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Machine learning can aid 
in prediction of IDH mutation 
from H&E‑stained histology slides 
in infiltrating gliomas
Benjamin Liechty 1,6, Zhuoran Xu 1,6, Zhilu Zhang 2,6, Cheyanne Slocum 3, Cagla D. Bahadir 4, 
Mert R. Sabuncu 2,5,7* & David J. Pisapia 1,7*

While Machine Learning (ML) models have been increasingly applied to a range of histopathology 
tasks, there has been little emphasis on characterizing these models and contrasting them with 
human experts. We present a detailed empirical analysis comparing expert neuropathologists and ML 
models at predicting IDH mutation status in H&E‑stained histology slides of infiltrating gliomas, both 
independently and synergistically. We find that errors made by neuropathologists and ML models 
trained using the TCGA dataset are distinct, representing modest agreement between predictions 
(human‑vs.‑human κ = 0.656; human‑vs.‑ML model κ = 0.598). While no ML model surpassed human 
performance on an independent institutional test dataset (human AUC = 0.901, max ML AUC = 0.881), 
a hybrid model aggregating human and ML predictions demonstrates predictive performance 
comparable to the consensus of two expert neuropathologists (hybrid classifier AUC = 0.921 vs. 
two‑neuropathologist consensus AUC = 0.920). We also show that models trained at different 
levels of magnification exhibit different types of errors, supporting the value of aggregation across 
spatial scales in the ML approach. Finally, we present a detailed interpretation of our multi‑scale 
ML ensemble model which reveals that predictions are driven by human‑identifiable features at the 
patch‑level.

With the advancement of computer processing power and the demonstrated utility of deep learning approaches 
across multiple data-rich domains, the adoption of machine learning to medical diagnostics is anticipated to 
have a transformative effect on patient care. Already, methylation-based machine learning (ML) approaches to 
the classification of tumors of the central nervous system (CNS) have demonstrated performance that can exceed 
traditional histology-based  diagnosis1, and has allowed for the identification of novel  entities2 and molecular 
subtypes within established classification  systems2–4. Molecularly-defined entities continue to emerge, many 
demonstrating overlapping histology with other established tumor  classes5. However, routine histopathologic 
examination remains the mainstay of oncologic diagnosis due to its low cost, ubiquity, limited availability of 
molecular testing, and established robustness—particularly when performed by experienced subspecialty expert 
histopathologists. Even in healthcare centers with access to advanced molecular assays, the availability of sub-
specialty experts needed to perform organ-specific histopathologic examination and integrate molecular results 
into the overall diagnostic picture may be lacking. Developing robust machine learning models that leverage the 
immense, data-rich trove of existing and prospective histology slides via digitally scanned whole slide images 
(WSI) and that reproduce or augment subspecialist histopathology expertise can (1) help general pathologists 
render accurate subspecialty diagnoses, (2) serve as a check on human sources of error by acting as a highly 
reproducible and fatigue-free assistant, (3) help prioritize the highest yield assays for a given specimen, reducing 
costs and tissue expenditure, and (4) reveal discordant biases between ML models and human pathologists, which 
when approached synergistically could increase the detection of clinically pertinent biomarkers more reliably 
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than either in isolation. Moreover, interrogating and understanding the features that drive ML classification 
could reveal avenues for improvement in human expert assessments.

Infiltrating gliomas are the most common primary tumors of the CNS in  adults6,7. Despite significant advances 
in the understanding of their biology, they are considered incurable by current standards of care, including 
surgical gross total resection, radiotherapy, and  chemotherapy8. Historically, infiltrating gliomas were classified 
into the broad categories of astrocytoma and oligodendroglioma on cytomorphological grounds, and assigned 
histologic grades based on particular features including mitotic activity, necrosis, and microvascular proliferation. 
The term ‘glioblastoma’ (GBM) was synonymous with the highest-grade variant of infiltrating astrocytoma (IV 
of IV) and such tumors carry a poor prognosis with an average survival less than 2  years9. With the discovery of 
isocitrate dehydrogenase (IDH) mutation as a key driver of gliomagenesis in 25–30% of infiltrating gliomas and 
its correlation with a favorable prognosis, recent consensus guidelines regard IDH-mutant (IDHmut) tumors as 
biologically distinct entities from IDH-wildtype (IDHwt) tumors, and indeed the term ‘glioblastoma’ is now only 
applied to IDHwt infiltrating astrocytomas with high-grade histological/molecular  features1,10–12. While IDHmut 
gliomas are enriched for tumors with lower-grade histomorphology, there is no known definitive histologic 
standard for determining IDH status from histomorphology alone, and immunohistochemical or molecular 
methods remain the unequivocal gold-standard for such a determination; however, histomorphologic correlates 
of molecular alterations are well-recognized in many tumor types, including infiltrating gliomas. As noted by the 
WHO, certain histologic features have a stronger association with IDHmut status, including gemistocytic and 
oligodendroglial-like cytomorphology, while higher grade features such as palisading necrosis and microvas-
cular proliferation are enriched in IDHwt tumors; however these features lack sensitivity and  specificity10,13,14. 
Our experience suggests that subspecialty neuropathologists who review a high volume of infiltrating gliomas 
can predict the presence of IDH mutation from routine H&E stains with a relatively high degree of accuracy. 
Therefore, we believed that histological prediction of IDH-status represented an ideal prototype for the more 
general task of designing computer vision models to interrogate whole-slide images (WSI) to predict clinically 
relevant tumor biomarkers.

Convolutional neural networks (CNNs) are one of the most popular ML architecture choices for a wide-
ranging set of computer vision  tasks15–19. A challenge in the application of CNNs to WSI processing is that there 
is a practical limit to the input image size that can be handled (typically less than 1000 × 1000 pixels) by today’s 
hardware resources, such as GPU compute power and memory. WSI often have in the range of  105 pixels in each 
dimension, and key diagnostic features are usually seen only in small foci, necessitating tiling of the source image 
into appropriately sized training patches, and aggregation of patch-level class predictions to generate slide-level 
predictions. Previous work has shown that CNNs can be used to classify WSI histology data, particularly in 
epithelial cancers, including the prediction of driver mutations in some  cancers20–29. Furthermore, integrating 
CNN predictions from histology with genomic information has been found to predict behavior in infiltrating 
gliomas better than traditional histologic grading  alone30.

Prior studies have largely trained ML classifiers on image patches derived at a single level of magnification 
without aggregating across  scales20–30. This is in contrast to what pathologists typically do, which is use a range 
of magnifications in assessing tissue; i.e., pathologists scan slides at low magnification both to identify features 
better appreciated at low power as well as to identify regions of interest for closer examination at higher power. 
We therefore hypothesized that the accuracy of our prototypical classification task would be magnification-level 
dependent, and that ensembling ML models trained at different scales would generate more robust classifica-
tion. Finally, we hypothesized that neuropathologists and ML models would make different types of errors in 
classification, and that the aggregate assessment of a hybrid pathologist/ML model would be superior to either 
human or ML assessment alone.

Results
ML models accurately predict IDH mutation status. WSI images obtained from the publicly available 
TCGA database were used for training, including 801 (601 IDHwt and 200 IDHmut) slides (Table 1). These were 
split into training, validation, and test sets. As an external validation set, WSI from our institution (Weill Cornell 
Medicine) were used, comprising 174 (87 IDHwt and 87 IDHmt) slides. WSI were tiled into 256 × 256 pixel 
patches over multiple down-sampled levels corresponding to 2.5×, 5×, 10×, and 20× magnification (Fig. 1A; see 
“Materials and methods” section). Single-scale models were trained using the DenseNet-121 CNN  architecture31 
and patch-level embeddings were aggregated into slide-level embeddings via average pooling, which were then 
used to generate slide-level IDH mutation probabilities at output. 200 patches from each WSI were randomly 
selected and passed to the network during each training step (Fig. 1B). A multi-scale ensemble (MSE) was then 
generated by averaging all the predictions over the single-scale models (Fig. 1C; see “Materials and methods” 
section for detail).

Receiver operating characteristic (ROC) curves were generated for patient-level predictions of IDH status 
evaluated on the WCM test dataset using (1) single-scale models, (2) multiscale ensemble (MSE) ML model, (3) 
expert neuropathologist, and (4) hybrid neuropathologist-MSE scores. Single-scale models showed differential 
accuracy, with the peak at intermediate levels of magnification (Fig. 2A) (10× classifier AUC = 0.881, 95% con-
fidence interval = 0.88–0.883), with diminished AUCs seen in models using the lowest (2.5×) and highest (20×) 
levels of magnification. No ML model demonstrated a superior AUC compared to neuropathologists (Fig. 2B), 
and consensus averaging of the two neuropathologists’ semiquantitative predictions demonstrated a higher 
AUC than each neuropathologist individually. Averaging the top performing neuropathologist’s semiquantitative 
predictions with the MSE prediction scores to generate a human-ML hybrid classifier (Fig. 2C) shows a higher 
AUC than either the ML classifier or the pathologist alone, and demonstrates performance similar to that of 
the two-neuropathologist consensus (hybrid classifier AUC = 0.921, 95% confidence interval = 0.920–0.923 vs. 
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Table 1.  Summary of the demographics for the TCGA training, validation, and test datasets and the WCM 
test datasets. No significant differences are seen in sex between the IDHmut and IDHwt groups. IDH mutant 
gliomas show statistically significant enrichment in younger patients, consistent with historic controls. 
† Average simulation p-value: 140 IDH WT slides in the training dataset were randomly sampled and one-way 
Anova was then conducted. Simulations were repeated 1000 times.

Overall

IDH Status

p valueWT MUT

Count (n) Slide (patient)

Training 681 (312) 541 (232) 140 (80)

Validation 60 (29) 30 (13) 30 (16)

Test 60 (31) 30 (16) 30 (15)

TCGA Overall 801 (372) 601 (261) 200 (111)

WCM Test 174 (141) 87 (74) 87 (67)

Age (years) Mean (standard deviation)

Training 52.5 (16.4) 58.0 (13.1) 36.5 (14.6) 0.131†

Validation 41.5 (19.7) 59.9 (12.1) 26.5 (8.56)

Test 47.5 (21.0) 62.1 (15.7) 32.0 (13.4)

TCGA Overall 51.2 (17.3) 58.4 (13.2) 34.5 (14.1)  < 0.0001

WCM Test 52.4 (16.6) 62.7 (12.8) 41.1 (12.5)  < 0.0001

Female n (%)

Training 115 (36.9) 84 (36.2) 31 (38.8) 0.821†

Validation 13 (44.8) 8 (61.5) 5 (31.3)

Test 13 (41.9) 6 (37.5) 7 (46.7)

TCGA Overall 141 (37.9) 98 (37.5) 43 (38.7) 0.921

WCM Test 63 (44.7) 38 (51.4) 25 (37.3) 0.132

Figure 1.  A schematic for the end-to-end process of model training and deployment. WSI are tiled into 
patches of 256 × 256 size at 2.5×, 5×, 10×, and 20× magnification factors (1A). In each training iteration (mini-
batch), 200 randomly selected and augmented patches from a single magnification of a single WSI were passed 
to single-scale Densenet121 classifiers, initialized with imageNet pre-trained weights. Feature embedding 
vectors from each patch were then aggregated using naïve averaging, and the resulting vector was then passed 
to a final fully connected (linear) classifier (1B). Following training, the predictions three versions of each 
single-scale model trained with different random seeds were averaged to produce a single-scale ensemble, and 
the predictions from each single-scale ensemble were averaged to produce the multiscale ensemble (MSE) 
predictions (1C).
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neuropathologist consensus AUC = 0.92, 95% confidence interval = 0.918–0.921). Averaging of two-neuropathol-
ogist consensus with the ML model provides an incremental increase in prediction accuracy (AUC = 0.928, 95% 
confidence interval 0.927–0.929). The patient and slide level sensitivity, specificity, and AUC for the individual 
neuropathologists, two-neuropathologist consensus, the MSE classifier, pathologist-MSE hybrids, and the two-
neuropathologist consensus-MSE hybrid, evaluated using the WCM test dataset is summarized in Supplemental 
Table 1. A full summary of the slide-level and patient-level performance for the single-scale and multi-scale 
classifiers using the TCGA validation, TCGA test, and WCM test sets is also shown in Supplemental Table 2.

Single‑scale ML models make distinct errors relative to each other and to humans. Compari-
sons of patient-level predictions of the pathologists and classifiers using the WCM data are shown in Fig. 3. Fig-
ure 3A shows a scatter plot comparing the semiquantitative prediction scores of the two pathologists. Concord-
ant predictions are found in the yellow quadrants, while discordant predictions appear in the pink quadrants. 
High densities of accurate predictions are located at the extremes of the concordant regions, while inaccurate 
predictions are enriched in regions of lower certainty. The Pearson coefficient R for the semiquantitative predic-
tions of the pathologists is 0.767, while the Cohen’s kappa for the binary predictions of the pathologists is 0.656. 
Figure 3B shows a scatter plot of the pathologist consensus score (averaged semiquantitative predictions of the 
pathologists) compared to the MSE predictions. The correlation between MSE and pathologist consensus is less 
than between the two pathologists (Pearson coefficient R = 0.674), and correspondingly there is a lower degree 
of concordance between the binary classifications (Cohen’s kappa = 0.598). Among discordant cases, there is a 
slight enrichment of IDHmut cases that are accurately predicted by the pathologists and missed by the MSE, 
while there is slight enrichment of IDHwt cases accurately predicted by the MSE and missed by the pathologists. 
Figure 3D shows patient-level IDH prediction scores from the single-scale and multi-scale ensemble classifiers, 
pathologists, and hybrid predictions, highlighting the orthogonal nature of errors made at individual levels of 
magnification. A heatmap of the slide-level predictions from each classifier is shown in Supplemental Fig. 1. A 
matrix comparing the kappa scores of all ML classifiers, pathologists, and the hybrid classifier are shown in Sup-
plemental Fig. 2.

Patch‑level predictions reveal features that drive accurate and inaccurate predictions. To 
gain insight into (1) the decision-related morphological features of the ML models and (2) the types of errors 
made by both the classifiers and pathologists, sliding patch-level IDH predictions were generated for selected 
slides using the MSE, three of which will be examined in further detail here (Fig. 4). In the first informative 
case (Fig. 4A–D), neuropathologists were correct in predicting IDH mutation, but the case was inaccurately 
predicted by the MSE to be IDHwt at the slide-level. Regions shown in yellow (Fig. 4C) were predicted by the 
MSE as consistent with IDH mutation, and were also recognized by the neuropathologists as harboring relatively 
hypercellular infiltrating tumor that was likely IDH-mutant. Regions encoded in blue (Fig. 4D) drove the overall 
slide-level misclassification of MSE. These regions were enriched in brain parenchyma without definitive infil-
tration by tumor cells (as determined by human examination) and were disregarded as non-contributory to the 
classification task by the neuropathologists. Although the classifier was correct in determining that these areas 
were not enriched for IDH-mutated tumor, the binary classification task of determining the slide’s overall IDH 
status was evidently hampered by the large presence of uninvolved brain.

In a second case (Fig. 4E–J), that of an IDHmut glioma that was inaccurately classified by both the neuro-
pathologists and the MSE, many regions harbored a relatively monomorphic gemistocytic cytomorphology 
(Fig. 4G). These regions were accurately interpreted by the classifier as consistent with IDHmut status, and in 
retrospect also likely would have been favored to represent IDH-mutated tumor to the neuropathologists if pre-
sented in isolation. However, one region of marked nuclear pleomorphism (4J) was interpreted by both the clas-
sifier and the neuropathologists as representing IDHwt tumor, driving the misclassification. Human-determined 
‘uninformative regions’ again drove inaccurate MSE classification of particular areas: regions of uninvolved 

Figure 2.  ROC curves for the ML classifiers, pathologists, and hybrid models on the WCM test data. (A) 
compares the model performance of the single-scale ensembles and the multi-scale ensemble. (MSE). The 
performance of the semiquantitative predictions of two expert neuropathologists and the two-pathologist 
averaged consensus are compared in B). (C) compares the predictions of the top-performing neuropathologist 
with the MSE, and the hybrid model generated by naïve averaging of pathologist and MSE predictions.
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brain but with increased white-space around individual neurons and vascular channels due to tissue processing 
artifacts and/or edema were predicted as IDHmut (4H) by the MSE, while regions of relatively uninvolved brain 
and without significant intraparenchymal white-space (4G) were again erroneously predicted as IDHwt as before.

The final example (Fig. 4K–P) illustrates an IDHmut glioma inaccurately predicted by the neuropathologists 
as IDHwt, but correctly predicted by the MSE. In this case, solid regions of tumor (4M and 4N) were accurately 
predicted by the ML classifier as areas with (IDH-mutated) tumor. A large area of necrosis was present in this 
slide (4O), which drove inaccurate prediction of IDHwt by both neuropathologists, and this area in isolation 
was also classified as IDHwt by the MSE. Once again, the MSE interpreted regions of minimally involved normal 
brain (4P) as IDHwt. Additional heatmap examples are provided in Supplemental Fig. 3. Heatmaps demonstrat-
ing differences in pixel-level predictions at 2.5× versus 20× are provided in Supplemental Figs. 4,5, and highlight 
scale-dependent differences in IDH-confidence in different areas of the slides.

Figure 3.  Patient-level predictions in the WCM test data, for the pathologists and ML models. Panel (A) 
compares the semiquantitative prediction scores of the two neuropathologists (κ = 0.656, R = 0.767). Panel (B) 
compares the two-neuropathologist consensus predictions to the multiscale classifier. (κ = 0.598, R = 0.674). 
Panel (C) shows all patient-level predictions using the single-scale models, multiscale ensemble, individual 
pathologists (P1, P2), two-pathologist consensus (P1 + P2), and the hybrid classifier (P + WSIP1 + MSE). 
Software utilized the ComplexHeatmap R package (https:// doi. org/ 10. 1002/ imt2. 43) and R version 4.0.3 (2020-
10-10).

https://doi.org/10.1002/imt2.43


6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22623  | https://doi.org/10.1038/s41598-022-26170-6

www.nature.com/scientificreports/

Patch‑level embedding vectors reflect diagnostically relevant human‑identifiable fea‑
tures. To gain further insight into the histological features encoded by our trained ML models, 5 random 
patches were selected from each slide in the WCM dataset and uniform manifold approximation and projec-
tion (UMAP) was performed on the patch-level embedding vectors from the best performing 10x-scale classi-
fier (Fig. 5A–B). Review of histological features in clustered patches revealed consistent patterns across patches 
obtained from distinct slides. Emergent human-identifiable features included: (1) microcystic architecture 
(Fig. 5C), which is correlated with IDHmut status, (2) hypercellular regions of tumor with round, monomorphic 
nuclei, reminiscent of oligodendrocytes, which were appropriately enriched for IDHmut tumors (Fig. 5D), (3) 
hypercellular tumor areas with spindled nuclei and greater pleomorphism, enriched for IDHwt tumors (Fig. 5E), 
and (4) brain parenchyma without significant human-detectable involvement by tumor (by H&E), that were 
predicted by the classifier as harboring IDH mutation irrespective of the ground truth slide-level class (Fig. 5F). 
Other features captured by the embedding vectors include patches with a significant amount of whitespace 
(Fig. 5A, top-right) and regions with abundant hemorrhage or necrosis (Fig. 5A, top center). The ground-truth 
IDH-status and integrated molecular diagnosis of the UMAP coordinates are shown in Supplemental Fig. 6. A 
high-resolution version of Fig. 5A is available upon request.

Discussion
Just as the molecular classification of neoplastic disease and its impact on patient care have emerged rapidly in 
the last decade, ML techniques and computational resources continue to progress. An open question in medical 
diagnostics is whether existing data-rich resources such as WSIs, effectively encodes untapped information that 
could be leveraged to guide patient management while minimizing the use of more advanced but less accessible 
modalities. We selected the task of predicting IDH mutation in infiltrating gliomas as a prototypical problem 
within this space, using CNN models with H&E-based histological information as the sole input. Moreover, we 
compared the performance of this task over multiple magnification scales. As a reference point, we compared 
the performance of the CNN models, trained on the order of hours, with those of subspecialty-trained expert 
neuropathologists, trained on the order of years to decades. While the models demonstrate very high accuracy 
on the TCGA dataset, a significant drop in performance is seen when applying the same models to the WCM 
dataset. We believe this is a result of recurrent batch effects in tissue fixation, processing, and staining between 
different laboratories, and that the overperformance on TCGA data likely represents an element of overfitting 

Figure 4.  Shows examples of the sliding windows visualizations, with representative patches from regions from 
3 example cases that provide insight into features recognized by the classifier. 4(A) show a low power H&E 
image of a slide that was accurately predicted as IDHmut by the neuropathologists, but was incorrectly classified 
by the MSE. 4(B) shows a heatmap of average pixel-level IDH mutation status predictions. Selected patches 
from image 4(A) demonstrate higher IDHmut predictions in regions of solid tumor (4C), with higher IDHwt 
predictions in regions of minimally involved brain parenchyma (4D). 4(E) and 4(F) show an example of a slide 
from an IDHmut case, which was misclassified by both the neuropathologists and the ML classifier. Regions 
from this slide containing tumor with monomorphic gemistocytic cytomophology (4G; arrows = examples of 
gemistocytic cells) and regions of minimally involved brain parenchyma with perineuronal (black arrow) and 
perivascular (blue arrow) white space artifact (4H) were associated with a higher prediction for IDHmut, while 
areas of minimally involved brain parenchyma without significant whitespace artifact (4I) and regions with 
more bizarre cytology (4J) were associated with a higher prediction of IDHwt status. Figures 4(K) and 4(L) show 
a slide from an IDHmut glioma which was accurately predicted by the ML classifier, but inaccurately predicted 
by the neuropathologists. Areas of mildly cellular tumor, both with and without whitespace artifact [4(M) and 
4(N) respectively] were associated with higher IDHmut predictions, while regions of necrosis (4O) and regions 
of minimally involved brain parenchyma (4P) were associated with higher IDHwt predictions.
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on batch effects from a relatively small number of centers, and the performance on the WCM dataset is likely 
more representative of the performance that would be seen real-world deployment on samples from laboratories 
to which the models are naïve.

Comparison of ML model predictions to expert pathologists shows that while similar degrees of accuracy 
are obtained on the classification task, the types of errors made were distinct, combining pathologist predic-
tions and ML predictions results in greater classification robustness than either alone. Manual interrogation 
of patch-level predictions demonstrates several confounders exploited by the ML models which, interestingly, 
were found to be reproducible at all levels of magnification. The most striking source of errors in our models 
were regions of human-interpreted low informativity within the underlying tissue. Specifically, regions of brain 
without definitive tumor cells were often classified as IDHwt, while regions with increased white-space secondary 
to vacuolation, edema, and/or tissue artifacts were often classified as IDHmut. While areas lacking tumor are 
indeed IDHwt per se given the putative absence of tumor cells, the task was built around slide-level classification 
of de facto tumors. Our interpretation, therefore, is that classifying these regions as IDHwt on-average drove the 
classifier to a higher degree of accuracy overall, despite patch-level ‘uninformativeness’ as determined by human 

Figure 5.  UMAP coordinates of the feature embedding vector activations from patches passed through the 
10 × classifier. A) shows some example tiles in 2D UMAP coordinates. (B) shows the patch-level IDH status 
prediction scores as predicted by the 10 × classifier. Tiles from region (C) demonstrate microcystic architecture. 
Tiles from region (D) demonstrate hypercellular regions of infiltrating tumor, with round cytology, enriched 
for tumors with oligodendroglial morphology. Tiles from region (E) demonstrate hypercellular regions of 
tumor with a greater degree of nuclear spindling/elongation and nuclear pleomorphism. Tiles from region (F) 
demonstrate brain parenchyma without significant infiltration by tumor cells.
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observers. One approach to address the confounding effects of such regions is to explicitly annotate and train 
toward a third-class label, that of “non-neoplastic brain” from autopsy and epilepsy cases. Surprisingly, in the 
set of sliding window heatmaps analyzed, the models were not clearly driven by features that pathologists often 
used to predict IDH-class due to their enrichment in IDHwt tumors, such as well-formed palisading necrosis 
and microvascular proliferation.

The presence of human-identifiable features as seen in the UMAP projections demonstrates that the CNNs 
can recognize some of the features used by humans in the classification of gliomas. We found that patches 
demonstrating microcystic architecture or oligodendroglial cytomorphology were enriched for IDHmt classi-
fication while patches with increased spindled cells and pleomorphism were enriched for IDHwt classification. 
Histomorphologic correlates of certain driver alterations have been previously identified, such as giant-cell 
morphology in IDHwt glioblastomas harboring TP53 mutation, and epithelioid morphology in high grade 
gliomas harboring BRAF mutations; however, given the heterogeneity of infiltrating gliomas, and particularly 
in IDHwt astrocytomas/glioblastomas, these morphologic correlates as assessed by human pathologists have 
relatively poor predictive  utility32–37. The UMAP also clearly illustrated that regions of human-interpreted low 
informational value relative to the task were enriched for particular classes, such as normal appearing brain 
being enriched for IDHwt class. Again, the identification of recurrent confounders across these models suggests 
that strategies to devalue or exclude uninformative patches could further improve classification accuracy, and 
expanding the number of available classes to include non-neoplastic samples, as alluded to above, may improve 
ML performance. In addition, we believe that given a sufficiently large dataset of histologic data paired with RNA 
transcriptome and DNA methylation profiling, histomorphologic correlates may be identified, however further 
studies will be necessary to assess for this.

Methods to aggregate patch-level predictions into slide-level classifications are a widely studied problem in 
the multiple-instance learning literature. Attention mechanisms that increase the weight of highly informative 
patches on the final classification prediction have been found to be useful in other cancer  types22,38. However, 
the differing biological characteristics of tumor types that are reflected in histology (for example that infiltrat-
ing gliomas typically have an ill-defined border with respect to the surrounding non-neoplastic tissue, a feature 
that differs significantly from that of epithelial cancers) are likely to impact the efficacy of any particular ML 
algorithm, and the strategies employed are unlikely to be universally applicable to models trained for all diag-
nostic tasks. In our experiments conducted with this dataset, we also tested attention pooling mechanisms to 
aggregate patch-level embeddings into slide-level embeddings using the method described by Ilse et al.38 (https:// 
arxiv. org/ pdf/ 1802. 04712. pdf), where weights for each patch embedding are learnable; however, this attention 
mechanism did not provide a significant improvement on classification performance relative to naïve averag-
ing of embedding weights (data not shown). That said, as the number of potential target outputs of the model 
increases, attention mechanisms may help boost performance, but future studies using a broader variety of target 
classes are necessary to better assess this.

Our results demonstrate that the level of magnification used for input images impacts the ML model accuracy, 
with the greatest levels of accuracy achieved at intermediate levels of magnification (corresponding to 10 × objec-
tive in our study). One interpretation of this finding is that while lower levels of magnification provide a larger 
field of view with a greater degree of overall tissue sampling and increased architectural information, higher 
levels of magnification provide increased cytologic detail yet with a smaller field of view. Intermediate levels of 
magnification may represent a “sweet-spot” capturing both low-power and high-power information. Of practical 
importance, some errors made by models using different levels of magnification were found to be orthogonal, 
and to the errors made by human observers, providing a rationale for multi-scale ML models and hybrid ML-
human approaches. We also believe that designing ML models to explicitly recapitulate the human methodology 
of examining the tissue at lower power, and then selecting regions of interest to interrogate at higher power could 
result in more robust model predictions, while also using less computational resources than interrogating an 
entire image at high power. However, future studies will be necessary to confirm this.

While routine H&E staining is not used to make determinations of mutational status, its global availability, 
low cost, and diagnostic richness have established it as a mainstay of surgical pathology for over a century. 
Immunohistochemistry for the most common pathogenic IDH mutation (IDH1 R132H) detects 85–90% of 
IDH mutant gliomas, with the remainder requiring DNA sequencing to identify. Of note, in our cohort, all 
slides harboring non-R132H IDH-mutations were correctly classified by our models (n = 6, IDH1 R132C = 4, 
IDH2 R172K = 2). This work suggests that computer vision-based approaches may assist in subclassification of 
tumors for which gold-standard molecular diagnostics are not universally available and in selecting assays for 
additional testing.

Studies evaluating at the ability of ML models to predict IDH mutation status have been previously published. 
Jiang et al.39 found that WSI could be used to predict IDH mutation status and survival in gliomas with grade 
2 and 3 histology. Liu et al. found that the inclusion of a generative adversarial network (GAN) to augment 
training data and including patient age as a model input could both improve model accuracy. Both these studies 
used TCGA glioma cohorts for model training. To our knowledge, our work is the first to evaluate aggregate 
expert human predictions with model predictions, and to compare the features learned by ML models with those 
that have been identified as predictive by human pathologists, and to compare the predictions of ML models at 
multiple levels of magnification. Further studies will benefit from larger image slide datasets including greater 
variability of laboratory-specific staining protocols. In addition to training models to detect particular clinically-
relevant molecular alterations, of interest will be to train models directly toward patient outcomes in an effort to 
disclose previously unappreciated histological features of clinical and prognostic relevance.

This study demonstrates that ML models can achieve near human-level performance at predicting clinically 
relevant oncologic biomarkers of CNS tumors using H&E-based histological information alone, even with a 
completely external test set, with training times and slide exposure that is minimal compared to that needed 

https://arxiv.org/pdf/1802.04712.pdf
https://arxiv.org/pdf/1802.04712.pdf


9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22623  | https://doi.org/10.1038/s41598-022-26170-6

www.nature.com/scientificreports/

to train human subspecialty experts. Moreover, by analyzing single magnification and multi-scale models and 
interrogating encoded features through heatmap and UMAP visualizations of patch-level predictions, crucial 
insights of how to iteratively improve the ML models can be obtained. Our study represents a proof-of-principle 
that ML models hold great promise in approaching and potentially superseding human level performance of 
biomarker detection via deep learning of widely accessible H&E slides, paving the way to uncovering the full 
diagnostic and prognostic potential of this ubiquitous data modality.

Materials and methods
Human subjects research. This research and experimental protocols were conducted in accordance 
with Weill Cornell Medicine’s Institutional Review Board requirements under the IRB-approved protocol 
#1312014589. All patients were initially consented to surgical procedures from which slide image data was 
obtained as per institutional guidelines. The IRB for this research itself was approved with a waiver of consent 
given its retrospective nature and given there was no contact with patients, and the research conforms to the 
ethical requirements and HIPAA compliant protections mandated by the institutional IRB.

Dataset. In this study, we used datasets from two cohorts of infiltrating gliomas patients obtained from The 
Cancer Genome Atlas (TCGA)40 and Weill-Cornell Medicine (WCM). (1) TCGA: We downloaded H&E-stained 
WSI along with gender and age information from the TCGA-LGG and TCGA-GBM datasets. Clinical data for 
the merged TCGA LGG and GBM cohort was downloaded from cbioportal (date of download September 17, 
2020). Cases without reported IDH mutation status, or without formalin-fixed paraffin-embedded (FFPE) H&E-
stained slides available for download were excluded. From these datasets, we obtained a total of 801 slide images 
(601 IDHwt and 200 IDHmut) from 372 patients (261 IDHwt and 111 IDHmut) (Table 1). We then split TCGA 
data into training, validation, and test sets, with all slides from individual patients being sorted to the same 
subset. To ensure IDH class balance during model evaluation for straightforward interpretation, we randomly 
sampled 30 IDHwt slides and 30 IDHmut slides each in both the TCGA validation and test sets. All other slides 
in the TCGA cohort were used for training. (2) WCM: We queried the in-house clinical database at WCM for 
infiltrating gliomas with available H&E-stained slides, with recorded IDH mutation and 1p19q codeletion status, 
from 2011 to 2020. From these cases, a balanced dataset of IDHwt and IDHmut gliomas (including both astro-
cytomas and oligodendrogliomas) were scanned using the Aperio T2 system at 40X. This test dataset comprised 
87 slides from 74 patients with IDHwt gliomas, and 87 slides from 67 patients with IDHmut gliomas. The images 
were reviewed by author CS for quality, and the evaluating authors (BL and DP) were blinded to all information 
about the cases beyond the scanned H&E slides. The WCM dataset was used as an independent external test set 
to evaluate ML model robustness and generalizability and to compare the ML models with human IDH predic-
tion performance.

Image preprocessing. We first tiled all WSI into non-overlapping patches of size 256 by 256 pixels at spa-
tial resolutions corresponding to 2.5×, 5×, 10×, and 20× magnification (Fig. 1A). Pixel values ranging between 
40 and 215 in greyscale space were treated as informative tissue, and pixels outside this range were considered 
uninformative, either as background whitespace (> 215) or folded tissue (< 40). Only patches with over 75% tis-
sue percentage were kept for further training and testing. All patches with significant blurriness or pen marks 
were excluded by thresholding RGB values obtained heuristically.

Image augmentation. To increase the model generalizability and reduce potential overfitting, we imple-
mented several image augmentation strategies during training. Since all patches within each batch were from 
one WSI, color augmentations were performed on slide level for each iteration, i.e., we only used one set of color 
augmentation parameters each iteration for all patches from each slide. We first transformed RGB patches into 
HSV color space. Then pixel values were augmented channel-wise as: Iaugc = αcIc + βc . Ic were pixel values in 
channel c . αc and βc were channel specific color augmentation factors. αc and βc were sampled uniformly from 
U(1− σ , 1+ σ) and U(−σ , σ) respectively for each slide. We set σ as 0.05 to control augmentation degree. In 
addition, each patch had 50% probability of being flipped either vertically or horizontally and equal probability 
(25% each) of being rotated by 0, 90, 180 or 270 degrees. Distinct augmentation parameters were randomly gen-
erated during patch selection for each mini-batch.

Model training. After the image preprocessing step, each WSI had four sets of patches corresponding to 
magnifications of 2.5×, 5×, 10×, and 20×. Single-scale models were trained for each scale. We used a pre-trained 
DenseNet-121  architecture31, without the last dense layer, as the feature extractor to generate patch-level embed-
dings of length 1024. All patch-level embeddings from one slide generated in each iteration were aggregated into 
slide-level embeddings using average pooling. A randomly initialized fully connected layer with 1024 nodes was 
then implemented to take the aggregated slide-level features as input and output slide-level IDH mutation prob-
abilities. Due to memory constraints, only 200 patches from one WSI were randomly selected and passed to the 
network for each training step (Fig. 1B). If there were less than 200 patches for one slide, we used all available 
patches in that mini-batch. Note the mini-batch consisted of a single WSI. To keep IDH classes balanced during 
training, we randomly sampled 140 IDHwt slides and used all 140 IDHmut slides in each training epoch. We 
used Adam as to minimize binary cross-entropy  loss41,42 with a learning rate of 0.00001, and a maximum of 100 
 epochs43. All network parameters, including the weights of the DenseNet-121 backbone were updated during 
training. Models from the epoch with the best validation loss were used. Three separate single-scale models were 
trained using different random initial seeds.
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Model inference. The trained models from the last step can be used for predicting both patch-level and 
slide-level IDH mutation status. We first averaged the three slide-level probabilistic predictions at a given scale 
to compute single-scale predictions. A multi-scale ensemble (MSE) was then computed by averaging all four 
single-scale predictions (Fig. 1C). For patients with multiple slides, patient-level predictions were computed by 
averaging slide-level predictions. For measures of prediction accuracy, a threshold of 0.5 was used as a cutoff for 
IDHmut status.

Pathologist evaluation. The WCM test set was separately evaluated by two neuropathologists (authors BL 
and DP), blinded to all patient information and ancillary testing beyond the WSI, to compare the model predic-
tions to human observers. For each case, both pathologists were asked to issue a prediction for IDH status in 
a semiquantitative scale, normalized to a range of 0 and 1 (i.e., 0 for a prediction of IDHwt and 1 for IDHmut, 
values close to 0.5 for cases with low certainty). The pathologists’ predictions were then averaged to generate a 
two-pathologist consensus score. The predictions from each pathologist were averaged with the MSE prediction 
to generate hybrid classifier scores, and the two-pathologist consensus score was averaged with the MSE predic-
tions to generate a two-pathologist consensus-hybrid model.

Prediction heatmap. Eight cases in the WCM test set that represent all possible IDH status combinations 
of ground-truth, pathologists’ ensemble, and slide-level MSE predictions, were selected for heatmap visualiza-
tion. We used a sliding window strategy to generate a MSE prediction heatmap. We set window size as 256 × 256 
and step size as 256, 128, 64 and 32 for 20×, 10×, 5×, and 2.5×, respectively. Using this sliding windows process, 
we passed patches containing greater than 50% tissue pixels through the single-scale models. Pixel-level predic-
tions were computed by averaging model predictions for patches that contained that pixel, excluding patches 
below the 50% tissue threshold. These heatmaps were then manually examined by pathologists to gain insights 
into the histologic features impacting predictions. Pixel-level predictions at high and low magnification were 
compared by subtracting predictions obtained by the 2.5 × model from the predictions from the 20 × model. 
Software utilized the matlibplot 3.6.2 Python package available at https:// matpl otlib. org. Source code used for 
generation of sliding window figures is available at https:// github. com/ Karen xzr/ IDHmut/ blob/ main/ Visua lize. 
py.

UMAP visualization. We randomly selected five 10× patches from each WSI in the WCM test set for 
UMAP  visualization44,45. Patch embeddings extracted by trained convolutional base of the best performing 10× 
classifier were used as patch representations. We used the Python UMAP package with default hyper-parameters 
to obtain the UMAP representations for each patch. For visualization purposes, the first two dimensional vectors 
of UMAP projections were used as coordinates to show the original input patches, ground-truth IDH mutation 
status, ground-truth integrated molecular diagnosis (oligodendroglioma, IDHmut astrocytoma, IDHwt astrocy-
toma), patch-level IDH prediction scores, and slide-level IDH prediction scores from the classifier. The patches 
were then reviewed by the pathologists to determine the presence of human-identifiable features in each cluster-
ing, and the association between histomorphology with specific diagnoses.

Statistical analysis and software. All model trainings and inferences were performed on 4 NVIDIA 
Titan X GPUs. Image preprocessing, model training and inference were conducted in Python, version 3.7.4. 
OpenSlide python was used for reading and tiling WSI. Pytorch was used for training neural networks. All sta-
tistical analyses were performed in R, version 4.0.3. Slide prediction heatmaps were plotted using the Complex-
Heatmap R  package46. Age differences were evaluated using t-test. Chi-square test was used to test the gender 
difference between two IDH status groups. Confidence intervals of model performance metrics were evaluated 
through sample bootstrapping for 1000 times. All statistical tests were two-sided with a significance threshold 
of p < 0.05.

Significance. We show that combining an expert pathologist’s assessments with ML model predictions can 
classify IDH mutation status in infiltrating gliomas at a comparable level to two-expert consensus. Our study is 
a proof of principle for the broader application of ML models in deriving clinically relevant molecular markers 
based on histopathology alone. We also demonstrate that ML-based histopathology classification accuracy var-
ies with level of magnification, and discordant errors are made across scales. This suggests value in ensembling 
across levels of magnification.

Data availability
All TCGA histology image data used in this study is publicly available through https:// portal. gdc. cancer. gov/ 
repos itory. De-identified metadata corresponding to the WCM histology image dataset (WSI database) is avail-
able upon request. Raw scanned *.svs files corresponding to the WCM histology image dataset may be shared 
in accordance with institutional guidelines including development of an institution-specific Materials Transfer 
Agreement and in accordance with appropriate HIPAA-compliant interinstitutional IRB-approved protocols.

Code availability
All source code and guidelines are publicly available on https:// github. com/ Karen xzr/ IDHmut.
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