa 2, Ross Crawford 3 & 
Ajay K. Pandey 1*

Minimally invasive surgery (MIS) offers several advantages to patients including minimum blood 
loss and quick recovery time. However, lack of tactile or haptic feedback and poor visualization of 
the surgical site often result in some unintentional tissue damage. Visualization aspects further 
limits the collection of imaged frame contextual details, therefore the utility of computational 
methods such as tracking of tissue and tools, scene segmentation, and depth estimation are of 
paramount interest. Here, we discuss an online preprocessing framework that overcomes routinely 
encountered visualization challenges associated with the MIS. We resolve three pivotal surgical scene 
reconstruction tasks in a single step; namely, (i) denoise, (ii) deblur, and (iii) color correction. Our 
proposed method provides a latent clean and sharp image in the standard RGB color space from its 
noisy, blurred, and raw inputs in a single preprocessing step (end-to-end in one step). The proposed 
approach is compared against current state-of-the-art methods that perform each of the image 
restoration tasks separately. Results from knee arthroscopy show that our method outperforms 
existing solutions in tackling high-level vision tasks at a significantly reduced computation time.

Minimally invasive surgery (MIS) requires the use of a camera and a lighting source to visualize internal anatomic 
conditions through small incisions and the ability to correctly visualize internal anatomy in full detail is critical to 
the overall success of such surgical procedures. With the advancement in robotics, robot-assisted MIS (RMIS) is 
gaining traction where visual information obtained from an endoscope can guide the surgical procedures using 
automatic tissue and operating tool tracking, tissue segmentation for context and situational awareness, camera 
pose estimation, and reconstruction of the three-dimensional structure of the surgical site1–3. All these high-
level tasks can get compromised by the poor quality of frames as a degraded frame can significantly limit visual 
and tissue specific contextual information. For instance, blurred and noisy observations may show compromised 
features, textures, and regions of interest. Such frames are usually discarded from clinical decisions but, in RMIS, 
these degraded frames could result in the failure of the whole vision-based task4.

In this work, we consider image visualization challenges of knee arthroscopy-an established MIS procedure 
to treat knee-joint. As part of this procedure, an imaging device (arthroscope) and surgical tools are inserted 
into the knee cavity. Sterile salt water (saline solution) is used to fill the knee cavity for improved navigation and 
visualization of this complex and dynamic joint. The imaging device captures video sequences at proximity to 
tissue structures (typically at around 10-mm distance)5 with a 30- or 70-degree field-of-view (FoV). We have 
developed a new class of stereo arthroscopes5,7 that expand the FoV to up to 110 degrees. Though an increased 
FoV is in general better, yet at this proximity, only small portions of the global scene context are accessible. Some 
example of bad image frames with noise, color cast, and blur are represented in Fig. 1.

Instances of non-uniform inter frame exposure and partly saturated pixels can further lead to visualization 
drawbacks in RMIS6,7. The most frequent type of noise observed is Gaussian noise, although other types such as 
speckle noise, salt-pepper noise, and Poisson noise also occur, often due to the strong backscattering produced 
by tissue debris8. Limited control on imaging device parameters and characteristics, such as exposure and aper-
ture, unsteady hand movement (shaking), and motion caused by camera steering and maneuvering can also be 
a source of blurring and image artifacts. This phenomenon derives a hard problem to estimate accurate kernel 
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adaptively and its direction, which is necessary for kernel-based deblurring methods9–14. Additionally, blur due 
to defocusing can be caused by lighting conditions, specular reflection, and improper focal settings.

In this article, the main components for the surgical scene correction such as blind denoising, blind deblur-
ring, and automatic white balance are discussed. A deep learning-based technique has been explored to restore 
clear and sharp images from the original blurry, noisy, and raw RGB observations.

In this work, we demonstrate auto segmentation of visually challenging images from the knee joint using 
U-Net. The rationale behind use of U-Net is that it is suited to small datasets, a situation commonly experienced 
with medical imaging research. Moreover, skip connections and the encoder-decoder architecture of U-Net 
is very effective in learning semantic labels of high-level medical image features. In view of such strong sides 
of U-Net, in this study we have explored this Fully Convoluted Network (FCN) model as a baseline model to 
retrieve clean, sharp, and color corrected images considering challenging arthroscopic video sequences and lack 
of sharp ground truth images of knee anatomy. For instance, unlike the natural images inside the knee cavity, it is 
extremely difficult to collect sharp and corresponding blur video frames due to limited control and accessibility 
of the surgical space. This study describes a novel approach to solve IR tasks for enhanced endoscopic vision.

The main contributions of this work are:

(1)	 Although IR tasks are well-studied in the context of natural images, in MIS very often the conventional 
parameterized methods are used. To the best of our knowledge, the deep learning-based frame correction 
method presented is novel for application to MIS. The ground truth data were partially obtained from five 
cadaver knee experiments. Moreover, the study shows the pros and cons of the conventional approach to 
address surgical scene restoration tasks.

(2)	 Several deep learning architectures, including U-Net, have been studied in literature as either denoiser or 
deblurring models. In this study, we explore the viability of using the U-Net architecture to learn three 
frame reconstruction tasks in the context of MIS, namely: a) Denoising, b) Deblurring, c) Color correction. 
The model provides white color balanced, sharp and clean frames which are free from artifacts.

(3)	 To perform three IR tasks simultaneously is a challenging problem. Coarse and fine-tuned trainings were 
performed in a two-stage process. We combined three loss functions into a total model loss, namely: PSNR 
for denoiser, PSNR and perceptual loss for color correction and structural similarity index for deblurring. 
Moreover, gradient loss was applied to fine tune our model to address frame blurring more accurately.

(4)	 We verified our model outcome against all the gold standard methods. Furthermore, we evaluated model 
urgency to tackle higher level vision tasks, e.g. instance segmentation. Improved accuracy was observed 
when preprocessed frames were used using our model. Moreover, this model performed three different IR 
tasks in a single step, resulting in increased system performance.

Related work
Image restoration (IR) has been well discussed in computer vision and image processing that can be expressed 
as follows:

where I is the corrected image, xi,j is the pixel position in the two-dimensional (2D) image plane, G is a trans-
formation matrix producing the blurring effect, and ǫ is defined as an additive white gaussian noise (AWGN) 
with standard deviation σ. During the IR process, blur kernels are estimated, and deconvolution operation is 
performed over the image. Then the noise residuals are subtracted from the resulting image.

In the context of image deblurring, several methods have been proposed9–14,16–31. Before the learning-based 
approaches, parameterized kernel methods were used to estimate motion blur9–14,16–23. The accuracy of these 
methods strongly depends on the motion kernels and on their directions. Later, several methods have been 
introduced that adaptively define motion kernels with the use of machine learning and deep learning approaches. 
However, some drawbacks of kernel-based methods have been identified32: (i) defining an accurate kernel is a 
complicated and error-prone task; (ii) methods’ accuracy is limited when a noisy environment is considered; (iii) 
artifacts are often introduced by these approaches when the kernel is not properly defined. Due to the limitations 

(1)I
(

xi,j
)

= G ∗ xi,j + ǫ

Figure 1.   Frames, obtained from an muC103A camera sensor, from raw arthroscopic video sequences of three 
different cadaveric samples. Image quality is degraded by factors including motion blur (red rectangles) and 
additive noises (yellow rectangles). Due to lack of automatic white balance hardware, the acquired frames yield 
different color representations under halogen and white micro-LED illuminants.
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of the kernel-based methods, in recent years, in order to achieve non-parametric kernel-free deblurring tech-
niques, learning-based methods have been gaining attention in the computer vision community. In particular, 
the method introduced in24 used convolutional neural networks (CNN) on multiscale image pyramids with 
a modified residual learning block, named ResBlock, that helps fast convergence. The method proposed in25 
extends the capacity of CNN to solve the bicubic degradation model to restore super-resolution images from 
noisy input. Generative deep learning-based methods have also been successful. Deblurring is performed based 
on the philosophy that the generator generates a clean image from input, and the role of the discriminant is to 
discriminate the output of the generator which is not close to ground truth clean images. When a network gets 
trained, the discriminant fails to discriminate against them as the generator learns how to construct a clean image 
from the noisy one. The method presented in26 used two generative models to address the maximum posterior 
of the deblurring method. Similarly, in27,28 the authors proposed generative models with residual blocks that 
achieved state-of-art accuracy. In their implementation, they used two stridden convolution blocks, nine residual 
blocks, and two transposed convolution blocks28. Additionally, they used L2 perceptual loss and adversarial loss.

Denoising is also a long-standing IR task that has been well-studied previously. Traditionally, denoised images 
were retrieved using filter-based methods. In this context, filters can be categorized as local or non-local34. Local 
filters use a supporting window and statistical methods to interpolate the central pixel value. For non-local ones, 
the statistical methods are performed on several windows over the entire image for each pixel value. Gaussian35, 
non-local means36, and bilateral37 are the most common filters discussed in this section. These traditional filters 
produce smooth images but have a few drawbacks among which that weak edges and features tend to vanish, 
and consequently blurred images can be produced.

Anisotropic38, BM3D39, and total variation40 filters have been proposed, looking for edge-preserving denoisers. 
Despite the advantage of improving edge preservation, major limitations included lack of textual information, 
and staircase effect34. Moreover, in some applications, they failed to report satisfactory results41. In the current 
research, the BM3D method is considered one of the state-of-the-art methods in this area.

Apart from blurring artifacts, a major consequence of using parameterized methods is that it is not confirmed 
whether they can address different levels of complex noises robustly. In recent years, the robust perceptual and 
contextual accuracy of CNNs has promoted increased interest in the computer vision community. The method 
proposed in42 used dilated convolution with batch normalization and the ReLu activation function to extract 
residual noise from the noisy observations. In the method introduced in43, a global residual learning strategy 
has been followed and they named it residual dense block. Autoencoder and decoder-based architectures offer 
precise feature extraction and localization at each scale, which can facilitate mapping noisy back to clean images. 
Reference44 proposed DRUNet—a modified network on top of U-Net45 to address IR problems on half quadratic 
spline.

During the arthroscopic procedure, the effect of illumination can cause a slight prevalence of either the red 
or the blue channel, which can affect the accuracy of other vision tasks15. The process was defined by15 as follows;

where IsRGB represents image in standard RGB (sRGB) color space. Function F (.) maps image between CIE 
XYZ color space to RGB color space and transformation function T (.) converts image from raw RGB space to 
white balanced CIE XYZ color space. Mapping from raw RGB to sRGB as a part of color consistency has been 
explicitly discussed in many areas where illumination estimation was the key factor. Radiometric calibration and 
CNN have been used to address this issue46,47. Recently, in15 this mapping function has been addressed using 
a k-nearest neighbor strategy that retrieves a color through best matching of the nonlinear mapping function. 
Moreover, the authors also provided a dataset that contains 65,000 pairs of images for different camera white 
balance settings. In their dataset, some of the ground truth data was generated through the use of Adobe Camera 
Raw feature and rendered in Photoshop.

IR for endoscopic procedures has not been properly investigated yet, and the progress in this sector is limited. 
A scarce literature currently establishes the IR problem48–56 where most of the articles address specular removal, 
parameterized deblur, desmoke, colorization and quality assessment. Robust denoising and deblurring mecha-
nisms in real time remains an unsolved problem which has a countless demand for robotic vision tasks such as 
tracking and navigating robots in the RMIS environment. More specifically, in arthroscopy, IR exhibits additional 
complexity considering factors such as underwater environment, lack of control on imaging devices, poor imag-
ing conditions, lens distortion, debris presence, hazing and complex motion, which require sophisticated and 
robust solutions. In this article we propose a single model where raw arthroscopic images are enhanced through 
color correction and, irrespective of the noise level, latent clean and sharp frames are restored after simultaneous 
denoising and deblurring.

Methods
Restoration of the white balanced latent clean and sharp image y from its noisy and raw sensor observation, x, 
is considered a mapping function:

where, θ are the parameters to learn during the training. In this article, this problem is considered as a regres-
sion problem.

Model.  This regression problem is addressed using a U-Net architecture, as detailed in Fig. 2.

(2)IsRGB = fXYZ → sRGB(Traw → XYZWB Iraw)

(3)y → f (x, θ)



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3127  | https://doi.org/10.1038/s41598-022-26647-4

www.nature.com/scientificreports/

U-Net is a well-known network architecture widely used for segmenting medical data as an end-to-end solu-
tion. In this work, the U-Net architecture is used to address color mapping and two IR tasks for MIS, namely; 
denoising and deblurring. Instead of classic U-Net, this implementation uses residual blocks into U-Net archi-
tecture. Following the encoder-decoder approach, the contraction path of U-Net precisely extracts features at 
different scales, down-sampled at each step. On the other side, the expansion path learns to localize each feature 
at different levels.

The residual learning57 strategy has several benefits across the network, it increases training and prediction 
accuracy even with small network depth. In U-Net architecture, spatial information loss is caused by down-
sampling in the contraction path, and it has been shown that a residual learning strategy performs better over 
classic U-Net58,59. Also, recent works on IR60 networks such as DnCNN showed advantages from the use of 
residual learning strategy.

Dataset and training.  Arthroscopic video sequences have been recorded during five knee arthroscopy 
procedures conducted on five different cadaveric knees. During these experiments, some frames have been cap-
tured at steady camera positions. Lighting conditions were maintained consistently using manually adjusted 
illumination controllers. When small motion-induced blurring and defocusing were observed at some distant 
parts, when possible they were corrected using the methods proposed in27,30,61. White balances were obtained 
from the method introduced in15. Corrected color values were validated by reconstructing their reflectance and 
comparing them with spectrometer data as mentioned in62. Clean images were then artificially degraded by add-
ing multi-level of Gaussian, Speckle, Salt and Pepper, and Poisson noise. Blur images were generated through the 
use of a motion blur kernel.

In this work, a ResUnet strategy and Batch normalization techniques were applied. U-Net architecture consists 
of three basic building blocks, namely, encoder, decoder, and connecting block. Encoder block learns high-level 
features to its complex low-level feature representation. In this way, U-Net encoder learns coarse pixel-wise fea-
ture representation of raw images. When residual blocks are implemented on a U-Net encoder, it provides more 
spatial information that means more noisy spatial representations are obtained. During the convolution operation 
in encoder side noisy features were extracted, therefore, the model learns how to extract feature from untextured 
noisy and blurred frames. Similarly, on the decoder part, U-Net learns pixel-wise fine features from its high-level 
feature’s representations, for instance, blur weak edges to its sharp representation. It subsequently preserves 
contextual information thus producing a clean and sharp image in an end-to-end fashion. Batch normalization 
is widely recognized for faster training when input distributions are different, known as an internal covariate 
shift. Reference42,60 methods received benefits with the use of batch normalization to learn noisy residual images. 
Noise such as gaussian and others can have different statistical distributions around the arthroscopic sequences. 
Moreover, blur can occur at different levels from multiple motions, a well-observed occurrence in underwater 
MIS. It is understood that these motions can exhibit blur effects at different directions in images, even a single 
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Figure 2.   Architecture for endoscopic image restoration framework. A clean, sharp and white balanced 
(WHB) video frame is retrieved from its raw, noisy and blurred observation. The network depth for encoder 
and decoder is 4. The network uses residual connection as it is shown in the bottom image. Accumulated loss 
function calculated from PSNR, SSIM, perception loss and reduced mean of edge loss between noisy and clean 
observation.
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pixel can experience several motions having different motion directions. To incorporate level independent noises 
including blur effect which means diverse input distributions, batch normalization strategy has been followed. 
Along with these we used 400 image samples from33 and the whole dataset, as shown in Fig. 3, was split into 
three categories: (i) clean images; (ii) blurred images, (iii) noisy and blurred images.

U-net architecture also learns to localize its features from local scope to global. To facilitate this in the context 
of arthroscopy, we also used synthetically rendered arthroscopic video sequences using 3D graphics software-
Blender. To do so, we used 91 samples for each of the five attenuation types which are noisy, blur, speckle, salt 
pepper, and poisson. For validation we used one third of natural and rendered images described above. Along 
with these images, the training has been performed on 4500 cadaver knee images. 1500 images were used as a 
validation dataset which contains both natural, rendered, and cadaveric video frames. During the test, we used 
a total of 6803 arthroscopic video frames from all five cadaver samples.

During the training structural similarity index (SSIM), peak signal to noise ratio (PSNR), perception loss- 
L2norm, and loss of edges between noisy and clean observations have been evaluated individually. It has been 
found that with the use of accumulated loss function of SSIM, PSNR and L2 norm the network converged 
smoothly and obtained better validation and test accuracy. The total loss is defined as,

Loss LPSNR and L2 norms are used to define the network learning strategy to reconstruct a clean image from 
its noisy observation as well as the color mapping function. PSNR is defined as follows63;

where,

(4)Losstotal =
∑

(LSSIM + LPSNR + L2)

(5)PSNR = 10∗log10

(

max2

MSE

)

(6)MSE =
1
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M
∑
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N
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O
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Figure 3.   Images in the left column represents the visual representation of the real scene and the result obtained 
from our method. Here, the top row represents a real arthroscopic scene, and the subsequent rows represent 
the results. Images presented in the top right column show the outcome of IR tasks considering high-level noisy 
and blur data. Images at the bottom right compare ground truth segmentation with the output from or methods 
on arthroscopic scene segmentation. The first column represents the ground-truth label, column (i) represents 
segmentation results obtained from the preprocessed dataset using our method, and column (ii) represents 
results obtained from the same dataset without preprocessing. It is clearly showing that this framework increases 
the accuracy of the segmentation task.
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In Eq. (5), max represents the highest value of a grayscale image. Similarly, SSIM and the difference of edges 
between a noisy and blur image are used for deblurring during the fine-tuned training stage. In this strategy, the 
network learns sharp edges and features from its coarse blur representations.

Learning noises is a comparatively simpler task than deblurring. Moreover, deblurring under noisy conditions 
is a relatively more complex task than straightforward deblurring. We followed two-stage training procedures, 
(i) coarse training, and (ii) fine-tuned training. The network outperforms, when it is trained with all noisy and 
blur observations for coarse training and then fine-tuned training is done over the blur dataset.

The arthroscopic dataset contains noisy observations, named as real and its corresponding clean images act 
as ground truth data. The real data set contains raw observation of arthroscopic scenes which are compromised 
to noise and blur. Moreover, these frames are not white balanced and provide raw RGB color. It is worthwhile to 
mention that, many frames perceptually exhibit small contextual information due to lighting conditions that are 
not uniform inside the knee cavity, therefore, the frame contains both saturation and underexposed image parts. 
Additive white gaussian noise (AWGN) is added to the raw input frames with standard deviation25. To simulate 
debris, haze, and random backscattering noise like speckle, salt-pepper, and Poisson are added to the real video 
frames. Additionally, to achieve several levels of blurring effects, both real and raw images are convolved with 
blur kernels. Training phases used Adam optimizer with learning rate 1e-4. It takes 0.024 s to process each frame 
with the use of the Nvidia Tesla -P100 GPU.

Results
To compare IR results, the state-of-the-art algorithms, including, Gaussian35, non-local mean filter36, Bilateral 
filter37, BM3D39, For deblurring BM3D-deblur39, Bayesian-based iterative64, unsupervised wiener65, l0 gradient 
prior66, Total variation deconvolution67, natural image statistics68, deblurring under high noise levels69 and deep 
learning based method, deep CNN denoiser prior42, Deblur GAN28, Scale-recurrent network30 are evaluated. In 
all the tables font bold represents highest score, bold and italics represent second highest score, and italics only 
represents third highest score.

Table 1 represents the outcome of our model and others at different noise levels. To do so, Gaussian additive 
noises were added to the input arthroscopic frames. Evaluation were modelled using both classic state-of-the-art 
conventional methods and recent learning-based methods. To denoise endoscopic scenes classical mathematical 
methods such as Bilateral filter, BM3D are widely used, however, learning based method like IRCN has proved 
an effective way to denoise frames37,39,42. From the Table 1, it can be seen that to address various levels of noises, 
in medical domain U-Net model constantly achieved high accuracy (> 92% up to noise level sigma = 40) while 
it simultaneously performs three IR tasks. Although compare to learning based method like IRCN and ours, 
the BM3D model achieved high average accuracy, it was able to perform denoise task only. It is worthwhile to 
note that, when BM3D model jointly perform denoise and deblur it achieved lower accuracy compare to BM3D 
denoiser. It confirms that, combinedly perform denoise, deblur, and color correction is a challenging task where 
U-Net and the proposed workflow has significant potential to solve this problem. With real world arthroscopic 
dataset (without artificial noises) it achieved 94% SSIM index.

Table 2 shows the evaluation of speckle, salt pepper, poisson noises which simulate debris in arthroscopic 
video frames. Similar to the previous discussion performing denoise only BM3D achieved highest SSIM index 
(86%) where our model (denoise, deblur, and color correction) achieved 84% SSIM. However, our model achieved 
higher PSNR index compare to BM3D models. Learning based denoiser and deblurring model such as IRCN42, 
SRN30 and GAN28 achieved relatively low accuracy compare to our and BMD model.

Table 1.   Gaussian de-noise.

Method

σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 60

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

GAS35 0.936 31.16 0.84 30.26 0.726 29.04 0.626 27.7 0.536 26.36 0.465 25.09

NLM36 0.942 38.7 0.91 35.7 0.771 29.80 0.512 24.03 0.310 20.13 0.19 17.0

BILT37 0.960 41.36 0.89 37.12 0.670 31.48 0.410 26.7 0.245 23.19 0.157 20.6

BM3D39 0.936 30.8 0.932 30.61 0.925 30.13 0.914 29.3 0.899 28.29 0.899 29.5

BM3D DEBLUR39 0.898 22.59 0.896 22.93 0.893 31.41 0.885 23.5 0.870 23.8 0.844 24.03

IRCN42 0.956 40.0 0.956 39.0 0.819 33.29 0.428 25.92 0.231 22.14 0.141 19.6

OUR 0.93 34.1 0.94 35.0 0.93 33.9 0.92 31.9 0.82 29.2 0.61 25.82
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Table 3 shows the evaluation of deblurring techniques. Our proposed model achieved highest SSIM and 
PSNR index compared to other learning based and classic computational deblurring methods. Table 4 shows the 
ability of IR models to perform three rudimentary tasks namely denoise, deblur, and color corrections. So far, 
to our best knowledge, our model has been evaluated first in literature to achieve these three IR tasks in a single 
shot manner. Our results also justify that, rather than adapting IR generic models such as for natural images, 
in medical domain it is necessary to have domain specific training. It is due to endoscopic images are challeng-
ing, and their appearances fundamentally constrained by low textures, body fluid, illuminations, and artifacts.

Perceptual representations are presented in Figs. 3, 4, and 5. To demonstrate the impact of our method on 
high-level vision tasks, arthroscopic scene segmentation is performed. The same neural network used by method5 
is trained for this task using both raw and preprocessed data using this method. On the same test set, the accuracy 
improvement for Femur, Anterior Cruciate Ligament (ACL), Tibia, Meniscus are 2.6%, 2%, 6.3%, and 7% (Fig. 3).

Conclusion
Image restoration is a critical part of high-level vision tasks such as stereo matching, monocular depth, and seg-
mentations in the context of knee arthroscopy70–75. It is confirmed from the obtained results that, our proposed 
framework restored clean and enhanced frames consisting of more textual information. Moreover, our method 
can restore frame details with higher-order noise levels. The framework uses established encoder-decoder like 
convolutional neural network architecture -U-Net with a strategy like Residual learning and batch normalization 
to speed up the training phase. The resultant network delivers highest accuracy when perceptual loss, PSNR, 
SSIM, and edge difference loss are summed up in a two-stage training.

Table 2.   Speckle, salt pepper, Poisson noises.

Method SSIM PSNR

GAS35 0.825073 26.783526

NLM36 0.803788 30.834656

BILT37 0.792327 31.219724

AISO38 0.730226 25.649356

BM3D39 0.865542 26.563407

BM3D DEBLUR39 0.825373 20.884970

IRCN42 0.832018 31.624574

GAN28 0.736981 24.844043

SRN30 0.756599 30.071061

LCY64 0.765477 32.147631

OUR 0.84 30.63

Table 3.   Deblur.

Method SSIM PSNR

BM3D DEBLUR39 0.85 21.2

IRCN42 0.89 19.8

GAN28 0.85 25.2

SRN30 0.92 27.5

LCY64 0.90 27.5

WIN65 0.80 32.2

10GR66 0.82 29.0

TV67 0.83 24.5

NI68 0.87 21.6

HN69 0.76 21.1

OUR 0.94 37
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Table 4.   Denoise, deblur, and color correction. In this table,  means the ability of a method to perform IR 
task and  means the method cannot be applied to perform that IR task.

Method Denoise Deblur Color correction

GAS35

NLM36

BILT37

AISO38

BMD39

BMD39

DEBLUR

IRCN42

GAN28

SRN30

LCY64

WIN65

10GR66

TV67

NI68

HN69

OUR



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3127  | https://doi.org/10.1038/s41598-022-26647-4

www.nature.com/scientificreports/

Received: 19 November 2021; Accepted: 19 December 2022

References
	 1.	 Fabien, M., Devemay, F. & Maniere, E. C. 3D reconstruction of the operating field for image overlay in 3D-endoscopic surgery. in 

Proceedings of the IAIS-AR IEEE. 191–192 (2001).
	 2.	 Mahmoud, N., Cirauqui, I., Hostettler, A., Doignon, C., Soler, L., Marescaux, J. & Montiel, J.M.M. ORBSLAM-based endoscope 

tracking and 3D reconstruction. in Proceedings of IWC-ARE. 72–83 (Springer, 2016).
	 3.	 Yichen, F., Meng, M.Q.H. & Li, B. 3D reconstruction of wireless capsule endoscopy images. in Proceedings of AICIEMB. (IEEE, 

2010).
	 4.	 Song, J., Wang, J., Zhao, L., Huang, S. & Dissanayake, G. Mis-slam: Real-time large-scale dense deformable slam system in minimal 

invasive surgery based on heterogeneous computing. in IEEE Robotics and Automation Letters. 4068–4075 (2018).
	 5.	 Jonmohamadi, Y. et al. Automatic segmentation of multiple structures in knee arthroscopy using deep learning. IEEE Access 8, 

51853–51861 (2020).

Figure 4.   Visual comparison of the deblurred frame obtained from traditional, deep learning, and our method. 
As one can see, our method retrieved sharp texture and white balanced frame.

Figure 5.   Presentation of original (upper row) and pre-processed frames (second row). (a) Arthroscopic frame 
taken from Stryker camera and not used during training. (b) The endoscopic frame of the gastrointestinal tract 
which were not used during training. In both images are enhanced through the retrieval of textures (edges). 
Similarly, (c–g) represents arthroscopic frames under different illumination. In all cases, different levels of noises 
and blur exist which were corrected by our method. Deblurred and denoised frames show enhanced texture 
information.
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